You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

DatasetTest.cs 6.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using System;
  3. using System.Linq;
  4. using static Tensorflow.Binding;
  5. using static Tensorflow.KerasApi;
  6. namespace TensorFlowNET.UnitTest.Dataset
  7. {
  8. [TestClass]
  9. public class DatasetTest : EagerModeTestBase
  10. {
  11. [TestMethod]
  12. public void Range()
  13. {
  14. int iStep = 0;
  15. long value = 0;
  16. var dataset = tf.data.Dataset.range(3);
  17. foreach (var (step, item) in enumerate(dataset))
  18. {
  19. Assert.AreEqual(iStep, step);
  20. iStep++;
  21. Assert.AreEqual(value, (long)item.Item1);
  22. value++;
  23. }
  24. }
  25. [TestMethod]
  26. public void Prefetch()
  27. {
  28. int iStep = 0;
  29. long value = 1;
  30. var dataset = tf.data.Dataset.range(1, 5, 2);
  31. dataset = dataset.prefetch(2);
  32. foreach (var (step, item) in enumerate(dataset))
  33. {
  34. Assert.AreEqual(iStep, step);
  35. iStep++;
  36. Assert.AreEqual(value, (long)item.Item1);
  37. value += 2;
  38. }
  39. }
  40. [TestMethod]
  41. public void FromTensorSlices()
  42. {
  43. var X = tf.constant(new[] { 2013, 2014, 2015, 2016, 2017 });
  44. var Y = tf.constant(new[] { 12000, 14000, 15000, 16500, 17500 });
  45. var dataset = tf.data.Dataset.from_tensor_slices(X, Y);
  46. int n = 0;
  47. foreach (var (item_x, item_y) in dataset)
  48. {
  49. print($"x:{item_x.numpy()},y:{item_y.numpy()}");
  50. n += 1;
  51. }
  52. Assert.AreEqual(5, n);
  53. }
  54. [TestMethod]
  55. public void FromTensor()
  56. {
  57. var X = new[] { 2013, 2014, 2015, 2016, 2017 };
  58. var dataset = tf.data.Dataset.from_tensors(X);
  59. int n = 0;
  60. foreach (var x in dataset)
  61. {
  62. Assert.IsTrue(X.SequenceEqual(x.Item1.ToArray<int>()));
  63. n += 1;
  64. }
  65. Assert.AreEqual(1, n);
  66. }
  67. [TestMethod]
  68. public void Shard()
  69. {
  70. long value = 0;
  71. var dataset1 = tf.data.Dataset.range(10);
  72. var dataset2 = dataset1.shard(num_shards: 3, index: 0);
  73. foreach (var item in dataset2)
  74. {
  75. Assert.AreEqual(value, (long)item.Item1);
  76. value += 3;
  77. }
  78. value = 1;
  79. var dataset3 = dataset1.shard(num_shards: 3, index: 1);
  80. foreach (var item in dataset3)
  81. {
  82. Assert.AreEqual(value, (long)item.Item1);
  83. value += 3;
  84. }
  85. }
  86. [TestMethod]
  87. public void Skip()
  88. {
  89. long value = 7;
  90. var dataset = tf.data.Dataset.range(10);
  91. dataset = dataset.skip(7);
  92. foreach (var item in dataset)
  93. {
  94. Assert.AreEqual(value, (long)item.Item1);
  95. value++;
  96. }
  97. }
  98. [TestMethod]
  99. public void Map()
  100. {
  101. long value = 0;
  102. var dataset = tf.data.Dataset.range(0, 2);
  103. dataset = dataset.map(x => x[0] + 10);
  104. foreach (var item in dataset)
  105. {
  106. Assert.AreEqual(value + 10, (long)item.Item1);
  107. value++;
  108. }
  109. }
  110. [TestMethod]
  111. public void Cache()
  112. {
  113. long value = 0;
  114. var dataset = tf.data.Dataset.range(5);
  115. dataset = dataset.cache();
  116. foreach (var item in dataset)
  117. {
  118. Assert.AreEqual(value, (long)item.Item1);
  119. value++;
  120. }
  121. }
  122. [TestMethod]
  123. public void Cardinality()
  124. {
  125. var dataset = tf.data.Dataset.range(10);
  126. var cardinality = dataset.cardinality();
  127. Assert.AreEqual(cardinality.numpy(), 10L);
  128. dataset = dataset.map(x => x[0] + 1);
  129. cardinality = dataset.cardinality();
  130. Assert.AreEqual(cardinality.numpy(), 10L);
  131. }
  132. [TestMethod]
  133. public void CardinalityWithAutoTune()
  134. {
  135. var dataset = tf.data.Dataset.range(10);
  136. dataset = dataset.map(x => x, num_parallel_calls: -1);
  137. var cardinality = dataset.cardinality();
  138. Assert.AreEqual(cardinality.numpy(), 10L);
  139. }
  140. [TestMethod]
  141. public void CardinalityWithRepeat()
  142. {
  143. var dataset = tf.data.Dataset.range(10);
  144. dataset = dataset.repeat();
  145. var cardinality = dataset.cardinality();
  146. Assert.IsTrue((cardinality == tf.data.INFINITE_CARDINALITY).numpy());
  147. dataset = dataset.filter(x => true);
  148. cardinality = dataset.cardinality();
  149. Assert.IsTrue((cardinality == tf.data.UNKNOWN_CARDINALITY).numpy());
  150. }
  151. [TestMethod]
  152. public void Shuffle()
  153. {
  154. tf.set_random_seed(1234);
  155. var dataset = tf.data.Dataset.range(3);
  156. var shuffled = dataset.shuffle(3);
  157. var zipped = tf.data.Dataset.zip(dataset, shuffled);
  158. bool allEqual = true;
  159. foreach (var item in zipped)
  160. {
  161. if (item.Item1 != item.Item2)
  162. allEqual = false;
  163. }
  164. Assert.IsFalse(allEqual);
  165. }
  166. [Ignore]
  167. [TestMethod]
  168. public void GetData()
  169. {
  170. var vocab_size = 20000; // Only consider the top 20k words
  171. var maxlen = 200; // Only consider the first 200 words of each movie review
  172. var dataset = keras.datasets.imdb.load_data(num_words: vocab_size);
  173. var x_train = dataset.Train.Item1;
  174. var y_train = dataset.Train.Item2;
  175. var x_val = dataset.Test.Item1;
  176. var y_val = dataset.Test.Item2;
  177. print(len(x_train) + "Training sequences");
  178. print(len(x_val) + "Validation sequences");
  179. //x_train = keras.preprocessing.sequence.pad_sequences((IEnumerable<int[]>)x_train, maxlen: maxlen);
  180. //x_val = keras.preprocessing.sequence.pad_sequences((IEnumerable<int[]>)x_val, maxlen: maxlen);
  181. }
  182. }
  183. }