|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.ops import operations as P
-
- context.set_context(device_target="Ascend")
-
-
- class Net(nn.Cell):
- def __init__(self, is_grad=False):
- super(Net, self).__init__()
- self.SparseSoftmaxCrossEntropyWithLogits = P.SparseSoftmaxCrossEntropyWithLogits(is_grad=is_grad)
-
- @ms_function
- def construct(self, features, labels):
- return self.SparseSoftmaxCrossEntropyWithLogits(features, labels)
-
-
- def np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, logits_dtype):
- num_class = logits_shape[1]
- labels = np.random.randint(low=0, high=num_class - 1, size=labels_shape).astype(np.int32)
- logits = np.random.rand(*logits_shape).astype(logits_dtype)
- features = logits
- features_reshape = np.reshape(features, [-1, num_class])
- labels_reshape = np.reshape(labels, [-1])
- batch_dim = 0
- class_dim = 1
- batch_size = features_reshape.shape[batch_dim]
- e = np.exp(features_reshape - np.reshape(np.amax(features_reshape, axis=class_dim), [batch_size, 1]))
- probs = e / np.reshape(np.sum(e, axis=class_dim), [batch_size, 1])
- labels_mat = np.zeros_like(probs).astype(probs.dtype)
- labels_mat[np.arange(batch_size), labels_reshape] = 1.0
- bp = (probs - labels_mat)
- loss = -np.sum(labels_mat * np.log(probs + 1.0e-20), axis=1)
- bp_res = np.reshape(bp, features.shape)
- loss_res = np.reshape(loss, labels.shape)
- loss_res = np.sum(loss_res, axis=0) / loss_res.shape[0]
- return labels, logits, loss_res, bp_res
-
-
- def test_net():
- '''Compare Numpy with MS type is float32'''
- labels_shape = (32,)
- logits_shape = [32, 1001]
- labels, logits, loss_np, _ = np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, np.float32)
- expect = loss_np
- SparseSoftmaxCrossEntropyWithLogits = Net()
- loss_me = SparseSoftmaxCrossEntropyWithLogits(Tensor(logits), Tensor(labels))
- # assert
- assert np.allclose(expect.flatten(), loss_me.asnumpy().flatten(), 0.01, 0.01)
- print(loss_me.asnumpy().flatten())
- print("-------------------------")
- print(expect)
-
-
- test_net()
|