|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import pytest
- import numpy as np
- from mindspore import Tensor
- from mindspore.ops import operations as P
- import mindspore.nn as nn
- import mindspore.context as context
- from mindspore.common import dtype as mstype
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
- class NetGatherV2_axis0(nn.Cell):
- def __init__(self):
- super(NetGatherV2_axis0, self).__init__()
- self.gatherv2 = P.GatherV2()
-
- def construct(self, params, indices):
- return self.gatherv2(params, indices, 0)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_gatherv2_axis0():
- x = Tensor(np.arange(3 * 2 * 2).reshape(3, 2, 2), mstype.float32)
- indices = Tensor(np.array([1, 2]), mstype.int32)
- gatherv2 = NetGatherV2_axis0()
- ms_output = gatherv2(x, indices)
- print("output:\n", ms_output)
- expect = np.array([[[4., 5.],
- [6., 7.]],
- [[8., 9.],
- [10., 11.]]])
- error = np.ones(shape=ms_output.asnumpy().shape) * 1.0e-6
- diff = ms_output.asnumpy() - expect
- assert np.all(diff < error)
- assert np.all(-diff < error)
-
- class NetGatherV2_axis1(nn.Cell):
- def __init__(self):
- super(NetGatherV2_axis1, self).__init__()
- self.gatherv2 = P.GatherV2()
-
- def construct(self, params, indices):
- return self.gatherv2(params, indices, 1)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_gatherv2_axis1():
- x = Tensor(np.arange(2 * 3 * 2).reshape(2, 3, 2), mstype.float32)
- indices = Tensor(np.array([1, 2]), mstype.int32)
- gatherv2 = NetGatherV2_axis1()
- ms_output = gatherv2(x, indices)
- print("output:\n", ms_output)
- expect = np.array([[[2., 3.],
- [4., 5.]],
- [[8., 9.],
- [10., 11.]]])
- error = np.ones(shape=ms_output.asnumpy().shape) * 1.0e-6
- diff = ms_output.asnumpy() - expect
- assert np.all(diff < error)
- assert np.all(-diff < error)
-
- class NetGatherV2_axisN1(nn.Cell):
- def __init__(self):
- super(NetGatherV2_axisN1, self).__init__()
- self.gatherv2 = P.GatherV2()
-
- def construct(self, params, indices):
- return self.gatherv2(params, indices, -1)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_gatherv2_axisN1():
- x = Tensor(np.arange(2 * 2 * 3).reshape(2, 2, 3), mstype.float32)
- indices = Tensor(np.array([1, 2]), mstype.int32)
- gatherv2 = NetGatherV2_axisN1()
- ms_output = gatherv2(x, indices)
- print("output:\n", ms_output)
- expect = np.array([[[1., 2.],
- [4., 5.]],
- [[7., 8.],
- [10., 11.]]])
- error = np.ones(shape=ms_output.asnumpy().shape) * 1.0e-6
- diff = ms_output.asnumpy() - expect
- assert np.all(diff < error)
- assert np.all(-diff < error)
-
- if __name__ == '__main__':
- test_gatherv2_axis0()
- test_gatherv2_axis1()
- test_gatherv2_axisN1()
|