@@ -39,6 +39,17 @@ namespace Tensorflow | |||
public Tensor sum(Tensor x, Axis? axis = null, string name = null) | |||
=> math_ops.reduce_sum(x, axis: axis, name: name); | |||
/// <summary> | |||
/// Finds values and indices of the `k` largest entries for the last dimension. | |||
/// </summary> | |||
/// <param name="input"></param> | |||
/// <param name="k"></param> | |||
/// <param name="sorted"></param> | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public Tensors top_k(Tensor input, int k, bool sorted = true, string name = null) | |||
=> nn_ops.top_kv2(input, k, sorted: sorted, name: name); | |||
public Tensor in_top_k(Tensor predictions, Tensor targets, int k, string name = "InTopK") | |||
=> nn_ops.in_top_k(predictions, targets, k, name); | |||
@@ -36,6 +36,17 @@ public interface IMetricsApi | |||
/// <returns></returns> | |||
IMetricFunc TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
/// <summary> | |||
/// Computes the precision of the predictions with respect to the labels. | |||
/// </summary> | |||
/// <param name="thresholds"></param> | |||
/// <param name="top_k"></param> | |||
/// <param name="class_id"></param> | |||
/// <param name="name"></param> | |||
/// <param name="dtype"></param> | |||
/// <returns></returns> | |||
IMetricFunc Precision(float thresholds = 0.5f, int top_k = 0, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
/// <summary> | |||
/// Computes the recall of the predictions with respect to the labels. | |||
/// </summary> | |||
@@ -45,5 +56,5 @@ public interface IMetricsApi | |||
/// <param name="name"></param> | |||
/// <param name="dtype"></param> | |||
/// <returns></returns> | |||
IMetricFunc Recall(float thresholds = 0.5f, int top_k = 1, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
IMetricFunc Recall(float thresholds = 0.5f, int top_k = 0, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
} |
@@ -109,6 +109,10 @@ namespace Tensorflow | |||
return noise_shape; | |||
} | |||
public static Tensors top_kv2(Tensor input, int k, bool sorted = true, string name = null) | |||
=> tf.Context.ExecuteOp("TopKV2", name, new ExecuteOpArgs(input, k) | |||
.SetAttributes(new { sorted })); | |||
public static Tensor in_top_k(Tensor predictions, Tensor targets, int k, string name = null) | |||
{ | |||
return tf_with(ops.name_scope(name, "in_top_k"), delegate | |||
@@ -62,7 +62,10 @@ | |||
public IMetricFunc TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) | |||
=> new TopKCategoricalAccuracy(k: k, name: name, dtype: dtype); | |||
public IMetricFunc Recall(float thresholds = 0.5f, int top_k = 1, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT) | |||
public IMetricFunc Precision(float thresholds = 0.5f, int top_k = 0, int class_id = 0, string name = "precision", TF_DataType dtype = TF_DataType.TF_FLOAT) | |||
=> new Precision(thresholds: thresholds, top_k: top_k, class_id: class_id, name: name, dtype: dtype); | |||
public IMetricFunc Recall(float thresholds = 0.5f, int top_k = 0, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT) | |||
=> new Recall(thresholds: thresholds, top_k: top_k, class_id: class_id, name: name, dtype: dtype); | |||
} | |||
} |
@@ -0,0 +1,55 @@ | |||
namespace Tensorflow.Keras.Metrics; | |||
public class Precision : Metric | |||
{ | |||
Tensor _thresholds; | |||
int _top_k; | |||
int _class_id; | |||
IVariableV1 true_positives; | |||
IVariableV1 false_positives; | |||
bool _thresholds_distributed_evenly; | |||
public Precision(float thresholds = 0.5f, int top_k = 0, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT) | |||
: base(name: name, dtype: dtype) | |||
{ | |||
_thresholds = constant_op.constant(new float[] { thresholds }); | |||
_top_k = top_k; | |||
_class_id = class_id; | |||
true_positives = add_weight("true_positives", shape: 1, initializer: tf.initializers.zeros_initializer()); | |||
false_positives = add_weight("false_positives", shape: 1, initializer: tf.initializers.zeros_initializer()); | |||
} | |||
public override Tensor update_state(Tensor y_true, Tensor y_pred, Tensor sample_weight = null) | |||
{ | |||
return metrics_utils.update_confusion_matrix_variables( | |||
new Dictionary<string, IVariableV1> | |||
{ | |||
{ "tp", true_positives }, | |||
{ "fp", false_positives }, | |||
}, | |||
y_true, | |||
y_pred, | |||
thresholds: _thresholds, | |||
thresholds_distributed_evenly: _thresholds_distributed_evenly, | |||
top_k: _top_k, | |||
class_id: _class_id, | |||
sample_weight: sample_weight); | |||
} | |||
public override Tensor result() | |||
{ | |||
var result = tf.divide(true_positives.AsTensor(), tf.add(true_positives, false_positives)); | |||
return _thresholds.size == 1 ? result[0] : result; | |||
} | |||
public override void reset_states() | |||
{ | |||
var num_thresholds = (int)_thresholds.size; | |||
keras.backend.batch_set_value( | |||
new List<(IVariableV1, NDArray)> | |||
{ | |||
(true_positives, np.zeros(num_thresholds)), | |||
(false_positives, np.zeros(num_thresholds)) | |||
}); | |||
} | |||
} |
@@ -78,6 +78,17 @@ public class metrics_utils | |||
sample_weight: sample_weight); | |||
} | |||
if (top_k > 0) | |||
{ | |||
y_pred = _filter_top_k(y_pred, top_k); | |||
} | |||
if (class_id > 0) | |||
{ | |||
y_true = y_true[Slice.All, class_id]; | |||
y_pred = y_pred[Slice.All, class_id]; | |||
} | |||
if (thresholds_distributed_evenly) | |||
{ | |||
throw new NotImplementedException(); | |||
@@ -204,5 +215,14 @@ public class metrics_utils | |||
tf.group(update_ops.ToArray()); | |||
return null; | |||
} | |||
} | |||
private static Tensor _filter_top_k(Tensor x, int k) | |||
{ | |||
var NEG_INF = -1e10; | |||
var (_, top_k_idx) = tf.math.top_k(x, k, sorted: false); | |||
var top_k_mask = tf.reduce_sum( | |||
tf.one_hot(top_k_idx, (int)x.shape[-1], axis: -1), axis: -2); | |||
return x * top_k_mask + NEG_INF * (1 - top_k_mask); | |||
} | |||
} |
@@ -46,6 +46,40 @@ public class MetricsTest : EagerModeTestBase | |||
Assert.AreEqual(m.numpy(), new[] { 1f, 1f }); | |||
} | |||
/// <summary> | |||
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Precision | |||
/// </summary> | |||
[TestMethod] | |||
public void Precision() | |||
{ | |||
var y_true = np.array(new[] { 0, 1, 1, 1 }); | |||
var y_pred = np.array(new[] { 1, 0, 1, 1 }); | |||
var m = tf.keras.metrics.Precision(); | |||
m.update_state(y_true, y_pred); | |||
var r = m.result().numpy(); | |||
Assert.AreEqual(r, 0.6666667f); | |||
m.reset_states(); | |||
var weights = np.array(new[] { 0f, 0f, 1f, 0f }); | |||
m.update_state(y_true, y_pred, sample_weight: weights); | |||
r = m.result().numpy(); | |||
Assert.AreEqual(r, 1f); | |||
// With top_k=2, it will calculate precision over y_true[:2] | |||
// and y_pred[:2] | |||
m = tf.keras.metrics.Precision(top_k: 2); | |||
m.update_state(np.array(new[] { 0, 0, 1, 1 }), np.array(new[] { 1, 1, 1, 1 })); | |||
r = m.result().numpy(); | |||
Assert.AreEqual(r, 0f); | |||
// With top_k=4, it will calculate precision over y_true[:4] | |||
// and y_pred[:4] | |||
m = tf.keras.metrics.Precision(top_k: 4); | |||
m.update_state(np.array(new[] { 0, 0, 1, 1 }), np.array(new[] { 1, 1, 1, 1 })); | |||
r = m.result().numpy(); | |||
Assert.AreEqual(r, 0.5f); | |||
} | |||
/// <summary> | |||
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Recall | |||
/// </summary> | |||