|
|
@@ -19,7 +19,7 @@ namespace TensorFlowNET.UnitTest.Keras |
|
|
|
[TestMethod] |
|
|
|
public void Sequential() |
|
|
|
{ |
|
|
|
var model = tf.keras.models.Sequential(); |
|
|
|
var model = tf.keras.Sequential(); |
|
|
|
model.add(tf.keras.Input(shape: 16)); |
|
|
|
} |
|
|
|
|
|
|
@@ -29,7 +29,7 @@ namespace TensorFlowNET.UnitTest.Keras |
|
|
|
[TestMethod] |
|
|
|
public void Embedding() |
|
|
|
{ |
|
|
|
var model = new Sequential(); |
|
|
|
var model = tf.keras.Sequential(); |
|
|
|
var layer = tf.keras.layers.Embedding(1000, 64, input_length: 10); |
|
|
|
model.add(layer); |
|
|
|
// the model will take as input an integer matrix of size (batch, |
|
|
@@ -39,8 +39,8 @@ namespace TensorFlowNET.UnitTest.Keras |
|
|
|
// now model.output_shape == (None, 10, 64), where None is the batch |
|
|
|
// dimension. |
|
|
|
var input_array = np.random.randint(1000, size: (32, 10)); |
|
|
|
// model.compile("rmsprop", "mse"); |
|
|
|
// output_array = model.predict(input_array) |
|
|
|
model.compile("rmsprop", "mse"); |
|
|
|
var output_array = model.predict(input_array); |
|
|
|
} |
|
|
|
|
|
|
|
/// <summary> |
|
|
|