Browse Source

fix _get_graph_from_inputs recurisve reference.

tags/v0.9
Oceania2018 6 years ago
parent
commit
25fb8cb457
4 changed files with 252 additions and 3 deletions
  1. +1
    -1
      src/TensorFlowNET.Core/ops.py.cs
  2. +250
    -0
      test/TensorFlowNET.Examples/TextProcess/CnnTextClassification.cs
  3. +1
    -1
      test/TensorFlowNET.Examples/TextProcess/TextClassificationTrain.cs
  4. +0
    -1
      test/TensorFlowNET.UnitTest/ExamplesTests/ExamplesTest.cs

+ 1
- 1
src/TensorFlowNET.Core/ops.py.cs View File

@@ -103,7 +103,7 @@ namespace Tensorflow
}

public static Graph _get_graph_from_inputs(params Tensor[] op_input_list)
=> _get_graph_from_inputs(op_input_list: op_input_list);
=> _get_graph_from_inputs(op_input_list: op_input_list, graph: null);

public static Graph _get_graph_from_inputs(Tensor[] op_input_list, Graph graph = null)
{


+ 250
- 0
test/TensorFlowNET.Examples/TextProcess/CnnTextClassification.cs View File

@@ -0,0 +1,250 @@
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Text;
using NumSharp;
using Tensorflow;
using Tensorflow.Keras.Engine;
using Tensorflow.Sessions;
using TensorFlowNET.Examples.Text.cnn_models;
using TensorFlowNET.Examples.TextClassification;
using TensorFlowNET.Examples.Utility;
using static Tensorflow.Python;

namespace TensorFlowNET.Examples
{
/// <summary>
/// https://github.com/dongjun-Lee/text-classification-models-tf
/// </summary>
public class CnnTextClassification : IExample
{
public int Priority => 17;
public bool Enabled { get; set; } = true;
public string Name => "CNN Text Classification";
public int? DataLimit = null;
public bool ImportGraph { get; set; } = true;
public bool UseSubset = false; // <----- set this true to use a limited subset of dbpedia

private string dataDir = "text_classification";
private string dataFileName = "dbpedia_csv.tar.gz";

private const string TRAIN_PATH = "text_classification/dbpedia_csv/train.csv";
private const string TEST_PATH = "text_classification/dbpedia_csv/test.csv";

private const int NUM_CLASS = 14;
private const int BATCH_SIZE = 64;
private const int NUM_EPOCHS = 10;
private const int WORD_MAX_LEN = 100;
private const int CHAR_MAX_LEN = 1014;
protected float loss_value = 0;

public bool Run()
{
PrepareData();

var graph = tf.Graph().as_default();
return with(tf.Session(graph), sess =>
{
if (ImportGraph)
return RunWithImportedGraph(sess, graph);
else
return RunWithBuiltGraph(sess, graph);
});
}

protected virtual bool RunWithImportedGraph(Session sess, Graph graph)
{
var stopwatch = Stopwatch.StartNew();
Console.WriteLine("Building dataset...");
int[][] x = null;
int[] y = null;
int alphabet_size = 0;
int vocabulary_size = 0;

var word_dict = DataHelpers.build_word_dict(TRAIN_PATH);
vocabulary_size = len(word_dict);
(x, y) = DataHelpers.build_word_dataset(TRAIN_PATH, word_dict, WORD_MAX_LEN);

Console.WriteLine("\tDONE ");

var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
Console.WriteLine("Training set size: " + train_x.len);
Console.WriteLine("Test set size: " + valid_x.len);

Console.WriteLine("Import graph...");
var meta_file = "word_cnn.meta";
tf.train.import_meta_graph(Path.Join("graph", meta_file));
Console.WriteLine("\tDONE " + stopwatch.Elapsed);

sess.run(tf.global_variables_initializer());
var saver = tf.train.Saver(tf.global_variables());

var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS);
var num_batches_per_epoch = (len(train_x) - 1) / BATCH_SIZE + 1;
double max_accuracy = 0;

Tensor is_training = graph.OperationByName("is_training");
Tensor model_x = graph.OperationByName("x");
Tensor model_y = graph.OperationByName("y");
Tensor loss = graph.OperationByName("loss/Mean");
Operation optimizer = graph.OperationByName("loss/Adam");
Tensor global_step = graph.OperationByName("Variable");
Tensor accuracy = graph.OperationByName("accuracy/accuracy");
stopwatch = Stopwatch.StartNew();
int i = 0;
foreach (var (x_batch, y_batch, total) in train_batches)
{
i++;
var train_feed_dict = new FeedDict
{
[model_x] = x_batch,
[model_y] = y_batch,
[is_training] = true,
};

var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict);
loss_value = result[2];
var step = (int)result[1];
if (step % 10 == 0)
{
var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total);
Console.WriteLine($"Training on batch {i}/{total} loss: {loss_value}. Estimated training time: {estimate}");
}

if (step % 100 == 0)
{
// Test accuracy with validation data for each epoch.
var valid_batches = batch_iter(valid_x, valid_y, BATCH_SIZE, 1);
var (sum_accuracy, cnt) = (0.0f, 0);
foreach (var (valid_x_batch, valid_y_batch, total_validation_batches) in valid_batches)
{
var valid_feed_dict = new FeedDict
{
[model_x] = valid_x_batch,
[model_y] = valid_y_batch,
[is_training] = false
};
var result1 = sess.run(accuracy, valid_feed_dict);
float accuracy_value = result1;
sum_accuracy += accuracy_value;
cnt += 1;
}

var valid_accuracy = sum_accuracy / cnt;

print($"\nValidation Accuracy = {valid_accuracy}\n");

// Save model
if (valid_accuracy > max_accuracy)
{
max_accuracy = valid_accuracy;
saver.save(sess, $"{dataDir}/word_cnn.ckpt", global_step: step.ToString());
print("Model is saved.\n");
}
}
}

return false;
}

protected virtual bool RunWithBuiltGraph(Session session, Graph graph)
{
Console.WriteLine("Building dataset...");
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", "word_cnn", CHAR_MAX_LEN, DataLimit);

var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);

ITextClassificationModel model = null;
// todo train the model
return false;
}

// TODO: this originally is an SKLearn utility function. it randomizes train and test which we don't do here
private (NDArray, NDArray, NDArray, NDArray) train_test_split(NDArray x, NDArray y, float test_size = 0.3f)
{
Console.WriteLine("Splitting in Training and Testing data...");
int len = x.shape[0];
//int classes = y.Data<int>().Distinct().Count();
//int samples = len / classes;
int train_size = (int)Math.Round(len * (1 - test_size));
var train_x = x[new Slice(stop: train_size), new Slice()];
var valid_x = x[new Slice(start: train_size), new Slice()];
var train_y = y[new Slice(stop: train_size)];
var valid_y = y[new Slice(start: train_size)];
Console.WriteLine("\tDONE");
return (train_x, valid_x, train_y, valid_y);
}

private static void FillWithShuffledLabels(int[][] x, int[] y, int[][] shuffled_x, int[] shuffled_y, Random random, Dictionary<int, HashSet<int>> labels)
{
int i = 0;
var label_keys = labels.Keys.ToArray();
while (i < shuffled_x.Length)
{
var key = label_keys[random.Next(label_keys.Length)];
var set = labels[key];
var index = set.First();
if (set.Count == 0)
{
labels.Remove(key); // remove the set as it is empty
label_keys = labels.Keys.ToArray();
}
shuffled_x[i] = x[index];
shuffled_y[i] = y[index];
i++;
}
}

private IEnumerable<(NDArray, NDArray, int)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs)
{
var num_batches_per_epoch = (len(inputs) - 1) / batch_size + 1;
var total_batches = num_batches_per_epoch * num_epochs;
foreach (var epoch in range(num_epochs))
{
foreach (var batch_num in range(num_batches_per_epoch))
{
var start_index = batch_num * batch_size;
var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs));
if (end_index <= start_index)
break;
yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index, end_index)], total_batches);
}
}
}

public void PrepareData()
{
if (UseSubset)
{
var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/dbpedia_subset.zip";
Web.Download(url, dataDir, "dbpedia_subset.zip");
Compress.UnZip(Path.Combine(dataDir, "dbpedia_subset.zip"), Path.Combine(dataDir, "dbpedia_csv"));
}
else
{
string url = "https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz";
Web.Download(url, dataDir, dataFileName);
Compress.ExtractTGZ(Path.Join(dataDir, dataFileName), dataDir);
}

if (ImportGraph)
{
// download graph meta data
var meta_file = "word_cnn.meta";
var meta_path = Path.Combine("graph", meta_file);
if (File.GetLastWriteTime(meta_path) < new DateTime(2019, 05, 11))
{
// delete old cached file which contains errors
Console.WriteLine("Discarding cached file: " + meta_path);
File.Delete(meta_path);
}
var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file;
Web.Download(url, "graph", meta_file);
}
}
}
}

+ 1
- 1
test/TensorFlowNET.Examples/TextProcess/TextClassificationTrain.cs View File

@@ -14,7 +14,7 @@ using TensorFlowNET.Examples.TextClassification;
using TensorFlowNET.Examples.Utility;
using static Tensorflow.Python;

namespace TensorFlowNET.Examples.CnnTextClassification
namespace TensorFlowNET.Examples
{
/// <summary>
/// https://github.com/dongjun-Lee/text-classification-models-tf


+ 0
- 1
test/TensorFlowNET.UnitTest/ExamplesTests/ExamplesTest.cs View File

@@ -4,7 +4,6 @@ using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Tensorflow;
using TensorFlowNET.Examples;
using TensorFlowNET.Examples.CnnTextClassification;
namespace TensorFlowNET.ExamplesTests
{


Loading…
Cancel
Save