|
|
@@ -56,30 +56,32 @@ PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU |
|
|
|
|
|
|
|
Import TF.NET and Keras API in your project. |
|
|
|
|
|
|
|
```cs |
|
|
|
```csharp |
|
|
|
using static Tensorflow.Binding; |
|
|
|
using static Tensorflow.KerasApi; |
|
|
|
using Tensorflow; |
|
|
|
using NumSharp; |
|
|
|
``` |
|
|
|
|
|
|
|
Linear Regression in `Eager` mode: |
|
|
|
|
|
|
|
```c# |
|
|
|
```csharp |
|
|
|
// Parameters |
|
|
|
var training_steps = 1000; |
|
|
|
var learning_rate = 0.01f; |
|
|
|
var display_step = 100; |
|
|
|
|
|
|
|
// Sample data |
|
|
|
var train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, |
|
|
|
var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, |
|
|
|
7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f); |
|
|
|
var train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, |
|
|
|
var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, |
|
|
|
2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f); |
|
|
|
var n_samples = train_X.shape[0]; |
|
|
|
var n_samples = X.shape[0]; |
|
|
|
|
|
|
|
// We can set a fixed init value in order to demo |
|
|
|
var W = tf.Variable(-0.06f, name: "weight"); |
|
|
|
var b = tf.Variable(-0.73f, name: "bias"); |
|
|
|
var optimizer = tf.optimizers.SGD(learning_rate); |
|
|
|
var optimizer = keras.optimizers.SGD(learning_rate); |
|
|
|
|
|
|
|
// Run training for the given number of steps. |
|
|
|
foreach (var step in range(1, training_steps + 1)) |
|
|
|