@@ -2,6 +2,7 @@ | |||
public interface IMetricFunc | |||
{ | |||
string Name { get; } | |||
/// <summary> | |||
/// Accumulates metric statistics. | |||
/// </summary> | |||
@@ -5,6 +5,10 @@ public interface IMetricsApi | |||
Tensor binary_accuracy(Tensor y_true, Tensor y_pred); | |||
Tensor categorical_accuracy(Tensor y_true, Tensor y_pred); | |||
Tensor categorical_crossentropy(Tensor y_true, Tensor y_pred, | |||
bool from_logits = false, | |||
float label_smoothing = 0f, | |||
Axis? axis = null); | |||
Tensor mean_absolute_error(Tensor y_true, Tensor y_pred); | |||
@@ -27,14 +31,39 @@ public interface IMetricsApi | |||
/// <returns></returns> | |||
Tensor top_k_categorical_accuracy(Tensor y_true, Tensor y_pred, int k = 5); | |||
/// <summary> | |||
/// Calculates how often predictions match binary labels. | |||
/// </summary> | |||
/// <returns></returns> | |||
IMetricFunc BinaryAccuracy(string name = "binary_accuracy", | |||
TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
float threshold = 05f); | |||
/// <summary> | |||
/// Calculates how often predictions match one-hot labels. | |||
/// </summary> | |||
/// <returns></returns> | |||
IMetricFunc CategoricalCrossentropy(string name = "categorical_crossentropy", | |||
TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
bool from_logits = false, | |||
float label_smoothing = 0f, | |||
Axis? axis = null); | |||
/// <summary> | |||
/// Computes the crossentropy metric between the labels and predictions. | |||
/// </summary> | |||
/// <returns></returns> | |||
IMetricFunc CategoricalAccuracy(string name = "categorical_accuracy", | |||
TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
/// <summary> | |||
/// Computes how often targets are in the top K predictions. | |||
/// </summary> | |||
/// <param name="y_true"></param> | |||
/// <param name="y_pred"></param> | |||
/// <param name="k"></param> | |||
/// <returns></returns> | |||
IMetricFunc TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
IMetricFunc TopKCategoricalAccuracy(int k = 5, | |||
string name = "top_k_categorical_accuracy", | |||
TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
/// <summary> | |||
/// Computes the precision of the predictions with respect to the labels. | |||
@@ -45,7 +74,11 @@ public interface IMetricsApi | |||
/// <param name="name"></param> | |||
/// <param name="dtype"></param> | |||
/// <returns></returns> | |||
IMetricFunc Precision(float thresholds = 0.5f, int top_k = 0, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
IMetricFunc Precision(float thresholds = 0.5f, | |||
int top_k = 0, | |||
int class_id = 0, | |||
string name = "recall", | |||
TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
/// <summary> | |||
/// Computes the recall of the predictions with respect to the labels. | |||
@@ -56,5 +89,9 @@ public interface IMetricsApi | |||
/// <param name="name"></param> | |||
/// <param name="dtype"></param> | |||
/// <returns></returns> | |||
IMetricFunc Recall(float thresholds = 0.5f, int top_k = 0, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
IMetricFunc Recall(float thresholds = 0.5f, | |||
int top_k = 0, | |||
int class_id = 0, | |||
string name = "recall", | |||
TF_DataType dtype = TF_DataType.TF_FLOAT); | |||
} |
@@ -9,15 +9,21 @@ namespace Tensorflow.Keras.Engine | |||
{ | |||
public class MetricsContainer : Container | |||
{ | |||
string[] _user_metrics; | |||
string[] _metric_names; | |||
Metric[] _metrics; | |||
List<Metric> _metrics_in_order; | |||
IMetricFunc[] _user_metrics = new IMetricFunc[0]; | |||
string[] _metric_names = new string[0]; | |||
Metric[] _metrics = new Metric[0]; | |||
List<IMetricFunc> _metrics_in_order = new List<IMetricFunc>(); | |||
public MetricsContainer(string[] metrics, string[] output_names = null) | |||
public MetricsContainer(IMetricFunc[] metrics, string[] output_names = null) | |||
: base(output_names) | |||
{ | |||
_user_metrics = metrics; | |||
_built = false; | |||
} | |||
public MetricsContainer(string[] metrics, string[] output_names = null) | |||
: base(output_names) | |||
{ | |||
_metric_names = metrics; | |||
_built = false; | |||
} | |||
@@ -46,9 +52,11 @@ namespace Tensorflow.Keras.Engine | |||
void _create_ordered_metrics() | |||
{ | |||
_metrics_in_order = new List<Metric>(); | |||
foreach (var m in _metrics) | |||
_metrics_in_order.append(m); | |||
foreach(var m in _user_metrics) | |||
_metrics_in_order.append(m); | |||
} | |||
Metric[] _get_metric_objects(string[] metrics, Tensor y_t, Tensor y_p) | |||
@@ -56,7 +64,7 @@ namespace Tensorflow.Keras.Engine | |||
return metrics.Select(x => _get_metric_object(x, y_t, y_p)).ToArray(); | |||
} | |||
Metric _get_metric_object(string metric, Tensor y_t, Tensor y_p) | |||
public Metric _get_metric_object(string metric, Tensor y_t, Tensor y_p) | |||
{ | |||
Func<Tensor, Tensor, Tensor> metric_obj = null; | |||
if (metric == "accuracy" || metric == "acc") | |||
@@ -94,7 +102,7 @@ namespace Tensorflow.Keras.Engine | |||
return new MeanMetricWrapper(metric_obj, metric); | |||
} | |||
public IEnumerable<Metric> metrics | |||
public IEnumerable<IMetricFunc> metrics | |||
{ | |||
get | |||
{ | |||
@@ -1,6 +1,7 @@ | |||
using System; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Losses; | |||
using Tensorflow.Keras.Metrics; | |||
using Tensorflow.Keras.Optimizers; | |||
namespace Tensorflow.Keras.Engine | |||
@@ -31,6 +32,27 @@ namespace Tensorflow.Keras.Engine | |||
_is_compiled = true; | |||
} | |||
public void compile(OptimizerV2 optimizer = null, | |||
ILossFunc loss = null, | |||
IMetricFunc[] metrics = null) | |||
{ | |||
this.optimizer = optimizer ?? new RMSprop(new RMSpropArgs | |||
{ | |||
}); | |||
this.loss = loss ?? new MeanSquaredError(); | |||
compiled_loss = new LossesContainer(loss, output_names: output_names); | |||
compiled_metrics = new MetricsContainer(metrics, output_names: output_names); | |||
int experimental_steps_per_execution = 1; | |||
_configure_steps_per_execution(experimental_steps_per_execution); | |||
// Initialize cache attrs. | |||
_reset_compile_cache(); | |||
_is_compiled = true; | |||
} | |||
public void compile(string optimizer, string loss, string[] metrics) | |||
{ | |||
var _optimizer = optimizer switch | |||
@@ -5,11 +5,11 @@ namespace Tensorflow.Keras.Engine | |||
{ | |||
public partial class Model | |||
{ | |||
public IEnumerable<Metric> metrics | |||
public IEnumerable<IMetricFunc> metrics | |||
{ | |||
get | |||
{ | |||
var _metrics = new List<Metric>(); | |||
var _metrics = new List<IMetricFunc>(); | |||
if (_is_compiled) | |||
{ | |||
@@ -0,0 +1,11 @@ | |||
namespace Tensorflow.Keras.Metrics; | |||
public class BinaryAccuracy : MeanMetricWrapper | |||
{ | |||
public BinaryAccuracy(string name = "binary_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT, float threshold = 0.5f) | |||
: base((yt, yp) => metrics_utils.binary_matches(yt, yp), | |||
name: name, | |||
dtype: dtype) | |||
{ | |||
} | |||
} |
@@ -0,0 +1,12 @@ | |||
namespace Tensorflow.Keras.Metrics; | |||
public class CategoricalAccuracy : MeanMetricWrapper | |||
{ | |||
public CategoricalAccuracy(string name = "categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) | |||
: base((yt, yp) => metrics_utils.sparse_categorical_matches( | |||
tf.math.argmax(yt, axis: -1), yp), | |||
name: name, | |||
dtype: dtype) | |||
{ | |||
} | |||
} |
@@ -0,0 +1,16 @@ | |||
namespace Tensorflow.Keras.Metrics; | |||
public class CategoricalCrossentropy : MeanMetricWrapper | |||
{ | |||
public CategoricalCrossentropy(string name = "categorical_crossentropy", | |||
TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
bool from_logits = false, | |||
float label_smoothing = 0f, | |||
Axis? axis = null) | |||
: base((yt, yp) => keras.metrics.categorical_crossentropy( | |||
yt, yp, from_logits: from_logits, label_smoothing: label_smoothing, axis: axis ?? -1), | |||
name: name, | |||
dtype: dtype) | |||
{ | |||
} | |||
} |
@@ -15,6 +15,18 @@ | |||
return math_ops.cast(eql, TF_DataType.TF_FLOAT); | |||
} | |||
public Tensor categorical_crossentropy(Tensor y_true, Tensor y_pred, bool from_logits = false, float label_smoothing = 0, Axis? axis = null) | |||
{ | |||
y_true = tf.cast(y_true, y_pred.dtype); | |||
// var label_smoothing_tensor = tf.convert_to_tensor(label_smoothing, dtype: y_pred.dtype); | |||
if (label_smoothing > 0) | |||
{ | |||
var num_classes = tf.cast(tf.shape(y_true)[-1], y_pred.dtype); | |||
y_true = y_true * (1.0 - label_smoothing) + (label_smoothing / num_classes); | |||
} | |||
return keras.backend.categorical_crossentropy(y_true, y_pred, from_logits: from_logits, axis: axis); | |||
} | |||
/// <summary> | |||
/// Calculates how often predictions matches integer labels. | |||
/// </summary> | |||
@@ -59,6 +71,15 @@ | |||
); | |||
} | |||
public IMetricFunc BinaryAccuracy(string name = "binary_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT, float threshold = 5) | |||
=> new BinaryAccuracy(); | |||
public IMetricFunc CategoricalAccuracy(string name = "categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) | |||
=> new CategoricalAccuracy(name: name, dtype: dtype); | |||
public IMetricFunc CategoricalCrossentropy(string name = "categorical_crossentropy", TF_DataType dtype = TF_DataType.TF_FLOAT, bool from_logits = false, float label_smoothing = 0, Axis? axis = null) | |||
=> new CategoricalCrossentropy(); | |||
public IMetricFunc TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) | |||
=> new TopKCategoricalAccuracy(k: k, name: name, dtype: dtype); | |||
@@ -1,10 +1,48 @@ | |||
using Tensorflow.Keras.Utils; | |||
using Tensorflow.NumPy; | |||
namespace Tensorflow.Keras.Metrics; | |||
public class metrics_utils | |||
{ | |||
public static Tensor binary_matches(Tensor y_true, Tensor y_pred, float threshold = 0.5f) | |||
{ | |||
y_pred = tf.cast(y_pred > threshold, y_pred.dtype); | |||
return tf.cast(tf.equal(y_true, y_pred), keras.backend.floatx()); | |||
} | |||
/// <summary> | |||
/// Creates float Tensor, 1.0 for label-prediction match, 0.0 for mismatch. | |||
/// </summary> | |||
/// <param name="y_true"></param> | |||
/// <param name="y_pred"></param> | |||
/// <returns></returns> | |||
public static Tensor sparse_categorical_matches(Tensor y_true, Tensor y_pred) | |||
{ | |||
var reshape_matches = false; | |||
var y_true_rank = y_true.shape.ndim; | |||
var y_pred_rank = y_pred.shape.ndim; | |||
var y_true_org_shape = tf.shape(y_true); | |||
if (y_true_rank > -1 && y_pred_rank > -1 && y_true.ndim == y_pred.ndim ) | |||
{ | |||
reshape_matches = true; | |||
y_true = tf.squeeze(y_true, new Shape(-1)); | |||
} | |||
y_pred = tf.math.argmax(y_pred, axis: -1); | |||
var matches = tf.cast( | |||
tf.equal(y_true, y_pred), | |||
dtype: keras.backend.floatx() | |||
); | |||
if (reshape_matches) | |||
{ | |||
return tf.reshape(matches, shape: y_true_org_shape); | |||
} | |||
return matches; | |||
} | |||
public static Tensor sparse_top_k_categorical_matches(Tensor y_true, Tensor y_pred, int k = 5) | |||
{ | |||
var reshape_matches = false; | |||
@@ -75,10 +75,8 @@ namespace Tensorflow.Keras.Utils | |||
{ | |||
sample_weight = tf.expand_dims(sample_weight, -1); | |||
} | |||
else | |||
{ | |||
return (y_pred, y_true, sample_weight); | |||
} | |||
return (y_pred, y_true, sample_weight); | |||
} | |||
throw new NotImplementedException(""); | |||
@@ -14,6 +14,66 @@ namespace TensorFlowNET.Keras.UnitTest; | |||
[TestClass] | |||
public class MetricsTest : EagerModeTestBase | |||
{ | |||
/// <summary> | |||
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/BinaryAccuracy | |||
/// </summary> | |||
[TestMethod] | |||
public void BinaryAccuracy() | |||
{ | |||
var y_true = np.array(new[,] { { 1 }, { 1 },{ 0 }, { 0 } }); | |||
var y_pred = np.array(new[,] { { 0.98f }, { 1f }, { 0f }, { 0.6f } }); | |||
var m = tf.keras.metrics.BinaryAccuracy(); | |||
/*m.update_state(y_true, y_pred); | |||
var r = m.result().numpy(); | |||
Assert.AreEqual(r, 0.75f); | |||
m.reset_states();*/ | |||
var weights = np.array(new[] { 1f, 0f, 0f, 1f }); | |||
m.update_state(y_true, y_pred, sample_weight: weights); | |||
var r = m.result().numpy(); | |||
Assert.AreEqual(r, 0.5f); | |||
} | |||
/// <summary> | |||
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalAccuracy | |||
/// </summary> | |||
[TestMethod] | |||
public void CategoricalAccuracy() | |||
{ | |||
var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } }); | |||
var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } }); | |||
var m = tf.keras.metrics.CategoricalAccuracy(); | |||
m.update_state(y_true, y_pred); | |||
var r = m.result().numpy(); | |||
Assert.AreEqual(r, 0.5f); | |||
m.reset_states(); | |||
var weights = np.array(new[] { 0.7f, 0.3f }); | |||
m.update_state(y_true, y_pred, sample_weight: weights); | |||
r = m.result().numpy(); | |||
Assert.AreEqual(r, 0.3f); | |||
} | |||
/// <summary> | |||
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalCrossentropy | |||
/// </summary> | |||
[TestMethod] | |||
public void CategoricalCrossentropy() | |||
{ | |||
var y_true = np.array(new[,] { { 0, 1, 0 }, { 0, 0, 1 } }); | |||
var y_pred = np.array(new[,] { { 0.05f, 0.95f, 0f }, { 0.1f, 0.8f, 0.1f } }); | |||
var m = tf.keras.metrics.CategoricalCrossentropy(); | |||
m.update_state(y_true, y_pred); | |||
var r = m.result().numpy(); | |||
Assert.AreEqual(r, 1.1769392f); | |||
m.reset_states(); | |||
var weights = np.array(new[] { 0.3f, 0.7f }); | |||
m.update_state(y_true, y_pred, sample_weight: weights); | |||
r = m.result().numpy(); | |||
Assert.AreEqual(r, 1.6271976f); | |||
} | |||
/// <summary> | |||
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/TopKCategoricalAccuracy | |||
/// </summary> | |||