|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- class NetConv2d(nn.Cell):
- def __init__(self):
- super(NetConv2d, self).__init__()
- out_channel = 2
- kernel_size = 1
- self.conv = P.Conv2D(out_channel,
- kernel_size,
- mode=1,
- pad_mode="valid",
- pad=0,
- stride=1,
- dilation=1,
- group=1)
- self.w = Parameter(initializer(
- Tensor(np.arange(2 * 3 * 1 * 1).reshape(2, 3, 1, 1).astype(np.float32)), [2, 3, 1, 1]), name='w')
- self.x = Parameter(initializer(
- Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32)), [1, 3, 3, 3]), name='x')
-
- def construct(self):
- return self.conv(self.x, self.w)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_conv2d():
- conv2d = NetConv2d()
- output = conv2d()
- print("================================")
- # expect output:
- # [[[[ 45. 48. 51.]
- # [ 54. 57. 60.]
- # [ 63. 66. 69.]]
- # [[126. 138. 150.]
- # [162. 174. 186.]
- # [198. 210. 222.]]]]
- expect = np.array([[[[45, 48, 51],
- [54, 57, 60],
- [63, 66, 69]],
- [[126, 138, 150],
- [162, 174, 186],
- [198, 210, 222]]]]).astype(np.float32)
- print(output)
- assert (output.asnumpy() == expect).all()
|