You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

LayersTest.cs 4.6 kB

4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using NumSharp;
  3. using Tensorflow;
  4. using static Tensorflow.Binding;
  5. using static Tensorflow.KerasApi;
  6. namespace TensorFlowNET.Keras.UnitTest
  7. {
  8. /// <summary>
  9. /// https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers
  10. /// </summary>
  11. [TestClass]
  12. public class LayersTest : EagerModeTestBase
  13. {
  14. [TestMethod]
  15. public void Sequential()
  16. {
  17. var model = keras.Sequential();
  18. model.add(keras.Input(shape: 16));
  19. }
  20. [TestMethod]
  21. public void Functional()
  22. {
  23. var layers = keras.layers;
  24. var inputs = keras.Input(shape: 784);
  25. Assert.AreEqual((-1, 784), inputs.TensorShape);
  26. var dense = layers.Dense(64, activation: keras.activations.Relu);
  27. var x = dense.Apply(inputs);
  28. x = layers.Dense(64, activation: keras.activations.Relu).Apply(x);
  29. var outputs = layers.Dense(10).Apply(x);
  30. var model = keras.Model(inputs, outputs, name: "mnist_model");
  31. model.summary();
  32. }
  33. /// <summary>
  34. /// Custom layer test, used in Dueling DQN
  35. /// </summary>
  36. [TestMethod, Ignore]
  37. public void TensorFlowOpLayer()
  38. {
  39. var layers = keras.layers;
  40. var inputs = layers.Input(shape: 24);
  41. var x = layers.Dense(128, activation: "relu").Apply(inputs);
  42. var value = layers.Dense(24).Apply(x);
  43. var adv = layers.Dense(1).Apply(x);
  44. var mean = adv - tf.reduce_mean(adv, axis: 1, keepdims: true);
  45. adv = layers.Subtract().Apply((adv, mean));
  46. var outputs = layers.Add().Apply((value, adv));
  47. var model = keras.Model(inputs, outputs);
  48. model.compile(optimizer: keras.optimizers.RMSprop(0.001f),
  49. loss: keras.losses.MeanSquaredError(),
  50. metrics: new[] { "acc" });
  51. model.summary();
  52. Assert.AreEqual(model.Layers.Count, 8);
  53. var result = model.predict(tf.constant(np.arange(24).astype(np.float32)[np.newaxis, Slice.All]));
  54. Assert.AreEqual(result.shape, new TensorShape(1, 24));
  55. model.fit(np.arange(24).astype(np.float32)[np.newaxis, Slice.All], np.arange(24).astype(np.float32)[np.newaxis, Slice.All], verbose: 0);
  56. }
  57. /// <summary>
  58. /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
  59. /// </summary>
  60. [TestMethod, Ignore]
  61. public void Embedding()
  62. {
  63. var model = keras.Sequential();
  64. var layer = keras.layers.Embedding(7, 2, input_length: 4);
  65. model.add(layer);
  66. // the model will take as input an integer matrix of size (batch,
  67. // input_length).
  68. // the largest integer (i.e. word index) in the input should be no larger
  69. // than 999 (vocabulary size).
  70. // now model.output_shape == (None, 10, 64), where None is the batch
  71. // dimension.
  72. var input_array = np.array(new int[,]
  73. {
  74. { 1, 2, 3, 4 },
  75. { 2, 3, 4, 5 },
  76. { 3, 4, 5, 6 }
  77. });
  78. // model.compile("rmsprop", "mse");
  79. var output_array = model.predict(input_array);
  80. Assert.AreEqual((32, 10, 64), output_array.shape);
  81. }
  82. /// <summary>
  83. /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
  84. /// </summary>
  85. [TestMethod]
  86. public void Dense()
  87. {
  88. // Create a `Sequential` model and add a Dense layer as the first layer.
  89. var model = keras.Sequential();
  90. model.add(keras.Input(shape: 16));
  91. model.add(keras.layers.Dense(32, activation: keras.activations.Relu));
  92. // Now the model will take as input arrays of shape (None, 16)
  93. // and output arrays of shape (None, 32).
  94. // Note that after the first layer, you don't need to specify
  95. // the size of the input anymore:
  96. model.add(keras.layers.Dense(32));
  97. Assert.AreEqual((-1, 32), model.output_shape);
  98. }
  99. [TestMethod]
  100. [Ignore]
  101. public void SimpleRNN()
  102. {
  103. var inputs = np.random.rand(32, 10, 8).astype(np.float32);
  104. var simple_rnn = keras.layers.SimpleRNN(4);
  105. var output = simple_rnn.Apply(inputs);
  106. Assert.AreEqual((32, 4), output.shape);
  107. }
  108. }
  109. }