|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- TensorFlow.NET pack all required libraries in architecture-specific assemblies folders per NuGet standard.
-
- ```powershell
- PM> Install-Package TensorFlow.NET
- PM> Install-Package SciSharp.TensorFlow.Redist
- ```
-
- Add `<RuntimeIdentifier>win-x64</RuntimeIdentifier>` to a `PropertyGroup` in your `.csproj` when targeting `.NET 472`.
-
- ### Run in Linux
-
- Download Linux pre-built library and unzip `libtensorflow.so` and `libtensorflow_framework.so` into current running directory.
-
- To run image recognition in Linux, please ensure some prerequisite libraries is install.
-
- ```shell
- sudo apt install libc6-dev
- sudo apt install libgdiplus
- ```
-
- More information about [System.Drawing on Linux](<https://www.hanselman.com/blog/HowDoYouUseSystemDrawingInNETCore.aspx>).
-
- ### Run TensorFlow with GPU
- Before running verify you installed CUDA and cuDNN (TensorFlow v1.15 is compatible with CUDA v10.0 and cuDNN v7.4 , TensorFlow v2.x is compatible with CUDA v10.2 and cuDNN v7.65), and make sure the corresponding cuda version is compatible.
-
- #### Mac OS
- There is no GPU support for macOS, in the future TensorFlow will support [Apple M1 chip](https://github.com/apple/tensorflow_macos).
-
- #### GPU for Windows
-
- ```powershell
- PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU
- ```
-
- #### GPU for Linux
- ```powershell
- PM> Install-Package SciSharp.TensorFlow.Redist-Linux-GPU
- ```
-
- Since NuGet limits file size for 250M, we can't ship Linux GPU version as NuGet, you can download the library from [Google TensorFlow Storage](https://storage.googleapis.com/tensorflow).
-
- ### Download prebuild binary manually
-
- TensorFlow packages are built nightly and uploaded to GCS for all supported platforms. They are uploaded to the [libtensorflow-nightly](https://www.tensorflow.org/install/lang_c) GCS bucket and are indexed by operating system and date built.
-
-
- ### Build from source for Windows
-
- https://www.tensorflow.org/install/source_windows
-
- Download [Bazel 2.0.0](https://github.com/bazelbuild/bazel/releases/tag/2.0.0) to build tensorflow2.x. We build customized binary to export c_api from this [fork](https://github.com/SciSharp/tensorflow).
-
- Set ENV `BAZEL_VC=C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC`.
-
- `pacman -S git patch unzip`
-
- 1. Build static library
-
- `bazel build --output_base=C:/tmp/tfcompilation --config=opt //tensorflow:tensorflow`
-
- 2. Build pip package
-
- `bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package`
-
- 3. Generate pip installation file
-
- `bazel-bin\tensorflow\tools\pip_package\build_pip_package C:/tmp/tensorflow_pkg`
-
- 4. Install from local wheel file.
-
- `pip install C:/tmp/tensorflow_pkg/tensorflow-1.15.0-cp36-cp36m-win_amd64.whl`
-
- ### Build from source for MacOS
-
- ```shell
- $ cd /usr/local/lib/bazel/bin
- $ curl -LO https://release.bazel.build/3.7.2/release/bazel-3.7.2-darwin-x86_64
- $ chmod +x bazel-3.7.2-darwin-x86_64
- $ cd ~/Projects/tensorflow
- $ bazel build --config=opt //tensorflow:tensorflow
- ```
-
- ### Build specific version for tf.net
-
- https://github.com/SciSharp/tensorflow
-
- For Linux version, these APIs symbols should also be put into `tensorflow/c/version_script.lds` to be exported.
- Please refer to commit `https://github.com/SciSharp/tensorflow/commit/58122da06be3e7707500ad889dfd5c760a3e0424`
|