Browse Source

Fix Sequential model.

tags/keras_v0.3.0
Oceania2018 Haiping 4 years ago
parent
commit
fd64ad1b44
21 changed files with 240 additions and 76 deletions
  1. +6
    -6
      README.md
  2. +9
    -1
      src/SciSharp.TensorFlow.Redist/README.md
  3. +1
    -1
      src/TensorFlowNET.Console/TensorFlowNET.Console.csproj
  4. +1
    -1
      src/TensorFlowNET.Core/Tensors/tensor_util.cs
  5. +33
    -13
      src/TensorFlowNET.Keras/Engine/DataAdapters/DataHandler.cs
  6. +35
    -0
      src/TensorFlowNET.Keras/Engine/DataAdapters/DatasetAdapter.cs
  7. +2
    -2
      src/TensorFlowNET.Keras/Engine/DataAdapters/TensorLikeDataAdapter.cs
  8. +3
    -1
      src/TensorFlowNET.Keras/Engine/Functional.cs
  9. +3
    -7
      src/TensorFlowNET.Keras/Engine/Model.Compile.cs
  10. +44
    -0
      src/TensorFlowNET.Keras/Engine/Model.Fit.cs
  11. +1
    -1
      src/TensorFlowNET.Keras/Engine/Node.cs
  12. +30
    -35
      src/TensorFlowNET.Keras/Engine/Sequential.cs
  13. +5
    -0
      src/TensorFlowNET.Keras/KerasInterface.cs
  14. +5
    -0
      src/TensorFlowNET.Keras/Layers/Rescaling/Rescaling.cs
  15. +24
    -1
      src/TensorFlowNET.Keras/Layers/Reshaping/Flatten.cs
  16. +1
    -1
      src/TensorFlowNET.Keras/Preprocessings/Preprocessing.paths_and_labels_to_dataset.cs
  17. +29
    -0
      src/TensorFlowNET.Keras/Utils/layer_utils.cs
  18. +4
    -2
      tensorflowlib/README.md
  19. +1
    -1
      test/TensorFlowNET.UnitTest/ImageTest.cs
  20. +1
    -1
      test/TensorFlowNET.UnitTest/Keras/LayersTest.cs
  21. +2
    -2
      test/TensorFlowNET.UnitTest/Tensorflow.UnitTest.csproj

+ 6
- 6
README.md View File

@@ -26,12 +26,12 @@ In comparison to other projects, like for instance [TensorFlowSharp](https://www

### How to use

| TensorFlow | tf native1.14 | tf native 1.15 | tf native 2.3 |
| -------------------------- | ------------- | -------------- | ------------- |
| tf.net 0.3x, tf.keras 0.2 | | | x |
| tf.net 0.2x | | x | x |
| tf.net 0.15 | x | x | |
| tf.net 0.14 | x | | |
| TensorFlow | tf native1.14, cuda 10.0 | tf native 1.15, cuda 10.0 | tf native 2.3, cuda 10.1 | tf native 2.4, cuda 11 |
| -------------------------- | ------------- | -------------- | ------------- | ------------- |
| tf.net 0.3x, tf.keras 0.2 | | | x | not compatible |
| tf.net 0.2x | | x | x | |
| tf.net 0.15 | x | x | | |
| tf.net 0.14 | x | | | |

Troubleshooting of running example or installation, please refer [here](tensorflowlib/README.md).



+ 9
- 1
src/SciSharp.TensorFlow.Redist/README.md View File

@@ -22,11 +22,19 @@ https://www.nuget.org/packages/SciSharp.TensorFlow.Redist

Related merged [commits](https://github.com/SciSharp/TensorFlow.NET/commit/854a5ba61ad0e400623821236bd117cc24c6cb77).



#### Download pre-build package

[Mac OSX CPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-darwin-x86_64-2.4.0.tar.gz), [Linux CPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-2.4.0.tar.gz), [Linux GPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-linux-x86_64-2.4.0.tar.gz), [Windows CPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-windows-x86_64-2.4.0.tar.gz), [Windows GPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-windows-x86_64-2.4.0.zip)



#### Pack and Deploy ####

On Windows, the tar command does not support extracting archives with symlinks. So when `dotnet pack` runs on Windows it will only package the Windows binaries.

1. Run `dotnet pack SciSharp.TensorFlow.Redist.nupkgproj` under `src/SciSharp.TensorFlow.Redist` directory in Linux.
2. Run `dotnet nuget push SciSharp.TensorFlow.Redist.2.3.1.nupkg -k APIKEY -s https://api.nuget.org/v3/index.json -t 600`
2. Run `dotnet nuget push SciSharp.TensorFlow.Redist.2.4.0.nupkg -k APIKEY -s https://api.nuget.org/v3/index.json -t 600`



+ 1
- 1
src/TensorFlowNET.Console/TensorFlowNET.Console.csproj View File

@@ -8,7 +8,7 @@
</PropertyGroup>

<ItemGroup>
<PackageReference Include="SciSharp.TensorFlow.Redist" Version="2.3.0" />
<PackageReference Include="SciSharp.TensorFlow.Redist" Version="2.3.1" />
</ItemGroup>

<ItemGroup>


+ 1
- 1
src/TensorFlowNET.Core/Tensors/tensor_util.cs View File

@@ -574,7 +574,7 @@ would not be rank 1.", tensor.op.get_attr("axis")));
return string.Join(string.Empty, nd.ToArray<byte>()
.Select(x => x < 32 || x > 127 ? "\\x" + x.ToString("x") : Convert.ToChar(x).ToString()));
case TF_DataType.TF_BOOL:
return (nd.GetByte(0) > 0).ToString();
return nd.GetBoolean(0).ToString();
case TF_DataType.TF_VARIANT:
case TF_DataType.TF_RESOURCE:
return "<unprintable>";


+ 33
- 13
src/TensorFlowNET.Keras/Engine/DataAdapters/DataHandler.cs View File

@@ -37,19 +37,38 @@ namespace Tensorflow.Keras.Engine.DataAdapters
_steps_per_execution_value = args.StepsPerExecution.numpy();
}

_adapter = new TensorLikeDataAdapter(new TensorLikeDataAdapterArgs
if(args.Dataset == null)
{
X = args.X,
Y = args.Y,
BatchSize = args.BatchSize,
Steps = args.StepsPerEpoch,
Epochs = args.Epochs - args.InitialEpoch,
Shuffle = args.Shuffle,
MaxQueueSize = args.MaxQueueSize,
Worker = args.Workers,
UseMultiprocessing = args.UseMultiprocessing,
Model = args.Model
});
_adapter = new TensorLikeDataAdapter(new DataAdapterArgs
{
X = args.X,
Y = args.Y,
BatchSize = args.BatchSize,
Steps = args.StepsPerEpoch,
Epochs = args.Epochs - args.InitialEpoch,
Shuffle = args.Shuffle,
MaxQueueSize = args.MaxQueueSize,
Worker = args.Workers,
UseMultiprocessing = args.UseMultiprocessing,
Model = args.Model
});
}
else
{
_adapter = new DatasetAdapter(new DataAdapterArgs
{
Dataset = args.Dataset,
BatchSize = args.BatchSize,
Steps = args.StepsPerEpoch,
Epochs = args.Epochs - args.InitialEpoch,
Shuffle = args.Shuffle,
MaxQueueSize = args.MaxQueueSize,
Worker = args.Workers,
UseMultiprocessing = args.UseMultiprocessing,
Model = args.Model
});
}
_dataset = _adapter.GetDataset();
_inferred_steps = _infer_steps(args.StepsPerEpoch, _dataset);
_current_step = 0;
@@ -66,7 +85,8 @@ namespace Tensorflow.Keras.Engine.DataAdapters
if (adapter_steps > -1)
return adapter_steps;

throw new NotImplementedException("");
var size = dataset.dataset_cardinality();
return size.numpy();
}

public IEnumerable<(int, OwnedIterator)> enumerate_epochs()


+ 35
- 0
src/TensorFlowNET.Keras/Engine/DataAdapters/DatasetAdapter.cs View File

@@ -0,0 +1,35 @@
using System;
using System.Collections.Generic;
using System.Text;
using Tensorflow.Keras.ArgsDefinition;

namespace Tensorflow.Keras.Engine.DataAdapters
{
public class DatasetAdapter : IDataAdapter
{
DataAdapterArgs args;
IDatasetV2 _dataset => args.Dataset;
public DatasetAdapter(DataAdapterArgs args)
{
this.args = args;
}

public bool CanHandle(Tensor x, Tensor y = null)
{
throw new NotImplementedException();
}

public IDatasetV2 GetDataset()
=> _dataset;

public int GetSize()
=> -1;

public (Tensor, Tensor) Expand1d(Tensor x, Tensor y)
{
if (y.TensorShape.ndim == 1)
y = array_ops.expand_dims(y, axis: -1);
return (x, y);
}
}
}

+ 2
- 2
src/TensorFlowNET.Keras/Engine/DataAdapters/TensorLikeDataAdapter.cs View File

@@ -9,14 +9,14 @@ namespace Tensorflow.Keras.Engine.DataAdapters
/// </summary>
public class TensorLikeDataAdapter : IDataAdapter
{
TensorLikeDataAdapterArgs args;
DataAdapterArgs args;
int _size;
int _batch_size;
int num_samples;
int num_full_batches;
IDatasetV2 _dataset;

public TensorLikeDataAdapter(TensorLikeDataAdapterArgs args)
public TensorLikeDataAdapter(DataAdapterArgs args)
{
this.args = args;
_process_tensorlike();


+ 3
- 1
src/TensorFlowNET.Keras/Engine/Functional.cs View File

@@ -39,10 +39,12 @@ namespace Tensorflow.Keras.Engine
_input_coordinates = new List<KerasHistory>();
_output_coordinates = new List<KerasHistory>();
tensor_usage_count = new Dictionary<int, int>();
if (this is Sequential)
return;
_init_graph_network(inputs, outputs);
}

void _init_graph_network(Tensors inputs, Tensors outputs)
protected void _init_graph_network(Tensors inputs, Tensors outputs)
{
_is_graph_network = true;
this.inputs = inputs;


+ 3
- 7
src/TensorFlowNET.Keras/Engine/Model.Compile.cs View File

@@ -9,10 +9,6 @@ namespace Tensorflow.Keras.Engine
{
LossesContainer compiled_loss;
MetricsContainer compiled_metrics;
public void compile(string optimizerName, ILossFunc lossName)
{
throw new NotImplementedException("");
}

public void compile(ILossFunc loss, OptimizerV2 optimizer, string[] metrics)
{
@@ -29,12 +25,12 @@ namespace Tensorflow.Keras.Engine
this.loss = loss;
}

public void compile(string optimizerName, string lossName)
public void compile(string optimizer, string loss, string[] metrics)
{
switch (optimizerName)
switch (optimizer)
{
case "rmsprop":
optimizer = new RMSprop(new RMSpropArgs
this.optimizer = new RMSprop(new RMSpropArgs
{

});


+ 44
- 0
src/TensorFlowNET.Keras/Engine/Model.Fit.cs View File

@@ -68,5 +68,49 @@ namespace Tensorflow.Keras.Engine
Console.WriteLine($"epoch: {epoch + 1}, " + string.Join(", ", results.Select(x => $"{x.Item1}: {(float)x.Item2}")));
}
}

public void fit(IDatasetV2 dataset,
IDatasetV2 validation_data = null,
int batch_size = -1,
int epochs = 1,
int verbose = 1,
float validation_split = 0f,
bool shuffle = true,
int initial_epoch = 0,
int max_queue_size = 10,
int workers = 1,
bool use_multiprocessing = false)
{
data_handler = new DataHandler(new DataHandlerArgs
{
Dataset = dataset,
BatchSize = batch_size,
InitialEpoch = initial_epoch,
Epochs = epochs,
Shuffle = shuffle,
MaxQueueSize = max_queue_size,
Workers = workers,
UseMultiprocessing = use_multiprocessing,
Model = this,
StepsPerExecution = _steps_per_execution
});

stop_training = false;
_train_counter.assign(0);
Console.WriteLine($"Training...");
foreach (var (epoch, iterator) in data_handler.enumerate_epochs())
{
// reset_metrics();
// callbacks.on_epoch_begin(epoch)
// data_handler.catch_stop_iteration();
IEnumerable<(string, Tensor)> results = null;
foreach (var step in data_handler.steps())
{
// callbacks.on_train_batch_begin(step)
results = step_function(iterator);
}
Console.WriteLine($"epoch: {epoch + 1}, " + string.Join(", ", results.Select(x => $"{x.Item1}: {(float)x.Item2}")));
}
}
}
}

+ 1
- 1
src/TensorFlowNET.Keras/Engine/Node.cs View File

@@ -35,7 +35,7 @@ namespace Tensorflow.Keras.Engine

public int[] node_indices;
public int[] tensor_indices;
public Tensors input_tensors => args.InputTensors;
public Tensors input_tensors => is_input ? Outputs : args.InputTensors;
public Tensors Outputs => args.Outputs;
public TensorShape[] input_shapes;
public TensorShape[] output_shapes;


+ 30
- 35
src/TensorFlowNET.Keras/Engine/Sequential.cs View File

@@ -17,6 +17,7 @@
using System.Collections.Generic;
using Tensorflow.Keras.ArgsDefinition;
using Tensorflow.Keras.Layers;
using Tensorflow.Keras.Utils;
using static Tensorflow.KerasApi;

namespace Tensorflow.Keras.Engine
@@ -25,36 +26,40 @@ namespace Tensorflow.Keras.Engine
/// `Sequential` groups a linear stack of layers into a `tf.keras.Model`.
/// `Sequential` provides training and inference features on this model.
/// </summary>
public class Sequential : Model
public class Sequential : Functional
{
SequentialArgs args;
bool _is_graph_network;
Tensor inputs;
Tensor outputs;
bool computeOutputAndMaskJointly;
bool autoTrackSubLayers;
TensorShape inferredInputShape;
bool hasExplicitInputShape;
TF_DataType inputDType;
List<ILayer> layers => args.Layers;
public TensorShape output_shape => outputs.TensorShape;
Tensors inputs;
Tensors outputs;
bool _compute_output_and_mask_jointly;
bool _auto_track_sub_layers;
TensorShape _inferred_input_shape;
bool _has_explicit_input_shape;
TF_DataType _input_dtype;
public TensorShape output_shape => outputs[0].TensorShape;
bool built = false;

public Sequential(SequentialArgs args)
: base(new ModelArgs
{
Name = args.Name
})
: base(args.Inputs, args.Outputs, name: args.Name)
{
this.args = args;
if (args.Layers == null)
args.Layers = new List<ILayer>();
// SupportsMasking = true;
computeOutputAndMaskJointly = true;
autoTrackSubLayers = false;
hasExplicitInputShape = false;
_compute_output_and_mask_jointly = true;
_auto_track_sub_layers = false;
_has_explicit_input_shape = false;
_is_graph_network = false;

// Add to the model any layers passed to the constructor.
if (args.Layers != null)
{
foreach (var layer in args.Layers)
add(layer as Layer);
}
}

public void add(Tensor tensor)
@@ -71,7 +76,7 @@ namespace Tensorflow.Keras.Engine
{
built = false;
var set_inputs = false;
if (layers.Count == 0)
if (_layers.Count == 0)
{
if (layer is InputLayer)
{
@@ -83,7 +88,7 @@ namespace Tensorflow.Keras.Engine
{
// Instantiate an input layer.
var x = keras.Input(
shape: layer.BatchInputShape,
batch_input_shape: layer.BatchInputShape,
dtype: layer.DType,
name: layer.Name + "_input");

@@ -99,36 +104,26 @@ namespace Tensorflow.Keras.Engine
{
// If an input layer (placeholder) is available.
outputs = layer.InboundNodes[^1].Outputs;
inputs = layer_utils.get_source_inputs(outputs[0]);
built = true;
_has_explicit_input_shape = true;
}

}
else if (outputs != null)
{
outputs = layer.Apply(outputs);
built = true;
}

if (set_inputs || _is_graph_network)
{
_init_graph_network(inputs, outputs);
_is_graph_network = true;
}
else
{

}
}

void _init_graph_network(Tensor inputs, Tensor outputs)
{
_is_graph_network = true;
this.inputs = inputs;
this.outputs = outputs;
built = true;
_map_graph_network(inputs, outputs);
}

void _map_graph_network(Tensor inputs, Tensor outputs)
{
layers.add(outputs.KerasHistory.Layer);
}
}
}

+ 5
- 0
src/TensorFlowNET.Keras/KerasInterface.cs View File

@@ -62,16 +62,21 @@ namespace Tensorflow.Keras
/// <returns></returns>
public Tensor Input(TensorShape shape = null,
int batch_size = -1,
TensorShape batch_input_shape = null,
TF_DataType dtype = TF_DataType.DtInvalid,
string name = null,
bool sparse = false,
bool ragged = false,
Tensor tensor = null)
{
if (batch_input_shape != null)
shape = batch_input_shape.dims[1..];

var args = new InputLayerArgs
{
Name = name,
InputShape = shape,
BatchInputShape = batch_input_shape,
BatchSize = batch_size,
DType = dtype,
Sparse = sparse,


+ 5
- 0
src/TensorFlowNET.Keras/Layers/Rescaling/Rescaling.cs View File

@@ -23,5 +23,10 @@ namespace Tensorflow.Keras.Layers
offset = math_ops.cast(args.Offset, args.DType);
return math_ops.cast(inputs, args.DType) * scale + offset;
}

public override TensorShape ComputeOutputShape(TensorShape input_shape)
{
return input_shape;
}
}
}

+ 24
- 1
src/TensorFlowNET.Keras/Layers/Reshaping/Flatten.cs View File

@@ -1,4 +1,5 @@
using System;
using Tensorflow.Framework;
using Tensorflow.Keras.ArgsDefinition;
using Tensorflow.Keras.Engine;
using Tensorflow.Keras.Utils;
@@ -15,6 +16,7 @@ namespace Tensorflow.Keras.Layers
public Flatten(FlattenArgs args)
: base(args)
{
this.args = args;
args.DataFormat = conv_utils.normalize_data_format(args.DataFormat);
input_spec = new InputSpec(min_ndim: 1);
_channels_first = args.DataFormat == "channels_first";
@@ -31,8 +33,29 @@ namespace Tensorflow.Keras.Layers
{
return array_ops.reshape(inputs, new[] { inputs.shape[0], -1 });
}
else
{
var input_shape = inputs.shape;
var rank = inputs.shape.rank;
if (rank == 1)
return array_ops.expand_dims(inputs, axis: 1);
var batch_dim = tensor_shape.dimension_value(input_shape[0]);
if (batch_dim != -1)
{
return array_ops.reshape(inputs, new[] { batch_dim, -1 });
}

throw new NotImplementedException("");
var non_batch_dims = ((int[])input_shape)[1..];
var num = 1;
if (non_batch_dims.Length > 0)
{
for (var i = 0; i < non_batch_dims.Length; i++)
{
num *= non_batch_dims[i];
}
}
return array_ops.reshape(inputs, new[] { inputs.shape[0], num });
}
}
}
}

+ 1
- 1
src/TensorFlowNET.Keras/Preprocessings/Preprocessing.paths_and_labels_to_dataset.cs View File

@@ -31,7 +31,7 @@ namespace Tensorflow.Keras
img = tf.image.decode_image(
img, channels: num_channels, expand_animations: false);
img = tf.image.resize_images_v2(img, image_size, method: interpolation);
img.set_shape((image_size[0], image_size[1], num_channels));
// img.set_shape((image_size[0], image_size[1], num_channels));
return img;
}
}


+ 29
- 0
src/TensorFlowNET.Keras/Utils/layer_utils.cs View File

@@ -187,5 +187,34 @@ namespace Tensorflow.Keras.Utils
var total = weight_shapes.Select(p => (int)np.prod(p.dims)).Sum();
return total;
}

public static Tensors get_source_inputs(Tensor tensor, ILayer layer = null, int node_index = -1)
{
if (layer == null)
(layer, node_index, _) = tensor.KerasHistory;
if (layer.InboundNodes == null || layer.InboundNodes.Count == 0)
return tensor;
else
{
var node = layer.InboundNodes[node_index];
if (node.is_input)
return node.input_tensors;
else
{
var source_tensors = new List<Tensor>();
foreach (var _layer in node.iterate_inbound())
{
(layer, node_index, tensor) = (_layer.Item1, _layer.Item2, _layer.Item4);
var previous_sources = get_source_inputs(tensor, layer, node_index);
foreach(var x in previous_sources)
{
// should be check if exist?
source_tensors.append(x);
}
}
return source_tensors;
}
}
}
}
}

+ 4
- 2
tensorflowlib/README.md View File

@@ -24,7 +24,7 @@ More information about [System.Drawing on Linux](<https://www.hanselman.com/blog
Before running verify you installed CUDA and cuDNN (TensorFlow v1.15 is compatible with CUDA v10.0 and cuDNN v7.4 , TensorFlow v2.x is compatible with CUDA v10.2 and cuDNN v7.65), and make sure the corresponding cuda version is compatible.

#### Mac OS
There is no GPU support for macOS.
There is no GPU support for macOS, in the future TensorFlow will support [Apple M1 chip](https://github.com/apple/tensorflow_macos).

#### GPU for Windows

@@ -37,9 +37,11 @@ PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU
PM> Install-Package SciSharp.TensorFlow.Redist-Linux-GPU
```

Since NuGet limits file size for 250M, we can't ship Linux GPU version as NuGet, you can download the library from [Google TensorFlow Storage](https://storage.googleapis.com/tensorflow).

### Download prebuild binary manually

Tensorflow packages are built nightly and uploaded to GCS for all supported platforms. They are uploaded to the [libtensorflow-nightly](https://www.tensorflow.org/install/lang_c) GCS bucket and are indexed by operating system and date built.
TensorFlow packages are built nightly and uploaded to GCS for all supported platforms. They are uploaded to the [libtensorflow-nightly](https://www.tensorflow.org/install/lang_c) GCS bucket and are indexed by operating system and date built.


### Build from source for Windows


+ 1
- 1
test/TensorFlowNET.UnitTest/ImageTest.cs View File

@@ -28,7 +28,7 @@ namespace TensorFlowNET.UnitTest.Basics
public void decode_image()
{
var img = tf.image.decode_image(contents);
Assert.AreEqual(img.name, "decode_image/cond_jpeg/Merge:0");
Assert.AreEqual(img.name, "decode_image/Identity:0");
}

[TestMethod]


+ 1
- 1
test/TensorFlowNET.UnitTest/Keras/LayersTest.cs View File

@@ -57,7 +57,7 @@ namespace TensorFlowNET.UnitTest.Keras
{ 2, 3, 4, 5 },
{ 3, 4, 5, 6 }
});
model.compile("rmsprop", "mse");
// model.compile("rmsprop", "mse");
var output_array = model.predict(input_array);
Assert.AreEqual((32, 10, 64), output_array.TensorShape);
}


+ 2
- 2
test/TensorFlowNET.UnitTest/Tensorflow.UnitTest.csproj View File

@@ -48,10 +48,10 @@
<ItemGroup>
<PackageReference Include="FluentAssertions" Version="5.10.3" />
<PackageReference Include="MethodBoundaryAspect.Fody" Version="2.0.138" />
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.7.1" />
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.8.3" />
<PackageReference Include="MSTest.TestAdapter" Version="2.1.2" />
<PackageReference Include="MSTest.TestFramework" Version="2.1.2" />
<PackageReference Include="SciSharp.TensorFlow.Redist" Version="2.3.0" />
<PackageReference Include="SciSharp.TensorFlow.Redist" Version="2.3.1" />
</ItemGroup>

<ItemGroup>


Loading…
Cancel
Save