@@ -75,7 +75,7 @@ namespace Tensorflow | |||
/// <param name="time_major"></param> | |||
/// <returns>A pair (outputs, state)</returns> | |||
public static (Tensor, Tensor) dynamic_rnn(RNNCell cell, Tensor inputs, | |||
int? sequence_length = null, TF_DataType dtype = TF_DataType.DtInvalid, | |||
Tensor sequence_length = null, TF_DataType dtype = TF_DataType.DtInvalid, | |||
int? parallel_iterations = null, bool swap_memory = false, bool time_major = false) | |||
=> rnn.dynamic_rnn(cell, inputs, sequence_length: sequence_length, dtype: dtype, | |||
parallel_iterations: parallel_iterations, swap_memory: swap_memory, | |||
@@ -24,7 +24,8 @@ namespace Tensorflow | |||
int _num_units; | |||
Func<Tensor, string, Tensor> _activation; | |||
protected override int state_size => _num_units; | |||
public override int state_size => _num_units; | |||
public override int output_size => _num_units; | |||
public BasicRNNCell(int num_units, | |||
Func<Tensor, string, Tensor> activation = null, | |||
@@ -24,15 +24,15 @@ namespace Tensorflow.Operations | |||
{ | |||
internal class rnn | |||
{ | |||
public static (Tensor, Tensor) dynamic_rnn(RNNCell cell, Tensor inputs, | |||
int? sequence_length = null, Tensor initial_state = null, | |||
public static (Tensor, Tensor) dynamic_rnn(RNNCell cell, Tensor inputs_tensor, | |||
Tensor sequence_length = null, Tensor initial_state = null, | |||
TF_DataType dtype = TF_DataType.DtInvalid, | |||
int? parallel_iterations = null, bool swap_memory = false, bool time_major = false) | |||
{ | |||
with(tf.variable_scope("rnn"), scope => | |||
{ | |||
VariableScope varscope = scope; | |||
var flat_input = nest.flatten(inputs); | |||
var flat_input = nest.flatten(inputs_tensor); | |||
if (!time_major) | |||
{ | |||
@@ -42,24 +42,146 @@ namespace Tensorflow.Operations | |||
parallel_iterations = parallel_iterations ?? 32; | |||
if (sequence_length.HasValue) | |||
if (sequence_length != null) | |||
throw new NotImplementedException("dynamic_rnn sequence_length has value"); | |||
var batch_size = _best_effort_input_batch_size(flat_input); | |||
Tensor state = null; | |||
if (initial_state != null) | |||
{ | |||
var state = initial_state; | |||
} | |||
state = initial_state; | |||
else | |||
state = cell.get_initial_state(batch_size: batch_size, dtype: dtype); | |||
var inputs = nest.pack_sequence_as(structure: inputs_tensor, flat_sequence: flat_input); | |||
var (outputs, final_state) = _dynamic_rnn_loop( | |||
cell, | |||
inputs as Tensor, | |||
state, | |||
parallel_iterations: parallel_iterations.Value, | |||
swap_memory: swap_memory, | |||
sequence_length: sequence_length, | |||
dtype: dtype); | |||
}); | |||
throw new NotImplementedException(""); | |||
} | |||
/// <summary> | |||
/// Internal implementation of Dynamic RNN. | |||
/// </summary> | |||
/// <param name="cell"></param> | |||
/// <param name="inputs"></param> | |||
/// <param name="initial_state"></param> | |||
/// <param name="parallel_iterations"></param> | |||
/// <param name="swap_memory"></param> | |||
/// <param name="sequence_length"></param> | |||
/// <param name="dtype"></param> | |||
/// <returns></returns> | |||
private static (Tensor, Tensor) _dynamic_rnn_loop(RNNCell cell, Tensor inputs, Tensor initial_state, | |||
int parallel_iterations, bool swap_memory, Tensor sequence_length = null, TF_DataType dtype = TF_DataType.DtInvalid) | |||
{ | |||
var state = initial_state; | |||
var state_size = cell.state_size; | |||
var flat_input = nest.flatten(inputs); | |||
var flat_output_size = nest.flatten(cell.output_size); | |||
// Construct an initial output | |||
var input_shape = array_ops.shape(flat_input[0]); | |||
var time_steps = input_shape.slice(0); | |||
var batch_size = _best_effort_input_batch_size(flat_input); | |||
var inputs_got_shape = flat_input.Select(input_ => input_.TensorShape.with_rank_at_least(3)).ToArray(); | |||
var dims = inputs_got_shape[0].Dimensions.Take(2).ToArray(); | |||
var (const_time_steps, const_batch_size) = (dims[0], dims[1]); | |||
foreach(var shape in inputs_got_shape) | |||
{ | |||
if (shape[2] == -1) | |||
throw new ValueError("Input size (depth of inputs) must be accessible via shape inference," + | |||
" but saw value None."); | |||
var got_time_steps = shape.dims[0]; | |||
var got_batch_size = shape.dims[1]; | |||
if (const_time_steps != got_time_steps) | |||
throw new ValueError("Time steps is not the same for all the elements in the input in a " + | |||
"batch."); | |||
if (const_batch_size != got_batch_size) | |||
throw new ValueError("Batch_size is not the same for all the elements in the input."); | |||
} | |||
Func<int, Tensor> _create_zero_arrays = (size_) => | |||
{ | |||
var size = rnn_cell_impl._concat(batch_size, size_); | |||
return array_ops.zeros( | |||
array_ops.stack(size), dtype: _infer_state_dtype(dtype, state)); | |||
}; | |||
// Prepare dynamic conditional copying of state & output | |||
var flat_zero_output = flat_output_size.Select(output => _create_zero_arrays(output)).ToArray(); | |||
var zero_output = nest.pack_sequence_as(structure: cell.output_size, flat_sequence: flat_zero_output); | |||
Tensor min_sequence_length = null, max_sequence_length = null; | |||
if (sequence_length != null) | |||
{ | |||
min_sequence_length = math_ops.reduce_min(sequence_length); | |||
max_sequence_length = math_ops.reduce_max(sequence_length); | |||
} | |||
else | |||
{ | |||
max_sequence_length = time_steps; | |||
} | |||
var time = array_ops.constant(0, dtype: dtypes.int32, name: "time"); | |||
string base_name = null; | |||
with(ops.name_scope("dynamic_rnn"), scope => base_name = scope); | |||
Func<string, TensorShape, TF_DataType, Tensor> _create_ta = (name, element_shape, dtype_) => | |||
{ | |||
new TensorArray(dtype: dtype_, | |||
size: time_steps, | |||
element_shape: element_shape, | |||
tensor_array_name: base_name + name); | |||
throw new NotImplementedException(""); | |||
}; | |||
bool in_graph_mode = true; | |||
if (in_graph_mode) | |||
{ | |||
foreach(var (i, out_size) in enumerate(flat_output_size)) | |||
{ | |||
cell.get_initial_state(batch_size: batch_size, dtype: dtype); | |||
_create_ta($"output_{i}", | |||
new TensorShape(const_batch_size).concatenate( | |||
_maybe_tensor_shape_from_tensor(out_size)), | |||
_infer_state_dtype(dtype, state)); | |||
} | |||
}); | |||
} | |||
throw new NotImplementedException(""); | |||
} | |||
private static TensorShape _maybe_tensor_shape_from_tensor(Tensor shape) | |||
=> shape.TensorShape; | |||
private static TensorShape _maybe_tensor_shape_from_tensor(int shape) | |||
=> new TensorShape(shape); | |||
private static TF_DataType _infer_state_dtype(TF_DataType explicit_dtype, Tensor state) | |||
{ | |||
if (explicit_dtype != TF_DataType.DtInvalid) | |||
return explicit_dtype; | |||
throw new NotImplementedException("_infer_state_dtype"); | |||
} | |||
/// <summary> | |||
/// Transposes the batch and time dimensions of a Tensor. | |||
/// </summary> | |||
@@ -0,0 +1,57 @@ | |||
/***************************************************************************** | |||
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
Licensed under the Apache License, Version 2.0 (the "License"); | |||
you may not use this file except in compliance with the License. | |||
You may obtain a copy of the License at | |||
http://www.apache.org/licenses/LICENSE-2.0 | |||
Unless required by applicable law or agreed to in writing, software | |||
distributed under the License is distributed on an "AS IS" BASIS, | |||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
See the License for the specific language governing permissions and | |||
limitations under the License. | |||
******************************************************************************/ | |||
using System; | |||
namespace Tensorflow.Operations | |||
{ | |||
public class rnn_cell_impl | |||
{ | |||
public BasicRNNCell BasicRNNCell(int num_units) | |||
=> new BasicRNNCell(num_units); | |||
public static Tensor _concat(Tensor prefix, int suffix, bool @static = false) | |||
{ | |||
var p = prefix; | |||
var p_static = tensor_util.constant_value(prefix); | |||
if (p.NDims == 0) | |||
p = array_ops.expand_dims(p, 0); | |||
else if (p.NDims != 1) | |||
throw new ValueError($"prefix tensor must be either a scalar or vector, but saw tensor: {p}"); | |||
var s_tensor_shape = new TensorShape(suffix); | |||
var s_static = s_tensor_shape.NDim > -1 ? | |||
s_tensor_shape.Dimensions : | |||
null; | |||
var s = s_tensor_shape.is_fully_defined() ? | |||
constant_op.constant(s_tensor_shape.Dimensions, dtype: dtypes.int32) : | |||
null; | |||
if (@static) | |||
{ | |||
if (p_static is null) return null; | |||
var shape = new TensorShape(p_static).concatenate(s_static); | |||
throw new NotImplementedException("RNNCell _concat"); | |||
} | |||
else | |||
{ | |||
if (p is null || s is null) | |||
throw new ValueError($"Provided a prefix or suffix of None: {prefix} and {suffix}"); | |||
return array_ops.concat(new[] { p, s }, 0); | |||
} | |||
} | |||
} | |||
} |
@@ -15,6 +15,7 @@ | |||
******************************************************************************/ | |||
using System; | |||
using Tensorflow.Operations; | |||
using Tensorflow.Util; | |||
using static Tensorflow.Python; | |||
@@ -48,7 +49,9 @@ namespace Tensorflow | |||
/// difference between TF and Keras RNN cell. | |||
/// </summary> | |||
protected bool _is_tf_rnn_cell = false; | |||
protected virtual int state_size { get; } | |||
public virtual int state_size { get; } | |||
public virtual int output_size { get; } | |||
public RNNCell(bool trainable = true, | |||
string name = null, | |||
@@ -89,12 +92,18 @@ namespace Tensorflow | |||
private Tensor _zero_state_tensors(int state_size, Tensor batch_size, TF_DataType dtype) | |||
{ | |||
nest.map_structure(x => | |||
var output = nest.map_structure(s => | |||
{ | |||
throw new NotImplementedException(""); | |||
var c = rnn_cell_impl._concat(batch_size, s); | |||
var size = array_ops.zeros(c, dtype: dtype); | |||
var c_static = rnn_cell_impl._concat(batch_size, s, @static: true); | |||
size.set_shape(c_static); | |||
return size; | |||
}, state_size); | |||
throw new NotImplementedException(""); | |||
return output; | |||
} | |||
} | |||
} |
@@ -0,0 +1,54 @@ | |||
/***************************************************************************** | |||
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
Licensed under the Apache License, Version 2.0 (the "License"); | |||
you may not use this file except in compliance with the License. | |||
You may obtain a copy of the License at | |||
http://www.apache.org/licenses/LICENSE-2.0 | |||
Unless required by applicable law or agreed to in writing, software | |||
distributed under the License is distributed on an "AS IS" BASIS, | |||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
See the License for the specific language governing permissions and | |||
limitations under the License. | |||
******************************************************************************/ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Operations | |||
{ | |||
/// <summary> | |||
/// TensorArray is designed to hide an underlying implementation object | |||
/// and as such accesses many of that object's hidden fields. | |||
/// | |||
/// "Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays. | |||
/// This class is meant to be used with dynamic iteration primitives such as | |||
/// `while_loop` and `map_fn`. It supports gradient back-propagation via special | |||
/// "flow" control flow dependencies. | |||
/// </summary> | |||
public class TensorArray | |||
{ | |||
_GraphTensorArray _implementation; | |||
public TensorArray(TF_DataType dtype, Tensor size = null, bool? clear_after_read = null, bool? dynamic_size = null, | |||
string tensor_array_name = null, Tensor handle = null, Tensor flow = null, | |||
bool infer_shape = true, TensorShape element_shape = null, | |||
bool colocate_with_first_write_call = true, string name = null) | |||
{ | |||
_implementation = new _GraphTensorArray(dtype, | |||
size: size, | |||
dynamic_size: dynamic_size, | |||
clear_after_read: clear_after_read, | |||
tensor_array_name: tensor_array_name, | |||
handle: handle, | |||
flow: flow, | |||
infer_shape: infer_shape, | |||
element_shape: element_shape, | |||
colocate_with_first_write_call: colocate_with_first_write_call, | |||
name: name); | |||
} | |||
} | |||
} |
@@ -0,0 +1,102 @@ | |||
/***************************************************************************** | |||
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
Licensed under the Apache License, Version 2.0 (the "License"); | |||
you may not use this file except in compliance with the License. | |||
You may obtain a copy of the License at | |||
http://www.apache.org/licenses/LICENSE-2.0 | |||
Unless required by applicable law or agreed to in writing, software | |||
distributed under the License is distributed on an "AS IS" BASIS, | |||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
See the License for the specific language governing permissions and | |||
limitations under the License. | |||
******************************************************************************/ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using static Tensorflow.Python; | |||
namespace Tensorflow.Operations | |||
{ | |||
internal class _GraphTensorArray | |||
{ | |||
TF_DataType _dtype; | |||
/// <summary> | |||
/// Used to keep track of what tensors the TensorArray should be | |||
/// colocated with. We choose to colocate the TensorArray with the | |||
/// first tensor written to it. | |||
/// </summary> | |||
bool _colocate_with_first_write_call; | |||
bool _infer_shape; | |||
List<TensorShape> _element_shape; | |||
object _colocate_with; | |||
public _GraphTensorArray(TF_DataType dtype, Tensor size, bool? dynamic_size = null, | |||
bool? clear_after_read = null, string tensor_array_name = null, Tensor handle = null, Tensor flow = null, | |||
bool infer_shape = true, TensorShape element_shape = null, | |||
bool colocate_with_first_write_call = true, string name = null) | |||
{ | |||
clear_after_read = clear_after_read ?? true; | |||
dynamic_size = dynamic_size ?? false; | |||
_dtype = dtype; | |||
_colocate_with_first_write_call = colocate_with_first_write_call; | |||
if (colocate_with_first_write_call) | |||
_colocate_with = new Tensor[0]; | |||
// Record the current static shape for the array elements. The element | |||
// shape is defined either by `element_shape` or the shape of the tensor | |||
// of the first write. If `infer_shape` is true, all writes checks for | |||
// shape equality. | |||
if(element_shape == null) | |||
{ | |||
_infer_shape = infer_shape; | |||
_element_shape = new List<TensorShape> { }; | |||
} | |||
else | |||
{ | |||
_infer_shape = true; | |||
_element_shape = new List<TensorShape> { }; | |||
} | |||
with(ops.name_scope(name, "", new { handle, size, flow }), scope => | |||
{ | |||
if(handle != null) | |||
{ | |||
} | |||
else | |||
{ | |||
Func<(Tensor, Tensor)> create = () => gen_data_flow_ops.tensor_array_v3(size, | |||
dtype: dtype, | |||
element_shape: element_shape, | |||
identical_element_shapes: infer_shape, | |||
dynamic_size: dynamic_size.Value, | |||
clear_after_read: clear_after_read.Value, | |||
tensor_array_name: tensor_array_name, | |||
name: scope); | |||
// Construct the TensorArray with an empty device. The first | |||
// write into the TensorArray from a Tensor with a set device | |||
// will retroactively set the device value of this op. | |||
if (colocate_with_first_write_call) | |||
{ | |||
ops.colocate_with(ignore_existing: true); | |||
create(); | |||
} | |||
else | |||
{ | |||
} | |||
} | |||
}); | |||
} | |||
} | |||
} |
@@ -29,6 +29,17 @@ namespace Tensorflow | |||
public static Tensor prevent_gradient(Tensor input, string message = "", string name = null) | |||
=> gen_array_ops.prevent_gradient(input, message: message, name: name); | |||
internal static Tensor constant(object value, | |||
TF_DataType dtype = TF_DataType.DtInvalid, | |||
int[] shape = null, | |||
string name = "Const", | |||
bool verify_shape = false) => constant_op._constant_impl(value, | |||
dtype, | |||
shape, | |||
name, | |||
verify_shape: verify_shape, | |||
allow_broadcast: false); | |||
public static Tensor zeros(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) | |||
{ | |||
dtype = dtype.as_base_dtype(); | |||
@@ -27,5 +27,23 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
public static (Tensor, Tensor) tensor_array_v3(Tensor size, TF_DataType dtype = TF_DataType.DtInvalid, | |||
int[] element_shape = null, bool dynamic_size = false, bool clear_after_read = true, | |||
bool identical_element_shapes = false, string tensor_array_name = "tensor_array_name", string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("TensorArrayV3", name, new | |||
{ | |||
size, | |||
dtype, | |||
element_shape, | |||
dynamic_size, | |||
clear_after_read, | |||
identical_element_shapes, | |||
tensor_array_name | |||
}); | |||
return (null, null); | |||
} | |||
} | |||
} |
@@ -1,8 +0,0 @@ | |||
namespace Tensorflow.Operations | |||
{ | |||
public class rnn_cell_impl | |||
{ | |||
public BasicRNNCell BasicRNNCell(int num_units) | |||
=> new BasicRNNCell(num_units); | |||
} | |||
} |
@@ -110,6 +110,11 @@ namespace Tensorflow | |||
this.shape = shape.Dimensions; | |||
} | |||
public void set_shape(Tensor shape) | |||
{ | |||
this.shape = shape is null ? null : shape.shape; | |||
} | |||
public int[] dims => shape; | |||
/// <summary> | |||
@@ -9,6 +9,8 @@ namespace Tensorflow | |||
/// </summary> | |||
public class TensorShape : Shape | |||
{ | |||
public int[] dims => Dimensions; | |||
public TensorShape(TensorShapeProto proto) | |||
{ | |||
if (proto.UnknownRank) return; | |||
@@ -45,6 +47,29 @@ namespace Tensorflow | |||
throw new NotImplementedException("TensorShape is_compatible_with"); | |||
} | |||
public TensorShape with_rank_at_least(int rank) | |||
{ | |||
if (rank != this.NDim) | |||
throw new ValueError($"Shape {this} must have rank at least {rank}"); | |||
else | |||
return this; | |||
} | |||
/// <summary> | |||
/// Returns the concatenation of the dimension in `self` and `other`. | |||
/// </summary> | |||
/// <param name="other"></param> | |||
/// <returns></returns> | |||
public TensorShape concatenate(int[] other_) | |||
{ | |||
var other = new TensorShape(other_); | |||
if (NDim < 0 || other.NDim < 0) | |||
return new TensorShape(); | |||
else | |||
return new TensorShape(NDim + other.NDim); | |||
} | |||
public static implicit operator TensorShape(int[] dims) => new TensorShape(dims); | |||
public static implicit operator TensorShape((int, int) dims) => new TensorShape(dims.Item1, dims.Item2); | |||
public static implicit operator TensorShape((int, int, int) dims) => new TensorShape(dims.Item1, dims.Item2, dims.Item3); | |||
@@ -223,31 +223,27 @@ namespace Tensorflow.Util | |||
private static void _flatten_recursive<T>(T obj, List<T> list) | |||
{ | |||
if (obj is string) | |||
{ | |||
list.Add(obj); | |||
return; | |||
} | |||
if (obj is IDictionary) | |||
{ | |||
var dict = obj as IDictionary; | |||
foreach (var key in _sorted(dict)) | |||
_flatten_recursive((T)dict[key], list); | |||
return; | |||
} | |||
if (obj is NDArray) | |||
{ | |||
list.Add(obj); | |||
return; | |||
} | |||
if (obj is IEnumerable) | |||
switch(obj) | |||
{ | |||
var structure = obj as IEnumerable; | |||
foreach (var child in structure) | |||
_flatten_recursive((T)child, list); | |||
return; | |||
case IDictionary dict: | |||
foreach (var key in _sorted(dict)) | |||
_flatten_recursive((T)dict[key], list); | |||
break; | |||
case String str: | |||
list.Add(obj); | |||
break; | |||
case NDArray nd: | |||
list.Add(obj); | |||
break; | |||
case IEnumerable structure: | |||
foreach (var child in structure) | |||
_flatten_recursive((T)child, list); | |||
break; | |||
default: | |||
list.Add(obj); | |||
break; | |||
} | |||
list.Add(obj); | |||
} | |||
@@ -314,6 +314,11 @@ namespace Tensorflow | |||
return uid_number++; | |||
} | |||
public static void colocate_with(bool ignore_existing = false) | |||
{ | |||
_colocate_with_for_gradient(null, null, ignore_existing); | |||
} | |||
public static void colocate_with(Operation op, bool ignore_existing = false) | |||
{ | |||
_colocate_with_for_gradient(op, null, ignore_existing); | |||
@@ -40,7 +40,7 @@ Before running verify you installed CUDA and cuDNN | |||
https://www.tensorflow.org/install/source_windows | |||
pacman -S git patch unzip | |||
`pacman -S git patch unzip` | |||
1. Build static library | |||
@@ -42,7 +42,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
int n_channels = 1; | |||
// Hyper-parameters | |||
int epochs = 10; | |||
int epochs = 5; // accuracy > 98% | |||
int batch_size = 100; | |||
float learning_rate = 0.001f; | |||
Datasets<DataSetMnist> mnist; | |||
@@ -84,7 +84,7 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
Test(sess); | |||
}); | |||
return loss_test < 0.09 && accuracy_test > 0.95; | |||
return loss_test < 0.05 && accuracy_test > 0.98; | |||
} | |||
public Graph BuildGraph() | |||