You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

MetricsTest.cs 9.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using System;
  3. using System.Collections.Generic;
  4. using System.Linq;
  5. using System.Text;
  6. using System.Threading.Tasks;
  7. using Tensorflow;
  8. using Tensorflow.NumPy;
  9. using static Tensorflow.Binding;
  10. using static Tensorflow.KerasApi;
  11. namespace TensorFlowNET.Keras.UnitTest;
  12. [TestClass]
  13. public class MetricsTest : EagerModeTestBase
  14. {
  15. /// <summary>
  16. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Accuracy
  17. /// </summary>
  18. [TestMethod]
  19. public void Accuracy()
  20. {
  21. var y_true = np.array(new[,] { { 1 }, { 2 }, { 3 }, { 4 } });
  22. var y_pred = np.array(new[,] { { 0f }, { 2f }, { 3f }, { 4f } });
  23. var m = tf.keras.metrics.Accuracy();
  24. m.update_state(y_true, y_pred);
  25. var r = m.result().numpy();
  26. Assert.AreEqual(r, 0.75f);
  27. m.reset_states();
  28. var weights = np.array(new[] { 1f, 1f, 0f, 0f });
  29. m.update_state(y_true, y_pred, sample_weight: weights);
  30. r = m.result().numpy();
  31. Assert.AreEqual(r, 0.5f);
  32. }
  33. /// <summary>
  34. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/BinaryAccuracy
  35. /// </summary>
  36. [TestMethod]
  37. public void BinaryAccuracy()
  38. {
  39. var y_true = np.array(new[,] { { 1 }, { 1 },{ 0 }, { 0 } });
  40. var y_pred = np.array(new[,] { { 0.98f }, { 1f }, { 0f }, { 0.6f } });
  41. var m = tf.keras.metrics.BinaryAccuracy();
  42. m.update_state(y_true, y_pred);
  43. var r = m.result().numpy();
  44. Assert.AreEqual(r, 0.75f);
  45. m.reset_states();
  46. var weights = np.array(new[] { 1f, 0f, 0f, 1f });
  47. m.update_state(y_true, y_pred, sample_weight: weights);
  48. r = m.result().numpy();
  49. Assert.AreEqual(r, 0.5f);
  50. }
  51. /// <summary>
  52. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalAccuracy
  53. /// </summary>
  54. [TestMethod]
  55. public void CategoricalAccuracy()
  56. {
  57. var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } });
  58. var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } });
  59. var m = tf.keras.metrics.CategoricalAccuracy();
  60. m.update_state(y_true, y_pred);
  61. var r = m.result().numpy();
  62. Assert.AreEqual(r, 0.5f);
  63. m.reset_states();
  64. var weights = np.array(new[] { 0.7f, 0.3f });
  65. m.update_state(y_true, y_pred, sample_weight: weights);
  66. r = m.result().numpy();
  67. Assert.AreEqual(r, 0.3f);
  68. }
  69. /// <summary>
  70. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalCrossentropy
  71. /// </summary>
  72. [TestMethod]
  73. public void CategoricalCrossentropy()
  74. {
  75. var y_true = np.array(new[,] { { 0, 1, 0 }, { 0, 0, 1 } });
  76. var y_pred = np.array(new[,] { { 0.05f, 0.95f, 0f }, { 0.1f, 0.8f, 0.1f } });
  77. var m = tf.keras.metrics.CategoricalCrossentropy();
  78. m.update_state(y_true, y_pred);
  79. var r = m.result().numpy();
  80. Assert.AreEqual(r, 1.1769392f);
  81. m.reset_states();
  82. var weights = np.array(new[] { 0.3f, 0.7f });
  83. m.update_state(y_true, y_pred, sample_weight: weights);
  84. r = m.result().numpy();
  85. Assert.AreEqual(r, 1.6271976f);
  86. }
  87. /// <summary>
  88. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CosineSimilarity
  89. /// </summary>
  90. [TestMethod]
  91. public void CosineSimilarity()
  92. {
  93. var y_true = np.array(new[,] { { 0, 1 }, { 1, 1 } });
  94. var y_pred = np.array(new[,] { { 1f, 0f }, { 1f, 1f } });
  95. var m = tf.keras.metrics.CosineSimilarity(axis: 1);
  96. m.update_state(y_true, y_pred);
  97. var r = m.result().numpy();
  98. Assert.AreEqual(r, 0.49999997f);
  99. m.reset_states();
  100. var weights = np.array(new[] { 0.3f, 0.7f });
  101. m.update_state(y_true, y_pred, sample_weight: weights);
  102. r = m.result().numpy();
  103. Assert.AreEqual(r, 0.6999999f);
  104. }
  105. /// <summary>
  106. /// https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/F1Score
  107. /// </summary>
  108. [TestMethod]
  109. public void F1Score()
  110. {
  111. var y_true = np.array(new[,] { { 1, 1, 1 }, { 1, 0, 0 }, { 1, 1, 0 } });
  112. var y_pred = np.array(new[,] { { 0.2f, 0.6f, 0.7f }, { 0.2f, 0.6f, 0.6f }, { 0.6f, 0.8f, 0f } });
  113. var m = tf.keras.metrics.F1Score(num_classes: 3, threshold: 0.5f);
  114. m.update_state(y_true, y_pred);
  115. var r = m.result().numpy();
  116. Assert.AreEqual(r, new[] { 0.5f, 0.8f, 0.6666667f });
  117. }
  118. /// <summary>
  119. /// https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/FBetaScore
  120. /// </summary>
  121. [TestMethod]
  122. public void FBetaScore()
  123. {
  124. var y_true = np.array(new[,] { { 1, 1, 1 }, { 1, 0, 0 }, { 1, 1, 0 } });
  125. var y_pred = np.array(new[,] { { 0.2f, 0.6f, 0.7f }, { 0.2f, 0.6f, 0.6f }, { 0.6f, 0.8f, 0f } });
  126. var m = tf.keras.metrics.FBetaScore(num_classes: 3, beta: 2.0f, threshold: 0.5f);
  127. m.update_state(y_true, y_pred);
  128. var r = m.result().numpy();
  129. Assert.AreEqual(r, new[] { 0.3846154f, 0.90909094f, 0.8333334f });
  130. }
  131. /// <summary>
  132. /// https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/HammingLoss
  133. /// </summary>
  134. [TestMethod]
  135. public void HammingLoss()
  136. {
  137. // multi-class hamming loss
  138. var y_true = np.array(new[,]
  139. {
  140. { 1, 0, 0, 0 },
  141. { 0, 0, 1, 0 },
  142. { 0, 0, 0, 1 },
  143. { 0, 1, 0, 0 }
  144. });
  145. var y_pred = np.array(new[,]
  146. {
  147. { 0.8f, 0.1f, 0.1f, 0.0f },
  148. { 0.2f, 0.0f, 0.8f, 0.0f },
  149. { 0.05f, 0.05f, 0.1f, 0.8f },
  150. { 1.0f, 0.0f, 0.0f, 0.0f }
  151. });
  152. var m = tf.keras.metrics.HammingLoss(mode: "multiclass", threshold: 0.6f);
  153. m.update_state(y_true, y_pred);
  154. var r = m.result().numpy();
  155. Assert.AreEqual(r, 0.25f);
  156. // multi-label hamming loss
  157. y_true = np.array(new[,]
  158. {
  159. { 1, 0, 1, 0 },
  160. { 0, 1, 0, 1 },
  161. { 0, 0, 0, 1 }
  162. });
  163. y_pred = np.array(new[,]
  164. {
  165. { 0.82f, 0.5f, 0.9f, 0.0f },
  166. { 0f, 1f, 0.4f, 0.98f },
  167. { 0.89f, 0.79f, 0f, 0.3f }
  168. });
  169. m = tf.keras.metrics.HammingLoss(mode: "multilabel", threshold: 0.8f);
  170. m.update_state(y_true, y_pred);
  171. r = m.result().numpy();
  172. Assert.AreEqual(r, 0.16666667f);
  173. }
  174. /// <summary>
  175. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/TopKCategoricalAccuracy
  176. /// </summary>
  177. [TestMethod]
  178. public void TopKCategoricalAccuracy()
  179. {
  180. var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } });
  181. var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } });
  182. var m = tf.keras.metrics.TopKCategoricalAccuracy(k: 1);
  183. m.update_state(y_true, y_pred);
  184. var r = m.result().numpy();
  185. Assert.AreEqual(r, 0.5f);
  186. m.reset_states();
  187. var weights = np.array(new[] { 0.7f, 0.3f });
  188. m.update_state(y_true, y_pred, sample_weight: weights);
  189. r = m.result().numpy();
  190. Assert.AreEqual(r, 0.3f);
  191. }
  192. /// <summary>
  193. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/top_k_categorical_accuracy
  194. /// </summary>
  195. [TestMethod]
  196. public void top_k_categorical_accuracy()
  197. {
  198. var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } });
  199. var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } });
  200. var m = tf.keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k: 3);
  201. Assert.AreEqual(m.numpy(), new[] { 1f, 1f });
  202. }
  203. /// <summary>
  204. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Precision
  205. /// </summary>
  206. [TestMethod]
  207. public void Precision()
  208. {
  209. var y_true = np.array(new[] { 0, 1, 1, 1 });
  210. var y_pred = np.array(new[] { 1, 0, 1, 1 });
  211. var m = tf.keras.metrics.Precision();
  212. m.update_state(y_true, y_pred);
  213. var r = m.result().numpy();
  214. Assert.AreEqual(r, 0.6666667f);
  215. m.reset_states();
  216. var weights = np.array(new[] { 0f, 0f, 1f, 0f });
  217. m.update_state(y_true, y_pred, sample_weight: weights);
  218. r = m.result().numpy();
  219. Assert.AreEqual(r, 1f);
  220. // With top_k=2, it will calculate precision over y_true[:2]
  221. // and y_pred[:2]
  222. m = tf.keras.metrics.Precision(top_k: 2);
  223. m.update_state(np.array(new[] { 0, 0, 1, 1 }), np.array(new[] { 1, 1, 1, 1 }));
  224. r = m.result().numpy();
  225. Assert.AreEqual(r, 0f);
  226. // With top_k=4, it will calculate precision over y_true[:4]
  227. // and y_pred[:4]
  228. m = tf.keras.metrics.Precision(top_k: 4);
  229. m.update_state(np.array(new[] { 0, 0, 1, 1 }), np.array(new[] { 1, 1, 1, 1 }));
  230. r = m.result().numpy();
  231. Assert.AreEqual(r, 0.5f);
  232. }
  233. /// <summary>
  234. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Recall
  235. /// </summary>
  236. [TestMethod]
  237. public void Recall()
  238. {
  239. var y_true = np.array(new[] { 0, 1, 1, 1 });
  240. var y_pred = np.array(new[] { 1, 0, 1, 1 });
  241. var m = tf.keras.metrics.Recall();
  242. m.update_state(y_true, y_pred);
  243. var r = m.result().numpy();
  244. Assert.AreEqual(r, 0.6666667f);
  245. m.reset_states();
  246. var weights = np.array(new[] { 0f, 0f, 1f, 0f });
  247. m.update_state(y_true, y_pred, sample_weight: weights);
  248. r = m.result().numpy();
  249. Assert.AreEqual(r, 1f);
  250. }
  251. }