|
|
|
@@ -12,8 +12,8 @@ |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
import numpy as np |
|
|
|
import sys |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.dataset as ds |
|
|
|
@@ -31,8 +31,8 @@ SCHEMA_DIR = "{0}/resnet_all_datasetSchema.json".format(data_path) |
|
|
|
|
|
|
|
def test_me_de_train_dataset(): |
|
|
|
data_list = ["{0}/train-00001-of-01024.data".format(data_path)] |
|
|
|
data_set = ds.TFRecordDataset(data_list, schema=SCHEMA_DIR, |
|
|
|
columns_list=["image/encoded", "image/class/label"]) |
|
|
|
data_set_new = ds.TFRecordDataset(data_list, schema=SCHEMA_DIR, |
|
|
|
columns_list=["image/encoded", "image/class/label"]) |
|
|
|
|
|
|
|
resize_height = 224 |
|
|
|
resize_width = 224 |
|
|
|
@@ -42,21 +42,21 @@ def test_me_de_train_dataset(): |
|
|
|
# define map operations |
|
|
|
|
|
|
|
decode_op = vision.Decode() |
|
|
|
resize_op = vision.Resize(resize_height, resize_width, |
|
|
|
resize_op = vision.Resize((resize_height, resize_width), |
|
|
|
Inter.LINEAR) # Bilinear as default |
|
|
|
rescale_op = vision.Rescale(rescale, shift) |
|
|
|
|
|
|
|
# apply map operations on images |
|
|
|
data_set = data_set.map(input_columns="image/encoded", operations=decode_op) |
|
|
|
data_set = data_set.map(input_columns="image/encoded", operations=resize_op) |
|
|
|
data_set = data_set.map(input_columns="image/encoded", operations=rescale_op) |
|
|
|
data_set_new = data_set_new.map(input_columns="image/encoded", operations=decode_op) |
|
|
|
data_set_new = data_set_new.map(input_columns="image/encoded", operations=resize_op) |
|
|
|
data_set_new = data_set_new.map(input_columns="image/encoded", operations=rescale_op) |
|
|
|
hwc2chw_op = vision.HWC2CHW() |
|
|
|
data_set = data_set.map(input_columns="image/encoded", operations=hwc2chw_op) |
|
|
|
data_set = data_set.repeat(1) |
|
|
|
data_set_new = data_set_new.map(input_columns="image/encoded", operations=hwc2chw_op) |
|
|
|
data_set_new = data_set_new.repeat(1) |
|
|
|
# apply batch operations |
|
|
|
batch_size = 32 |
|
|
|
data_set = data_set.batch(batch_size, drop_remainder=True) |
|
|
|
return data_set |
|
|
|
batch_size_new = 32 |
|
|
|
data_set_new = data_set_new.batch(batch_size_new, drop_remainder=True) |
|
|
|
return data_set_new |
|
|
|
|
|
|
|
|
|
|
|
def convert_type(shapes, types): |
|
|
|
|