Browse Source

fixed vd_cnn.meta

tags/v0.9
Meinrad Recheis 6 years ago
parent
commit
9b14b46464
2 changed files with 16 additions and 10 deletions
  1. BIN
      graph/vd_cnn.meta
  2. +16
    -10
      test/TensorFlowNET.Examples/TextProcess/TextClassificationTrain.cs

BIN
graph/vd_cnn.meta View File


+ 16
- 10
test/TensorFlowNET.Examples/TextProcess/TextClassificationTrain.cs View File

@@ -52,38 +52,37 @@ namespace TensorFlowNET.Examples.CnnTextClassification

protected virtual bool RunWithImportedGraph(Session sess, Graph graph)
{
var stopwatch = Stopwatch.StartNew();
Console.WriteLine("Building dataset...");
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit=null);
Console.WriteLine("\tDONE");
Console.WriteLine("\tDONE ");

var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);

Console.WriteLine("Import graph...");
var meta_file = model_name + ".meta";
tf.train.import_meta_graph(Path.Join("graph", meta_file));
Console.WriteLine("\tDONE");
// definitely necessary, otherwize will get the exception of "use uninitialized variable"
Console.WriteLine("\tDONE " + stopwatch.Elapsed);
sess.run(tf.global_variables_initializer());
var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS);
var num_batches_per_epoch = (len(train_x) - 1); // BATCH_SIZE + 1
var num_batches_per_epoch = (len(train_x) - 1) / BATCH_SIZE + 1;
double max_accuracy = 0;

Tensor is_training = graph.get_operation_by_name("is_training");
Tensor model_x = graph.get_operation_by_name("x");
Tensor model_y = graph.get_operation_by_name("y");
Tensor loss = graph.get_operation_by_name("loss/loss");
Tensor loss = graph.get_operation_by_name("loss/value");
//var optimizer_nodes = graph._nodes_by_name.Keys.Where(key => key.Contains("optimizer")).ToArray();
Tensor optimizer = graph.get_operation_by_name("loss/optimizer");
Tensor global_step = graph.get_operation_by_name("global_step");
Tensor accuracy = graph.get_operation_by_name("accuracy/accuracy");
var stopwatch = Stopwatch.StartNew();
Tensor accuracy = graph.get_operation_by_name("accuracy/value");
stopwatch = Stopwatch.StartNew();
int i = 0;
foreach (var (x_batch, y_batch, total) in train_batches)
{
i++;
var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total);
Console.WriteLine($"Training on batch {i}/{total}. Estimated training time: {estimate}");
var train_feed_dict = new Hashtable
{
[model_x] = x_batch,
@@ -94,9 +93,14 @@ namespace TensorFlowNET.Examples.CnnTextClassification
//_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict)
var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict);
//loss_value = result[2];
var step = result[1];
var step = result[1];
if (step % 10 == 0)
{
var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total);
Console.WriteLine($"Training on batch {i}/{total}. Estimated training time: {estimate}");
Console.WriteLine($"Step {step} loss: {result[2]}");
}

if (step % 100 == 0)
{
continue;
@@ -198,6 +202,8 @@ namespace TensorFlowNET.Examples.CnnTextClassification
{
// download graph meta data
var meta_file = model_name + ".meta";
if (File.GetLastWriteTime(meta_file) < new DateTime(2019,05,11)) // delete old cached file which contains errors
File.Delete(meta_file);
url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file;
Web.Download(url, "graph", meta_file);
}


Loading…
Cancel
Save