diff --git a/src/TensorFlowNET.Core/APIs/tf.linalg.cs b/src/TensorFlowNET.Core/APIs/tf.linalg.cs index 10c09d99..32f64ec3 100644 --- a/src/TensorFlowNET.Core/APIs/tf.linalg.cs +++ b/src/TensorFlowNET.Core/APIs/tf.linalg.cs @@ -54,6 +54,12 @@ namespace Tensorflow public Tensor global_norm(Tensor[] t_list, string name = null) => clip_ops.global_norm(t_list, name: name); + public Tensor l2_normalize(Tensor x, + int axis = 0, + float epsilon = 1e-12f, + string name = null) + => nn_impl.l2_normalize(x, axis: axis, epsilon: constant_op.constant(epsilon), name: name); + public Tensor lstsq(Tensor matrix, Tensor rhs, NDArray l2_regularizer = null, bool fast = true, string name = null) => ops.matrix_solve_ls(matrix, rhs, l2_regularizer: l2_regularizer, fast: fast, name: name); diff --git a/src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs b/src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs index 75946303..e4575620 100644 --- a/src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs +++ b/src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs @@ -31,6 +31,13 @@ public interface IMetricsApi /// Tensor top_k_categorical_accuracy(Tensor y_true, Tensor y_pred, int k = 5); + /// + /// Calculates how often predictions equal labels. + /// + /// + IMetricFunc Accuracy(string name = "accuracy", + TF_DataType dtype = TF_DataType.TF_FLOAT); + /// /// Calculates how often predictions match binary labels. /// @@ -56,6 +63,14 @@ public interface IMetricsApi IMetricFunc CategoricalAccuracy(string name = "categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT); + /// + /// Computes the cosine similarity between the labels and predictions. + /// + /// + IMetricFunc CosineSimilarity(string name = "cosine_similarity", + TF_DataType dtype = TF_DataType.TF_FLOAT, + Axis? axis = null); + /// /// Computes how often targets are in the top K predictions. /// diff --git a/src/TensorFlowNET.Keras/Metrics/Accuracy.cs b/src/TensorFlowNET.Keras/Metrics/Accuracy.cs new file mode 100644 index 00000000..93a72467 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/Accuracy.cs @@ -0,0 +1,11 @@ +namespace Tensorflow.Keras.Metrics; + +public class Accuracy : MeanMetricWrapper +{ + public Accuracy(string name = "accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + : base((yt, yp) => metrics_utils.accuracy(yt, yp), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/CosineSimilarity.cs b/src/TensorFlowNET.Keras/Metrics/CosineSimilarity.cs new file mode 100644 index 00000000..2a26bcdf --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/CosineSimilarity.cs @@ -0,0 +1,11 @@ +namespace Tensorflow.Keras.Metrics; + +public class CosineSimilarity : MeanMetricWrapper +{ + public CosineSimilarity(string name = "cosine_similarity", TF_DataType dtype = TF_DataType.TF_FLOAT, Axis? axis = null) + : base((yt, yp) => metrics_utils.cosine_similarity(yt, yp, axis: axis ?? -1), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/MetricsApi.cs b/src/TensorFlowNET.Keras/Metrics/MetricsApi.cs index fcd0516b..e207d27d 100644 --- a/src/TensorFlowNET.Keras/Metrics/MetricsApi.cs +++ b/src/TensorFlowNET.Keras/Metrics/MetricsApi.cs @@ -71,6 +71,9 @@ ); } + public IMetricFunc Accuracy(string name = "accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new Accuracy(name: name, dtype: dtype); + public IMetricFunc BinaryAccuracy(string name = "binary_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT, float threshold = 5) => new BinaryAccuracy(); @@ -80,6 +83,9 @@ public IMetricFunc CategoricalCrossentropy(string name = "categorical_crossentropy", TF_DataType dtype = TF_DataType.TF_FLOAT, bool from_logits = false, float label_smoothing = 0, Axis? axis = null) => new CategoricalCrossentropy(); + public IMetricFunc CosineSimilarity(string name = "cosine_similarity", TF_DataType dtype = TF_DataType.TF_FLOAT, Axis? axis = null) + => new CosineSimilarity(name: name, dtype: dtype, axis: axis ?? -1); + public IMetricFunc TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) => new TopKCategoricalAccuracy(k: k, name: name, dtype: dtype); diff --git a/src/TensorFlowNET.Keras/Metrics/metrics_utils.cs b/src/TensorFlowNET.Keras/Metrics/metrics_utils.cs index 0f523e7e..f4bfc3da 100644 --- a/src/TensorFlowNET.Keras/Metrics/metrics_utils.cs +++ b/src/TensorFlowNET.Keras/Metrics/metrics_utils.cs @@ -4,12 +4,26 @@ namespace Tensorflow.Keras.Metrics; public class metrics_utils { + public static Tensor accuracy(Tensor y_true, Tensor y_pred) + { + if (y_true.dtype != y_pred.dtype) + y_pred = tf.cast(y_pred, y_true.dtype); + return tf.cast(tf.equal(y_true, y_pred), keras.backend.floatx()); + } + public static Tensor binary_matches(Tensor y_true, Tensor y_pred, float threshold = 0.5f) { y_pred = tf.cast(y_pred > threshold, y_pred.dtype); return tf.cast(tf.equal(y_true, y_pred), keras.backend.floatx()); } + public static Tensor cosine_similarity(Tensor y_true, Tensor y_pred, Axis? axis = null) + { + y_true = tf.linalg.l2_normalize(y_true, axis: axis ?? -1); + y_pred = tf.linalg.l2_normalize(y_pred, axis: axis ?? -1); + return tf.reduce_sum(y_true * y_pred, axis: axis ?? -1); + } + /// /// Creates float Tensor, 1.0 for label-prediction match, 0.0 for mismatch. /// diff --git a/test/TensorFlowNET.Keras.UnitTest/Metrics/MetricsTest.cs b/test/TensorFlowNET.Keras.UnitTest/Metrics/MetricsTest.cs index 9389af96..90be51bd 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Metrics/MetricsTest.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Metrics/MetricsTest.cs @@ -14,6 +14,26 @@ namespace TensorFlowNET.Keras.UnitTest; [TestClass] public class MetricsTest : EagerModeTestBase { + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Accuracy + /// + [TestMethod] + public void Accuracy() + { + var y_true = np.array(new[,] { { 1 }, { 2 }, { 3 }, { 4 } }); + var y_pred = np.array(new[,] { { 0f }, { 2f }, { 3f }, { 4f } }); + var m = tf.keras.metrics.Accuracy(); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.75f); + + m.reset_states(); + var weights = np.array(new[] { 1f, 1f, 0f, 0f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 0.5f); + } + /// /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/BinaryAccuracy /// @@ -23,14 +43,14 @@ public class MetricsTest : EagerModeTestBase var y_true = np.array(new[,] { { 1 }, { 1 },{ 0 }, { 0 } }); var y_pred = np.array(new[,] { { 0.98f }, { 1f }, { 0f }, { 0.6f } }); var m = tf.keras.metrics.BinaryAccuracy(); - /*m.update_state(y_true, y_pred); + m.update_state(y_true, y_pred); var r = m.result().numpy(); Assert.AreEqual(r, 0.75f); - m.reset_states();*/ + m.reset_states(); var weights = np.array(new[] { 1f, 0f, 0f, 1f }); m.update_state(y_true, y_pred, sample_weight: weights); - var r = m.result().numpy(); + r = m.result().numpy(); Assert.AreEqual(r, 0.5f); } @@ -74,6 +94,26 @@ public class MetricsTest : EagerModeTestBase Assert.AreEqual(r, 1.6271976f); } + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CosineSimilarity + /// + [TestMethod] + public void CosineSimilarity() + { + var y_true = np.array(new[,] { { 0, 1 }, { 1, 1 } }); + var y_pred = np.array(new[,] { { 1f, 0f }, { 1f, 1f } }); + var m = tf.keras.metrics.CosineSimilarity(axis: 1); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.49999997f); + + m.reset_states(); + var weights = np.array(new[] { 0.3f, 0.7f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 0.6999999f); + } + /// /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/TopKCategoricalAccuracy ///