Browse Source

text classification train

tags/v0.9
Meinrad Recheis 6 years ago
parent
commit
0a82e581de
1 changed files with 14 additions and 10 deletions
  1. +14
    -10
      test/TensorFlowNET.Examples/TextProcess/TextClassificationTrain.cs

+ 14
- 10
test/TensorFlowNET.Examples/TextProcess/TextClassificationTrain.cs View File

@@ -1,6 +1,7 @@
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Text;
@@ -52,7 +53,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification
protected virtual bool RunWithImportedGraph(Session sess, Graph graph)
{
Console.WriteLine("Building dataset...");
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit);
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit=null);
Console.WriteLine("\tDONE");

var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
@@ -76,12 +77,13 @@ namespace TensorFlowNET.Examples.CnnTextClassification
Tensor optimizer = graph.get_operation_by_name("loss/optimizer");
Tensor global_step = graph.get_operation_by_name("global_step");
Tensor accuracy = graph.get_operation_by_name("accuracy/accuracy");
var stopwatch = Stopwatch.StartNew();
int i = 0;
foreach (var (x_batch, y_batch) in train_batches)
foreach (var (x_batch, y_batch, total) in train_batches)
{
i++;
Console.WriteLine("Training on batch " + i);
var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total);
Console.WriteLine($"Training on batch {i}/{total}. Estimated training time: {estimate}");
var train_feed_dict = new Hashtable
{
[model_x] = x_batch,
@@ -90,8 +92,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification
};
// original python:
//_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict)
var result = sess.run(new Tensor[] { optimizer, global_step, loss }, train_feed_dict);
// exception here, loss value seems like a float[]
var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict);
//loss_value = result[2];
var step = result[1];
if (step % 10 == 0)
@@ -102,7 +103,7 @@ namespace TensorFlowNET.Examples.CnnTextClassification
// # Test accuracy with validation data for each epoch.
var valid_batches = batch_iter(valid_x, valid_y, BATCH_SIZE, 1);
var (sum_accuracy, cnt) = (0, 0);
foreach (var (valid_x_batch, valid_y_batch) in valid_batches)
foreach (var (valid_x_batch, valid_y_batch, total_validation_batches) in valid_batches)
{
// valid_feed_dict = {
// model.x: valid_x_batch,
@@ -170,16 +171,19 @@ namespace TensorFlowNET.Examples.CnnTextClassification
return (train_x, valid_x, train_y, valid_y);
}

private IEnumerable<(NDArray, NDArray)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs)
private IEnumerable<(NDArray, NDArray, int)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs)
{
var num_batches_per_epoch = (len(inputs) - 1); // batch_size + 1
var num_batches_per_epoch = (len(inputs) - 1) / batch_size;
var total_batches = num_batches_per_epoch * num_epochs;
foreach (var epoch in range(num_epochs))
{
foreach (var batch_num in range(num_batches_per_epoch))
{
var start_index = batch_num * batch_size;
var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs));
yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index,end_index)]);
if (end_index <= start_index)
break;
yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index,end_index)], total_batches);
}
}
}


Loading…
Cancel
Save