|
|
@@ -52,38 +52,37 @@ namespace TensorFlowNET.Examples.CnnTextClassification |
|
|
|
|
|
|
|
protected virtual bool RunWithImportedGraph(Session sess, Graph graph) |
|
|
|
{ |
|
|
|
var stopwatch = Stopwatch.StartNew(); |
|
|
|
Console.WriteLine("Building dataset..."); |
|
|
|
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit=null); |
|
|
|
Console.WriteLine("\tDONE"); |
|
|
|
Console.WriteLine("\tDONE "); |
|
|
|
|
|
|
|
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); |
|
|
|
|
|
|
|
Console.WriteLine("Import graph..."); |
|
|
|
var meta_file = model_name + ".meta"; |
|
|
|
tf.train.import_meta_graph(Path.Join("graph", meta_file)); |
|
|
|
Console.WriteLine("\tDONE"); |
|
|
|
// definitely necessary, otherwize will get the exception of "use uninitialized variable" |
|
|
|
Console.WriteLine("\tDONE " + stopwatch.Elapsed); |
|
|
|
|
|
|
|
sess.run(tf.global_variables_initializer());
|
|
|
|
|
|
|
|
var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS); |
|
|
|
var num_batches_per_epoch = (len(train_x) - 1); // BATCH_SIZE + 1 |
|
|
|
var num_batches_per_epoch = (len(train_x) - 1) / BATCH_SIZE + 1; |
|
|
|
double max_accuracy = 0; |
|
|
|
|
|
|
|
Tensor is_training = graph.get_operation_by_name("is_training"); |
|
|
|
Tensor model_x = graph.get_operation_by_name("x"); |
|
|
|
Tensor model_y = graph.get_operation_by_name("y"); |
|
|
|
Tensor loss = graph.get_operation_by_name("loss/loss"); |
|
|
|
Tensor loss = graph.get_operation_by_name("loss/value"); |
|
|
|
//var optimizer_nodes = graph._nodes_by_name.Keys.Where(key => key.Contains("optimizer")).ToArray(); |
|
|
|
Tensor optimizer = graph.get_operation_by_name("loss/optimizer"); |
|
|
|
Tensor global_step = graph.get_operation_by_name("global_step"); |
|
|
|
Tensor accuracy = graph.get_operation_by_name("accuracy/accuracy"); |
|
|
|
var stopwatch = Stopwatch.StartNew(); |
|
|
|
Tensor accuracy = graph.get_operation_by_name("accuracy/value"); |
|
|
|
stopwatch = Stopwatch.StartNew(); |
|
|
|
int i = 0; |
|
|
|
foreach (var (x_batch, y_batch, total) in train_batches) |
|
|
|
{ |
|
|
|
i++; |
|
|
|
var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total); |
|
|
|
Console.WriteLine($"Training on batch {i}/{total}. Estimated training time: {estimate}"); |
|
|
|
var train_feed_dict = new Hashtable |
|
|
|
{ |
|
|
|
[model_x] = x_batch, |
|
|
@@ -94,9 +93,14 @@ namespace TensorFlowNET.Examples.CnnTextClassification |
|
|
|
//_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict) |
|
|
|
var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict);
|
|
|
|
//loss_value = result[2]; |
|
|
|
var step = result[1];
|
|
|
|
var step = result[1]; |
|
|
|
if (step % 10 == 0) |
|
|
|
{ |
|
|
|
var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total); |
|
|
|
Console.WriteLine($"Training on batch {i}/{total}. Estimated training time: {estimate}"); |
|
|
|
Console.WriteLine($"Step {step} loss: {result[2]}"); |
|
|
|
} |
|
|
|
|
|
|
|
if (step % 100 == 0) |
|
|
|
{ |
|
|
|
continue;
|
|
|
@@ -198,6 +202,8 @@ namespace TensorFlowNET.Examples.CnnTextClassification |
|
|
|
{ |
|
|
|
// download graph meta data |
|
|
|
var meta_file = model_name + ".meta"; |
|
|
|
if (File.GetLastWriteTime(meta_file) < new DateTime(2019,05,11)) // delete old cached file which contains errors |
|
|
|
File.Delete(meta_file); |
|
|
|
url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file; |
|
|
|
Web.Download(url, "graph", meta_file); |
|
|
|
} |
|
|
|