|
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using System;
- using System.Linq;
- using static Tensorflow.Binding;
- using static Tensorflow.KerasApi;
-
- namespace TensorFlowNET.UnitTest.Dataset
- {
- [TestClass]
- public class DatasetTest : EagerModeTestBase
- {
- [TestMethod]
- public void Range()
- {
- int iStep = 0;
- long value = 0;
-
- var dataset = tf.data.Dataset.range(3);
- foreach (var (step, item) in enumerate(dataset))
- {
- Assert.AreEqual(iStep, step);
- iStep++;
-
- Assert.AreEqual(value, (long)item.Item1);
- value++;
- }
- }
-
- [TestMethod]
- public void Prefetch()
- {
- int iStep = 0;
- long value = 1;
-
- var dataset = tf.data.Dataset.range(1, 5, 2);
- dataset = dataset.prefetch(2);
-
- foreach (var (step, item) in enumerate(dataset))
- {
- Assert.AreEqual(iStep, step);
- iStep++;
-
- Assert.AreEqual(value, (long)item.Item1);
- value += 2;
- }
- }
-
- [TestMethod]
- public void FromTensorSlices()
- {
- var X = tf.constant(new[] { 2013, 2014, 2015, 2016, 2017 });
- var Y = tf.constant(new[] { 12000, 14000, 15000, 16500, 17500 });
-
- var dataset = tf.data.Dataset.from_tensor_slices(X, Y);
- int n = 0;
- foreach (var (item_x, item_y) in dataset)
- {
- print($"x:{item_x.numpy()},y:{item_y.numpy()}");
- n += 1;
- }
- Assert.AreEqual(5, n);
- }
-
- [TestMethod]
- public void FromTensor()
- {
- var X = new[] { 2013, 2014, 2015, 2016, 2017 };
-
- var dataset = tf.data.Dataset.from_tensors(X);
- int n = 0;
- foreach (var x in dataset)
- {
- Assert.IsTrue(X.SequenceEqual(x.Item1.ToArray<int>()));
- n += 1;
- }
- Assert.AreEqual(1, n);
- }
-
- [TestMethod]
- public void Shard()
- {
- long value = 0;
-
- var dataset1 = tf.data.Dataset.range(10);
- var dataset2 = dataset1.shard(num_shards: 3, index: 0);
-
- foreach (var item in dataset2)
- {
- Assert.AreEqual(value, (long)item.Item1);
- value += 3;
- }
-
- value = 1;
- var dataset3 = dataset1.shard(num_shards: 3, index: 1);
- foreach (var item in dataset3)
- {
- Assert.AreEqual(value, (long)item.Item1);
- value += 3;
- }
- }
-
- [TestMethod]
- public void Skip()
- {
- long value = 7;
-
- var dataset = tf.data.Dataset.range(10);
- dataset = dataset.skip(7);
-
- foreach (var item in dataset)
- {
- Assert.AreEqual(value, (long)item.Item1);
- value++;
- }
- }
-
- [TestMethod]
- public void Map()
- {
- long value = 0;
-
- var dataset = tf.data.Dataset.range(0, 2);
- dataset = dataset.map(x => x[0] + 10);
-
- foreach (var item in dataset)
- {
- Assert.AreEqual(value + 10, (long)item.Item1);
- value++;
- }
- }
-
- [TestMethod]
- public void Cache()
- {
- long value = 0;
-
- var dataset = tf.data.Dataset.range(5);
- dataset = dataset.cache();
-
- foreach (var item in dataset)
- {
- Assert.AreEqual(value, (long)item.Item1);
- value++;
- }
- }
-
- [TestMethod]
- public void Cardinality()
- {
- var dataset = tf.data.Dataset.range(10);
- var cardinality = dataset.cardinality();
- Assert.AreEqual(cardinality.numpy(), 10L);
- dataset = dataset.map(x => x[0] + 1);
- cardinality = dataset.cardinality();
- Assert.AreEqual(cardinality.numpy(), 10L);
- }
-
- [TestMethod]
- public void CardinalityWithAutoTune()
- {
- var dataset = tf.data.Dataset.range(10);
- dataset = dataset.map(x => x, num_parallel_calls: -1);
- var cardinality = dataset.cardinality();
- Assert.AreEqual(cardinality.numpy(), 10L);
- }
-
- [TestMethod]
- public void CardinalityWithRepeat()
- {
- var dataset = tf.data.Dataset.range(10);
- dataset = dataset.repeat();
- var cardinality = dataset.cardinality();
- Assert.IsTrue((cardinality == tf.data.INFINITE_CARDINALITY).numpy());
-
- dataset = dataset.filter(x => true);
- cardinality = dataset.cardinality();
- Assert.IsTrue((cardinality == tf.data.UNKNOWN_CARDINALITY).numpy());
- }
-
- [TestMethod]
- public void Shuffle()
- {
- tf.set_random_seed(1234);
-
- var dataset = tf.data.Dataset.range(3);
- var shuffled = dataset.shuffle(3);
-
- var zipped = tf.data.Dataset.zip(dataset, shuffled);
-
- bool allEqual = true;
- foreach (var item in zipped)
- {
- if (item.Item1 != item.Item2)
- allEqual = false;
- }
-
- Assert.IsFalse(allEqual);
- }
- [Ignore]
- [TestMethod]
- public void GetData()
- {
- var vocab_size = 20000; // Only consider the top 20k words
- var maxlen = 200; // Only consider the first 200 words of each movie review
- var dataset = keras.datasets.imdb.load_data(num_words: vocab_size);
- var x_train = dataset.Train.Item1;
- var y_train = dataset.Train.Item2;
- var x_val = dataset.Test.Item1;
- var y_val = dataset.Test.Item2;
- print(len(x_train) + "Training sequences");
- print(len(x_val) + "Validation sequences");
- //x_train = keras.preprocessing.sequence.pad_sequences((IEnumerable<int[]>)x_train, maxlen: maxlen);
- //x_val = keras.preprocessing.sequence.pad_sequences((IEnumerable<int[]>)x_val, maxlen: maxlen);
- }
- }
- }
|