|
- using System;
- using System.Collections;
- using System.Collections.Generic;
- using System.Diagnostics;
- using System.IO;
- using System.Linq;
- using System.Text;
- using NumSharp;
- using Tensorflow;
- using Tensorflow.Keras.Engine;
- using Tensorflow.Sessions;
- using TensorFlowNET.Examples.Text.cnn_models;
- using TensorFlowNET.Examples.TextClassification;
- using TensorFlowNET.Examples.Utility;
- using static Tensorflow.Python;
-
- namespace TensorFlowNET.Examples
- {
- /// <summary>
- /// https://github.com/dongjun-Lee/text-classification-models-tf
- /// </summary>
- public class TextClassificationTrain : IExample
- {
- public int Priority => 100;
- public bool Enabled { get; set; } = false;
- public string Name => "Text Classification";
- public int? DataLimit = null;
- public bool ImportGraph { get; set; } = true;
- public bool UseSubset = false; // <----- set this true to use a limited subset of dbpedia
-
- private string dataDir = "text_classification";
- private string dataFileName = "dbpedia_csv.tar.gz";
-
- public string model_name = "word_cnn"; // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn
-
- private const string TRAIN_PATH = "text_classification/dbpedia_csv/train.csv";
- private const string SUBSET_PATH = "text_classification/dbpedia_csv/dbpedia_6400.csv";
- private const string TEST_PATH = "text_classification/dbpedia_csv/test.csv";
-
- private const int NUM_CLASS = 14;
- private const int BATCH_SIZE = 64;
- private const int NUM_EPOCHS = 10;
- private const int WORD_MAX_LEN = 100;
- private const int CHAR_MAX_LEN = 1014;
-
- protected float loss_value = 0;
-
- public bool Run()
- {
- PrepareData();
- var graph = tf.Graph().as_default();
- return with(tf.Session(graph), sess =>
- {
- if (ImportGraph)
- return RunWithImportedGraph(sess, graph);
- else
- return RunWithBuiltGraph(sess, graph);
- });
- }
-
- protected virtual bool RunWithImportedGraph(Session sess, Graph graph)
- {
- var stopwatch = Stopwatch.StartNew();
- Console.WriteLine("Building dataset...");
- var path = UseSubset ? SUBSET_PATH : TRAIN_PATH;
- int[][] x = null;
- int[] y = null;
- int alphabet_size = 0;
- int vocabulary_size = 0;
-
- if (model_name == "vd_cnn")
- (x, y, alphabet_size) = DataHelpers.build_char_dataset(path, model_name, CHAR_MAX_LEN, DataLimit = null, shuffle:!UseSubset);
- else
- {
- var word_dict = DataHelpers.build_word_dict(TRAIN_PATH);
- vocabulary_size = len(word_dict);
- (x, y) = DataHelpers.build_word_dataset(TRAIN_PATH, word_dict, WORD_MAX_LEN);
- }
-
- Console.WriteLine("\tDONE ");
-
- var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
- Console.WriteLine("Training set size: " + train_x.len);
- Console.WriteLine("Test set size: " + valid_x.len);
-
- Console.WriteLine("Import graph...");
- var meta_file = model_name + ".meta";
- tf.train.import_meta_graph(Path.Join("graph", meta_file));
- Console.WriteLine("\tDONE " + stopwatch.Elapsed);
-
- sess.run(tf.global_variables_initializer());
- var saver = tf.train.Saver(tf.global_variables());
-
- var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS);
- var num_batches_per_epoch = (len(train_x) - 1) / BATCH_SIZE + 1;
- double max_accuracy = 0;
-
- Tensor is_training = graph.OperationByName("is_training");
- Tensor model_x = graph.OperationByName("x");
- Tensor model_y = graph.OperationByName("y");
- Tensor loss = graph.OperationByName("loss/Mean"); // word_cnn
- Operation optimizer = graph.OperationByName("loss/Adam"); // word_cnn
- Tensor global_step = graph.OperationByName("Variable");
- Tensor accuracy = graph.OperationByName("accuracy/accuracy");
- stopwatch = Stopwatch.StartNew();
- int i = 0;
- foreach (var (x_batch, y_batch, total) in train_batches)
- {
- i++;
- var train_feed_dict = new FeedDict
- {
- [model_x] = x_batch,
- [model_y] = y_batch,
- [is_training] = true,
- };
- //Console.WriteLine("x: " + x_batch.ToString() + "\n");
- //Console.WriteLine("y: " + y_batch.ToString());
- // original python:
- //_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict)
- var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict);
- loss_value = result[2];
- var step = (int)result[1];
- if (step % 10 == 0)
- {
- var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total);
- Console.WriteLine($"Training on batch {i}/{total} loss: {loss_value}. Estimated training time: {estimate}");
- }
-
- if (step % 100 == 0)
- {
- // # Test accuracy with validation data for each epoch.
- var valid_batches = batch_iter(valid_x, valid_y, BATCH_SIZE, 1);
- var (sum_accuracy, cnt) = (0.0f, 0);
- foreach (var (valid_x_batch, valid_y_batch, total_validation_batches) in valid_batches)
- {
- var valid_feed_dict = new FeedDict
- {
- [model_x] = valid_x_batch,
- [model_y] = valid_y_batch,
- [is_training] = false
- };
- var result1 = sess.run(accuracy, valid_feed_dict);
- float accuracy_value = result1;
- sum_accuracy += accuracy_value;
- cnt += 1;
- }
-
- var valid_accuracy = sum_accuracy / cnt;
-
- print($"\nValidation Accuracy = {valid_accuracy}\n");
-
- // # Save model
- if (valid_accuracy > max_accuracy)
- {
- max_accuracy = valid_accuracy;
- // saver.save(sess, $"{dataDir}/{model_name}.ckpt", global_step: step.ToString());
- print("Model is saved.\n");
- }
- }
- }
-
- return false;
- }
-
- protected virtual bool RunWithBuiltGraph(Session session, Graph graph)
- {
- Console.WriteLine("Building dataset...");
- var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit);
-
- var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
-
- ITextClassificationModel model = null;
- switch (model_name) // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn
- {
- case "word_cnn":
- case "char_cnn":
- case "word_rnn":
- case "att_rnn":
- case "rcnn":
- throw new NotImplementedException();
- break;
- case "vd_cnn":
- model = new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS);
- break;
- }
- // todo train the model
- return false;
- }
-
- // TODO: this originally is an SKLearn utility function. it randomizes train and test which we don't do here
- private (NDArray, NDArray, NDArray, NDArray) train_test_split(NDArray x, NDArray y, float test_size = 0.3f)
- {
- Console.WriteLine("Splitting in Training and Testing data...");
- int len = x.shape[0];
- //int classes = y.Data<int>().Distinct().Count();
- //int samples = len / classes;
- int train_size = (int)Math.Round(len * (1 - test_size));
- var train_x = x[new Slice(stop: train_size), new Slice()];
- var valid_x = x[new Slice(start: train_size), new Slice()];
- var train_y = y[new Slice(stop: train_size)];
- var valid_y = y[new Slice(start: train_size)];
- Console.WriteLine("\tDONE");
- return (train_x, valid_x, train_y, valid_y);
- }
-
- private static void FillWithShuffledLabels(int[][] x, int[] y, int[][] shuffled_x, int[] shuffled_y, Random random, Dictionary<int, HashSet<int>> labels)
- {
- int i = 0;
- var label_keys = labels.Keys.ToArray();
- while (i < shuffled_x.Length)
- {
- var key = label_keys[random.Next(label_keys.Length)];
- var set = labels[key];
- var index = set.First();
- if (set.Count == 0)
- {
- labels.Remove(key); // remove the set as it is empty
- label_keys = labels.Keys.ToArray();
- }
- shuffled_x[i] = x[index];
- shuffled_y[i] = y[index];
- i++;
- }
- }
-
- private IEnumerable<(NDArray, NDArray, int)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs)
- {
- var num_batches_per_epoch = (len(inputs) - 1) / batch_size + 1;
- var total_batches = num_batches_per_epoch * num_epochs;
- foreach (var epoch in range(num_epochs))
- {
- foreach (var batch_num in range(num_batches_per_epoch))
- {
- var start_index = batch_num * batch_size;
- var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs));
- if (end_index <= start_index)
- break;
- yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index, end_index)], total_batches);
- }
- }
- }
-
- public void PrepareData()
- {
- if (UseSubset)
- {
- var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/dbpedia_subset.zip";
- Web.Download(url, dataDir, "dbpedia_subset.zip");
- Compress.UnZip(Path.Combine(dataDir, "dbpedia_subset.zip"), Path.Combine(dataDir, "dbpedia_csv"));
- }
- else
- {
- string url = "https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz";
- Web.Download(url, dataDir, dataFileName);
- Compress.ExtractTGZ(Path.Join(dataDir, dataFileName), dataDir);
- }
-
- if (ImportGraph)
- {
- // download graph meta data
- var meta_file = model_name + ".meta";
- var meta_path = Path.Combine("graph", meta_file);
- if (File.GetLastWriteTime(meta_path) < new DateTime(2019, 05, 11))
- {
- // delete old cached file which contains errors
- Console.WriteLine("Discarding cached file: " + meta_path);
- File.Delete(meta_path);
- }
- var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file;
- Web.Download(url, "graph", meta_file);
- }
- }
- }
- }
|