Browse Source

Add metrics of Accuracy and CosineSimilarity.

tags/v0.100.4-load-saved-model
Haiping Chen 2 years ago
parent
commit
77eb6f5e71
7 changed files with 106 additions and 3 deletions
  1. +6
    -0
      src/TensorFlowNET.Core/APIs/tf.linalg.cs
  2. +15
    -0
      src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs
  3. +11
    -0
      src/TensorFlowNET.Keras/Metrics/Accuracy.cs
  4. +11
    -0
      src/TensorFlowNET.Keras/Metrics/CosineSimilarity.cs
  5. +6
    -0
      src/TensorFlowNET.Keras/Metrics/MetricsApi.cs
  6. +14
    -0
      src/TensorFlowNET.Keras/Metrics/metrics_utils.cs
  7. +43
    -3
      test/TensorFlowNET.Keras.UnitTest/Metrics/MetricsTest.cs

+ 6
- 0
src/TensorFlowNET.Core/APIs/tf.linalg.cs View File

@@ -54,6 +54,12 @@ namespace Tensorflow
public Tensor global_norm(Tensor[] t_list, string name = null)
=> clip_ops.global_norm(t_list, name: name);

public Tensor l2_normalize(Tensor x,
int axis = 0,
float epsilon = 1e-12f,
string name = null)
=> nn_impl.l2_normalize(x, axis: axis, epsilon: constant_op.constant(epsilon), name: name);

public Tensor lstsq(Tensor matrix, Tensor rhs,
NDArray l2_regularizer = null, bool fast = true, string name = null)
=> ops.matrix_solve_ls(matrix, rhs, l2_regularizer: l2_regularizer, fast: fast, name: name);


+ 15
- 0
src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs View File

@@ -31,6 +31,13 @@ public interface IMetricsApi
/// <returns></returns>
Tensor top_k_categorical_accuracy(Tensor y_true, Tensor y_pred, int k = 5);

/// <summary>
/// Calculates how often predictions equal labels.
/// </summary>
/// <returns></returns>
IMetricFunc Accuracy(string name = "accuracy",
TF_DataType dtype = TF_DataType.TF_FLOAT);

/// <summary>
/// Calculates how often predictions match binary labels.
/// </summary>
@@ -56,6 +63,14 @@ public interface IMetricsApi
IMetricFunc CategoricalAccuracy(string name = "categorical_accuracy",
TF_DataType dtype = TF_DataType.TF_FLOAT);

/// <summary>
/// Computes the cosine similarity between the labels and predictions.
/// </summary>
/// <returns></returns>
IMetricFunc CosineSimilarity(string name = "cosine_similarity",
TF_DataType dtype = TF_DataType.TF_FLOAT,
Axis? axis = null);

/// <summary>
/// Computes how often targets are in the top K predictions.
/// </summary>


+ 11
- 0
src/TensorFlowNET.Keras/Metrics/Accuracy.cs View File

@@ -0,0 +1,11 @@
namespace Tensorflow.Keras.Metrics;

public class Accuracy : MeanMetricWrapper
{
public Accuracy(string name = "accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT)
: base((yt, yp) => metrics_utils.accuracy(yt, yp),
name: name,
dtype: dtype)
{
}
}

+ 11
- 0
src/TensorFlowNET.Keras/Metrics/CosineSimilarity.cs View File

@@ -0,0 +1,11 @@
namespace Tensorflow.Keras.Metrics;

public class CosineSimilarity : MeanMetricWrapper
{
public CosineSimilarity(string name = "cosine_similarity", TF_DataType dtype = TF_DataType.TF_FLOAT, Axis? axis = null)
: base((yt, yp) => metrics_utils.cosine_similarity(yt, yp, axis: axis ?? -1),
name: name,
dtype: dtype)
{
}
}

+ 6
- 0
src/TensorFlowNET.Keras/Metrics/MetricsApi.cs View File

@@ -71,6 +71,9 @@
);
}

public IMetricFunc Accuracy(string name = "accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT)
=> new Accuracy(name: name, dtype: dtype);

public IMetricFunc BinaryAccuracy(string name = "binary_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT, float threshold = 5)
=> new BinaryAccuracy();

@@ -80,6 +83,9 @@
public IMetricFunc CategoricalCrossentropy(string name = "categorical_crossentropy", TF_DataType dtype = TF_DataType.TF_FLOAT, bool from_logits = false, float label_smoothing = 0, Axis? axis = null)
=> new CategoricalCrossentropy();

public IMetricFunc CosineSimilarity(string name = "cosine_similarity", TF_DataType dtype = TF_DataType.TF_FLOAT, Axis? axis = null)
=> new CosineSimilarity(name: name, dtype: dtype, axis: axis ?? -1);

public IMetricFunc TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT)
=> new TopKCategoricalAccuracy(k: k, name: name, dtype: dtype);



+ 14
- 0
src/TensorFlowNET.Keras/Metrics/metrics_utils.cs View File

@@ -4,12 +4,26 @@ namespace Tensorflow.Keras.Metrics;

public class metrics_utils
{
public static Tensor accuracy(Tensor y_true, Tensor y_pred)
{
if (y_true.dtype != y_pred.dtype)
y_pred = tf.cast(y_pred, y_true.dtype);
return tf.cast(tf.equal(y_true, y_pred), keras.backend.floatx());
}

public static Tensor binary_matches(Tensor y_true, Tensor y_pred, float threshold = 0.5f)
{
y_pred = tf.cast(y_pred > threshold, y_pred.dtype);
return tf.cast(tf.equal(y_true, y_pred), keras.backend.floatx());
}

public static Tensor cosine_similarity(Tensor y_true, Tensor y_pred, Axis? axis = null)
{
y_true = tf.linalg.l2_normalize(y_true, axis: axis ?? -1);
y_pred = tf.linalg.l2_normalize(y_pred, axis: axis ?? -1);
return tf.reduce_sum(y_true * y_pred, axis: axis ?? -1);
}

/// <summary>
/// Creates float Tensor, 1.0 for label-prediction match, 0.0 for mismatch.
/// </summary>


+ 43
- 3
test/TensorFlowNET.Keras.UnitTest/Metrics/MetricsTest.cs View File

@@ -14,6 +14,26 @@ namespace TensorFlowNET.Keras.UnitTest;
[TestClass]
public class MetricsTest : EagerModeTestBase
{
/// <summary>
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Accuracy
/// </summary>
[TestMethod]
public void Accuracy()
{
var y_true = np.array(new[,] { { 1 }, { 2 }, { 3 }, { 4 } });
var y_pred = np.array(new[,] { { 0f }, { 2f }, { 3f }, { 4f } });
var m = tf.keras.metrics.Accuracy();
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.75f);

m.reset_states();
var weights = np.array(new[] { 1f, 1f, 0f, 0f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 0.5f);
}

/// <summary>
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/BinaryAccuracy
/// </summary>
@@ -23,14 +43,14 @@ public class MetricsTest : EagerModeTestBase
var y_true = np.array(new[,] { { 1 }, { 1 },{ 0 }, { 0 } });
var y_pred = np.array(new[,] { { 0.98f }, { 1f }, { 0f }, { 0.6f } });
var m = tf.keras.metrics.BinaryAccuracy();
/*m.update_state(y_true, y_pred);
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.75f);

m.reset_states();*/
m.reset_states();
var weights = np.array(new[] { 1f, 0f, 0f, 1f });
m.update_state(y_true, y_pred, sample_weight: weights);
var r = m.result().numpy();
r = m.result().numpy();
Assert.AreEqual(r, 0.5f);
}

@@ -74,6 +94,26 @@ public class MetricsTest : EagerModeTestBase
Assert.AreEqual(r, 1.6271976f);
}

/// <summary>
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CosineSimilarity
/// </summary>
[TestMethod]
public void CosineSimilarity()
{
var y_true = np.array(new[,] { { 0, 1 }, { 1, 1 } });
var y_pred = np.array(new[,] { { 1f, 0f }, { 1f, 1f } });
var m = tf.keras.metrics.CosineSimilarity(axis: 1);
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.49999997f);

m.reset_states();
var weights = np.array(new[] { 0.3f, 0.7f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 0.6999999f);
}

/// <summary>
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/TopKCategoricalAccuracy
/// </summary>


Loading…
Cancel
Save