You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 12 kB

6 years ago
6 years ago
6 years ago
4 years ago
6 years ago
4 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
4 years ago
6 years ago
4 years ago
6 years ago
4 years ago
6 years ago
4 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
  1. ![logo](docs/assets/tf.net.logo.png)
  2. **TensorFlow.NET** (TF.NET) provides a .NET Standard binding for [TensorFlow](https://www.tensorflow.org/). It aims to implement the complete Tensorflow API in C# which allows .NET developers to develop, train and deploy Machine Learning models with the cross-platform .NET Standard framework. TensorFlow.NET has built-in Keras high-level interface and is released as an independent package [TensorFlow.Keras](https://www.nuget.org/packages/TensorFlow.Keras/).
  3. [![Join the chat at https://gitter.im/publiclab/publiclab](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/sci-sharp/community)
  4. [![Tensorflow.NET](https://ci.appveyor.com/api/projects/status/wx4td43v2d3f2xj6?svg=true)](https://ci.appveyor.com/project/Haiping-Chen/tensorflow-net)
  5. [![NuGet](https://img.shields.io/nuget/dt/TensorFlow.NET.svg)](https://www.nuget.org/packages/TensorFlow.NET)
  6. [![Documentation Status](https://readthedocs.org/projects/tensorflownet/badge/?version=latest)](https://tensorflownet.readthedocs.io/en/latest/?badge=latest)
  7. [![Badge](https://img.shields.io/badge/link-996.icu-red.svg)](https://996.icu/#/en_US)
  8. [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab)
  9. *master branch is based on tensorflow v2.x, v0.6x branch is based on tensorflow v2.6, v0.15-tensorflow1.15 is from tensorflow1.15.*
  10. ![tensors_flowing](docs/assets/tensors_flowing.gif)
  11. ### Why TensorFlow in C# and F# ?
  12. `SciSharp STACK`'s mission is to bring popular data science technology into the .NET world and to provide .NET developers with a powerful Machine Learning tool set without reinventing the wheel. Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET.
  13. ![pythn vs csharp](docs/assets/syntax-comparision.png)
  14. SciSharp's philosophy allows a large number of machine learning code written in Python to be quickly migrated to .NET, enabling .NET developers to use cutting edge machine learning models and access a vast number of TensorFlow resources which would not be possible without this project.
  15. In comparison to other projects, like for instance [TensorFlowSharp](https://www.nuget.org/packages/TensorFlowSharp/) which only provide TensorFlow's low-level C++ API and can only run models that were built using Python, Tensorflow.NET also implements TensorFlow's high level API where all the magic happens. This computation graph building layer is still under active development. Once it is completely implemented you can build new Machine Learning models in C# or F#.
  16. Go through the online docs [TensorFlow for .NET](https://scisharp.github.io/tensorflow-net-docs) before you get started with Machine Learning in .NET.
  17. ### How to use
  18. | TensorFlow | tf native1.14, cuda 10.0 | tf native 1.15, cuda 10.0 | tf native 2.3, cuda 10.1 | tf native 2.4, cuda 11 |
  19. | -------------------------- | ------------- | -------------- | ------------- | ------------- |
  20. | tf.net 0.4x, tf.keras 0.5 | | | | x |
  21. | tf.net 0.3x, tf.keras 0.4 | | | x | |
  22. | tf.net 0.2x | | x | x | |
  23. | tf.net 0.15 | x | x | | |
  24. | tf.net 0.14 | x | | | |
  25. Troubleshooting of running example or installation, please refer [here](tensorflowlib/README.md).
  26. There are many examples reside at [TensorFlow.NET Examples](https://github.com/SciSharp/TensorFlow.NET-Examples) written in C# and F#.
  27. #### TensorFlow.net Version
  28. ` tf.net 0.4x -> tf native 2.4`
  29. `tf.net 0.6x -> tf native 2.6`
  30. `tf.net 0.7x -> tf native 2.7`
  31. `...`
  32. #### C# Example
  33. Install TF.NET and TensorFlow binary through NuGet.
  34. ```sh
  35. ### install tensorflow C#/F# binding
  36. PM> Install-Package TensorFlow.NET
  37. ### install keras for tensorflow
  38. PM> Install-Package TensorFlow.Keras
  39. ### Install tensorflow binary
  40. ### For CPU version
  41. PM> Install-Package SciSharp.TensorFlow.Redist
  42. ### For GPU version (CUDA and cuDNN are required)
  43. PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU
  44. ```
  45. Import TF.NET and Keras API in your project.
  46. ```csharp
  47. using static Tensorflow.Binding;
  48. using static Tensorflow.KerasApi;
  49. using Tensorflow;
  50. using Tensorflow.NumPy;
  51. ```
  52. Linear Regression in `Eager` mode:
  53. ```csharp
  54. // Parameters
  55. var training_steps = 1000;
  56. var learning_rate = 0.01f;
  57. var display_step = 100;
  58. // Sample data
  59. var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
  60. 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f);
  61. var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
  62. 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f);
  63. var n_samples = X.shape[0];
  64. // We can set a fixed init value in order to demo
  65. var W = tf.Variable(-0.06f, name: "weight");
  66. var b = tf.Variable(-0.73f, name: "bias");
  67. var optimizer = keras.optimizers.SGD(learning_rate);
  68. // Run training for the given number of steps.
  69. foreach (var step in range(1, training_steps + 1))
  70. {
  71. // Run the optimization to update W and b values.
  72. // Wrap computation inside a GradientTape for automatic differentiation.
  73. using var g = tf.GradientTape();
  74. // Linear regression (Wx + b).
  75. var pred = W * X + b;
  76. // Mean square error.
  77. var loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples);
  78. // should stop recording
  79. // Compute gradients.
  80. var gradients = g.gradient(loss, (W, b));
  81. // Update W and b following gradients.
  82. optimizer.apply_gradients(zip(gradients, (W, b)));
  83. if (step % display_step == 0)
  84. {
  85. pred = W * X + b;
  86. loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples);
  87. print($"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}");
  88. }
  89. }
  90. ```
  91. Run this example in [Jupyter Notebook](https://github.com/SciSharp/SciSharpCube).
  92. Toy version of `ResNet` in `Keras` functional API:
  93. ```csharp
  94. var layers = new LayersApi();
  95. // input layer
  96. var inputs = keras.Input(shape: (32, 32, 3), name: "img");
  97. // convolutional layer
  98. var x = layers.Conv2D(32, 3, activation: "relu").Apply(inputs);
  99. x = layers.Conv2D(64, 3, activation: "relu").Apply(x);
  100. var block_1_output = layers.MaxPooling2D(3).Apply(x);
  101. x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_1_output);
  102. x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
  103. var block_2_output = layers.Add().Apply(new Tensors(x, block_1_output));
  104. x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_2_output);
  105. x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
  106. var block_3_output = layers.Add().Apply(new Tensors(x, block_2_output));
  107. x = layers.Conv2D(64, 3, activation: "relu").Apply(block_3_output);
  108. x = layers.GlobalAveragePooling2D().Apply(x);
  109. x = layers.Dense(256, activation: "relu").Apply(x);
  110. x = layers.Dropout(0.5f).Apply(x);
  111. // output layer
  112. var outputs = layers.Dense(10).Apply(x);
  113. // build keras model
  114. var model = keras.Model(inputs, outputs, name: "toy_resnet");
  115. model.summary();
  116. // compile keras model in tensorflow static graph
  117. model.compile(optimizer: keras.optimizers.RMSprop(1e-3f),
  118. loss: keras.losses.CategoricalCrossentropy(from_logits: true),
  119. metrics: new[] { "acc" });
  120. // prepare dataset
  121. var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data();
  122. x_train = x_train / 255.0f;
  123. y_train = np_utils.to_categorical(y_train, 10);
  124. // training
  125. model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)],
  126. batch_size: 64,
  127. epochs: 10,
  128. validation_split: 0.2f);
  129. ```
  130. #### F# Example
  131. Linear Regression in `Eager` mode:
  132. ```fsharp
  133. #r "nuget: TensorFlow.Net"
  134. #r "nuget: TensorFlow.Keras"
  135. #r "nuget: SciSharp.TensorFlow.Redist"
  136. open Tensorflow
  137. open Tensorflow.NumPy
  138. open type Tensorflow.Binding
  139. open type Tensorflow.KerasApi
  140. let tf = New<tensorflow>()
  141. tf.enable_eager_execution()
  142. // Parameters
  143. let training_steps = 1000
  144. let learning_rate = 0.01f
  145. let display_step = 100
  146. // Sample data
  147. let train_X =
  148. np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
  149. 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f)
  150. let train_Y =
  151. np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
  152. 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f)
  153. let n_samples = train_X.shape.[0]
  154. // We can set a fixed init value in order to demo
  155. let W = tf.Variable(-0.06f,name = "weight")
  156. let b = tf.Variable(-0.73f, name = "bias")
  157. let optimizer = keras.optimizers.SGD(learning_rate)
  158. // Run training for the given number of steps.
  159. for step = 1 to (training_steps + 1) do
  160. // Run the optimization to update W and b values.
  161. // Wrap computation inside a GradientTape for automatic differentiation.
  162. use g = tf.GradientTape()
  163. // Linear regression (Wx + b).
  164. let pred = W * train_X + b
  165. // Mean square error.
  166. let loss = tf.reduce_sum(tf.pow(pred - train_Y,2)) / (2 * n_samples)
  167. // should stop recording
  168. // compute gradients
  169. let gradients = g.gradient(loss,struct (W,b))
  170. // Update W and b following gradients.
  171. optimizer.apply_gradients(zip(gradients, struct (W,b)))
  172. if (step % display_step) = 0 then
  173. let pred = W * train_X + b
  174. let loss = tf.reduce_sum(tf.pow(pred-train_Y,2)) / (2 * n_samples)
  175. printfn $"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}"
  176. ```
  177. Read the book [The Definitive Guide to Tensorflow.NET](https://tensorflownet.readthedocs.io/en/latest/FrontCover.html) if you want to know more about TensorFlow for .NET under the hood.
  178. ### Contribute:
  179. Feel like contributing to one of the hottest projects in the Machine Learning field? Want to know how Tensorflow magically creates the computational graph? We appreciate every contribution however small. There are tasks for novices to experts alike, if everyone tackles only a small task the sum of contributions will be huge.
  180. You can:
  181. * Let everyone know about this project
  182. * Port Tensorflow unit tests from Python to C# or F#
  183. * Port missing Tensorflow code from Python to C# or F#
  184. * Port Tensorflow examples to C# or F# and raise issues if you come accross missing parts of the API
  185. * Debug one of the unit tests that is marked as Ignored to get it to work
  186. * Debug one of the not yet working examples and get it to work
  187. ### How to debug unit tests:
  188. The best way to find out why a unit test is failing is to single step it in C# or F# and its corresponding Python at the same time to see where the flow of execution digresses or where variables exhibit different values. Good Python IDEs like PyCharm let you single step into the tensorflow library code.
  189. ### Git Knowhow for Contributors
  190. Add SciSharp/TensorFlow.NET as upstream to your local repo ...
  191. ```git
  192. git remote add upstream git@github.com:SciSharp/TensorFlow.NET.git
  193. ```
  194. Please make sure you keep your fork up to date by regularly pulling from upstream.
  195. ```git
  196. git pull upstream master
  197. ```
  198. ### Support
  199. Buy our book to make open source project be sustainable [TensorFlow.NET实战](https://item.jd.com/13441549.html)
  200. <p float="left">
  201. <img src="https://user-images.githubusercontent.com/1705364/198852429-91741881-c196-401e-8e9e-2f8656196613.png" width="250" />
  202. <img src="https://user-images.githubusercontent.com/1705364/198852521-2f842043-3ace-49d2-8533-039c6a043a3f.png" width="260" />
  203. <img src="https://user-images.githubusercontent.com/1705364/198852721-54cd9e7e-9210-4931-a86c-77584b25b8e1.png" width="260" />
  204. </p>
  205. ### Contact
  206. Follow us on [Twitter](https://twitter.com/ScisharpStack), [Facebook](https://www.facebook.com/scisharp.stack.9), [Medium](https://medium.com/scisharp), [LinkedIn](https://www.linkedin.com/company/scisharp-stack/).
  207. Join our chat on [Gitter](https://gitter.im/sci-sharp/community).
  208. TensorFlow.NET is a part of [SciSharp STACK](https://scisharp.github.io/SciSharp/)
  209. <br>
  210. <a href="http://scisharpstack.org"><img src="https://github.com/SciSharp/SciSharp/blob/master/art/scisharp-stack.png" width="391" height="100" /></a>