You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

TextClassificationTrain.cs 12 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. using System;
  2. using System.Collections;
  3. using System.Collections.Generic;
  4. using System.Diagnostics;
  5. using System.IO;
  6. using System.Linq;
  7. using System.Text;
  8. using NumSharp;
  9. using Tensorflow;
  10. using Tensorflow.Keras.Engine;
  11. using Tensorflow.Sessions;
  12. using TensorFlowNET.Examples.Text.cnn_models;
  13. using TensorFlowNET.Examples.TextClassification;
  14. using TensorFlowNET.Examples.Utility;
  15. using static Tensorflow.Python;
  16. namespace TensorFlowNET.Examples
  17. {
  18. /// <summary>
  19. /// https://github.com/dongjun-Lee/text-classification-models-tf
  20. /// </summary>
  21. public class TextClassificationTrain : IExample
  22. {
  23. public int Priority => 100;
  24. public bool Enabled { get; set; } = false;
  25. public string Name => "Text Classification";
  26. public int? DataLimit = null;
  27. public bool ImportGraph { get; set; } = true;
  28. public bool UseSubset = false; // <----- set this true to use a limited subset of dbpedia
  29. private string dataDir = "text_classification";
  30. private string dataFileName = "dbpedia_csv.tar.gz";
  31. public string model_name = "word_cnn"; // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn
  32. private const string TRAIN_PATH = "text_classification/dbpedia_csv/train.csv";
  33. private const string SUBSET_PATH = "text_classification/dbpedia_csv/dbpedia_6400.csv";
  34. private const string TEST_PATH = "text_classification/dbpedia_csv/test.csv";
  35. private const int NUM_CLASS = 14;
  36. private const int BATCH_SIZE = 64;
  37. private const int NUM_EPOCHS = 10;
  38. private const int WORD_MAX_LEN = 100;
  39. private const int CHAR_MAX_LEN = 1014;
  40. protected float loss_value = 0;
  41. public bool Run()
  42. {
  43. PrepareData();
  44. var graph = tf.Graph().as_default();
  45. return with(tf.Session(graph), sess =>
  46. {
  47. if (ImportGraph)
  48. return RunWithImportedGraph(sess, graph);
  49. else
  50. return RunWithBuiltGraph(sess, graph);
  51. });
  52. }
  53. protected virtual bool RunWithImportedGraph(Session sess, Graph graph)
  54. {
  55. var stopwatch = Stopwatch.StartNew();
  56. Console.WriteLine("Building dataset...");
  57. var path = UseSubset ? SUBSET_PATH : TRAIN_PATH;
  58. int[][] x = null;
  59. int[] y = null;
  60. int alphabet_size = 0;
  61. int vocabulary_size = 0;
  62. if (model_name == "vd_cnn")
  63. (x, y, alphabet_size) = DataHelpers.build_char_dataset(path, model_name, CHAR_MAX_LEN, DataLimit = null, shuffle:!UseSubset);
  64. else
  65. {
  66. var word_dict = DataHelpers.build_word_dict(TRAIN_PATH);
  67. vocabulary_size = len(word_dict);
  68. (x, y) = DataHelpers.build_word_dataset(TRAIN_PATH, word_dict, WORD_MAX_LEN);
  69. }
  70. Console.WriteLine("\tDONE ");
  71. var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
  72. Console.WriteLine("Training set size: " + train_x.len);
  73. Console.WriteLine("Test set size: " + valid_x.len);
  74. Console.WriteLine("Import graph...");
  75. var meta_file = model_name + ".meta";
  76. tf.train.import_meta_graph(Path.Join("graph", meta_file));
  77. Console.WriteLine("\tDONE " + stopwatch.Elapsed);
  78. sess.run(tf.global_variables_initializer());
  79. var saver = tf.train.Saver(tf.global_variables());
  80. var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS);
  81. var num_batches_per_epoch = (len(train_x) - 1) / BATCH_SIZE + 1;
  82. double max_accuracy = 0;
  83. Tensor is_training = graph.OperationByName("is_training");
  84. Tensor model_x = graph.OperationByName("x");
  85. Tensor model_y = graph.OperationByName("y");
  86. Tensor loss = graph.OperationByName("loss/Mean"); // word_cnn
  87. Operation optimizer = graph.OperationByName("loss/Adam"); // word_cnn
  88. Tensor global_step = graph.OperationByName("Variable");
  89. Tensor accuracy = graph.OperationByName("accuracy/accuracy");
  90. stopwatch = Stopwatch.StartNew();
  91. int i = 0;
  92. foreach (var (x_batch, y_batch, total) in train_batches)
  93. {
  94. i++;
  95. var train_feed_dict = new FeedDict
  96. {
  97. [model_x] = x_batch,
  98. [model_y] = y_batch,
  99. [is_training] = true,
  100. };
  101. //Console.WriteLine("x: " + x_batch.ToString() + "\n");
  102. //Console.WriteLine("y: " + y_batch.ToString());
  103. // original python:
  104. //_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict)
  105. var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict);
  106. loss_value = result[2];
  107. var step = (int)result[1];
  108. if (step % 10 == 0)
  109. {
  110. var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total);
  111. Console.WriteLine($"Training on batch {i}/{total} loss: {loss_value}. Estimated training time: {estimate}");
  112. }
  113. if (step % 100 == 0)
  114. {
  115. // # Test accuracy with validation data for each epoch.
  116. var valid_batches = batch_iter(valid_x, valid_y, BATCH_SIZE, 1);
  117. var (sum_accuracy, cnt) = (0.0f, 0);
  118. foreach (var (valid_x_batch, valid_y_batch, total_validation_batches) in valid_batches)
  119. {
  120. var valid_feed_dict = new FeedDict
  121. {
  122. [model_x] = valid_x_batch,
  123. [model_y] = valid_y_batch,
  124. [is_training] = false
  125. };
  126. var result1 = sess.run(accuracy, valid_feed_dict);
  127. float accuracy_value = result1;
  128. sum_accuracy += accuracy_value;
  129. cnt += 1;
  130. }
  131. var valid_accuracy = sum_accuracy / cnt;
  132. print($"\nValidation Accuracy = {valid_accuracy}\n");
  133. // # Save model
  134. if (valid_accuracy > max_accuracy)
  135. {
  136. max_accuracy = valid_accuracy;
  137. // saver.save(sess, $"{dataDir}/{model_name}.ckpt", global_step: step.ToString());
  138. print("Model is saved.\n");
  139. }
  140. }
  141. }
  142. return false;
  143. }
  144. protected virtual bool RunWithBuiltGraph(Session session, Graph graph)
  145. {
  146. Console.WriteLine("Building dataset...");
  147. var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit);
  148. var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
  149. ITextClassificationModel model = null;
  150. switch (model_name) // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn
  151. {
  152. case "word_cnn":
  153. case "char_cnn":
  154. case "word_rnn":
  155. case "att_rnn":
  156. case "rcnn":
  157. throw new NotImplementedException();
  158. break;
  159. case "vd_cnn":
  160. model = new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS);
  161. break;
  162. }
  163. // todo train the model
  164. return false;
  165. }
  166. // TODO: this originally is an SKLearn utility function. it randomizes train and test which we don't do here
  167. private (NDArray, NDArray, NDArray, NDArray) train_test_split(NDArray x, NDArray y, float test_size = 0.3f)
  168. {
  169. Console.WriteLine("Splitting in Training and Testing data...");
  170. int len = x.shape[0];
  171. //int classes = y.Data<int>().Distinct().Count();
  172. //int samples = len / classes;
  173. int train_size = (int)Math.Round(len * (1 - test_size));
  174. var train_x = x[new Slice(stop: train_size), new Slice()];
  175. var valid_x = x[new Slice(start: train_size), new Slice()];
  176. var train_y = y[new Slice(stop: train_size)];
  177. var valid_y = y[new Slice(start: train_size)];
  178. Console.WriteLine("\tDONE");
  179. return (train_x, valid_x, train_y, valid_y);
  180. }
  181. private static void FillWithShuffledLabels(int[][] x, int[] y, int[][] shuffled_x, int[] shuffled_y, Random random, Dictionary<int, HashSet<int>> labels)
  182. {
  183. int i = 0;
  184. var label_keys = labels.Keys.ToArray();
  185. while (i < shuffled_x.Length)
  186. {
  187. var key = label_keys[random.Next(label_keys.Length)];
  188. var set = labels[key];
  189. var index = set.First();
  190. if (set.Count == 0)
  191. {
  192. labels.Remove(key); // remove the set as it is empty
  193. label_keys = labels.Keys.ToArray();
  194. }
  195. shuffled_x[i] = x[index];
  196. shuffled_y[i] = y[index];
  197. i++;
  198. }
  199. }
  200. private IEnumerable<(NDArray, NDArray, int)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs)
  201. {
  202. var num_batches_per_epoch = (len(inputs) - 1) / batch_size + 1;
  203. var total_batches = num_batches_per_epoch * num_epochs;
  204. foreach (var epoch in range(num_epochs))
  205. {
  206. foreach (var batch_num in range(num_batches_per_epoch))
  207. {
  208. var start_index = batch_num * batch_size;
  209. var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs));
  210. if (end_index <= start_index)
  211. break;
  212. yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index, end_index)], total_batches);
  213. }
  214. }
  215. }
  216. public void PrepareData()
  217. {
  218. if (UseSubset)
  219. {
  220. var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/dbpedia_subset.zip";
  221. Web.Download(url, dataDir, "dbpedia_subset.zip");
  222. Compress.UnZip(Path.Combine(dataDir, "dbpedia_subset.zip"), Path.Combine(dataDir, "dbpedia_csv"));
  223. }
  224. else
  225. {
  226. string url = "https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz";
  227. Web.Download(url, dataDir, dataFileName);
  228. Compress.ExtractTGZ(Path.Join(dataDir, dataFileName), dataDir);
  229. }
  230. if (ImportGraph)
  231. {
  232. // download graph meta data
  233. var meta_file = model_name + ".meta";
  234. var meta_path = Path.Combine("graph", meta_file);
  235. if (File.GetLastWriteTime(meta_path) < new DateTime(2019, 05, 11))
  236. {
  237. // delete old cached file which contains errors
  238. Console.WriteLine("Discarding cached file: " + meta_path);
  239. File.Delete(meta_path);
  240. }
  241. var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file;
  242. Web.Download(url, "graph", meta_file);
  243. }
  244. }
  245. }
  246. }