Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9644184 * fix ditributed training and evalmaster
@@ -36,20 +36,8 @@ class NAFNetForImageDenoise(TorchModel): | |||||
model_path = os.path.join(model_dir, ModelFile.TORCH_MODEL_FILE) | model_path = os.path.join(model_dir, ModelFile.TORCH_MODEL_FILE) | ||||
self.model = NAFNet(**self.config.model.network_g) | self.model = NAFNet(**self.config.model.network_g) | ||||
self.loss = PSNRLoss() | self.loss = PSNRLoss() | ||||
if torch.cuda.is_available(): | |||||
self._device = torch.device('cuda') | |||||
else: | |||||
self._device = torch.device('cpu') | |||||
self.model = self.model.to(self._device) | |||||
self.model = self._load_pretrained(self.model, model_path) | self.model = self._load_pretrained(self.model, model_path) | ||||
if self.training: | |||||
self.model.train() | |||||
else: | |||||
self.model.eval() | |||||
def _load_pretrained(self, | def _load_pretrained(self, | ||||
net, | net, | ||||
load_path, | load_path, | ||||
@@ -109,8 +97,6 @@ class NAFNetForImageDenoise(TorchModel): | |||||
Returns: | Returns: | ||||
Dict[str, Tensor]: results | Dict[str, Tensor]: results | ||||
""" | """ | ||||
for key, value in inputs.items(): | |||||
inputs[key] = inputs[key].to(self._device) | |||||
if self.training: | if self.training: | ||||
return self._train_forward(**inputs) | return self._train_forward(**inputs) | ||||
elif 'target' in inputs: | elif 'target' in inputs: | ||||
@@ -6,7 +6,7 @@ from modelscope.utils.import_utils import LazyImportModule | |||||
if TYPE_CHECKING: | if TYPE_CHECKING: | ||||
from .base import Preprocessor | from .base import Preprocessor | ||||
from .builder import PREPROCESSORS, build_preprocessor | from .builder import PREPROCESSORS, build_preprocessor | ||||
from .common import Compose | |||||
from .common import Compose, ToTensor, Filter | |||||
from .asr import WavToScp | from .asr import WavToScp | ||||
from .audio import LinearAECAndFbank | from .audio import LinearAECAndFbank | ||||
from .image import (LoadImage, load_image, | from .image import (LoadImage, load_image, | ||||
@@ -33,7 +33,7 @@ else: | |||||
_import_structure = { | _import_structure = { | ||||
'base': ['Preprocessor'], | 'base': ['Preprocessor'], | ||||
'builder': ['PREPROCESSORS', 'build_preprocessor'], | 'builder': ['PREPROCESSORS', 'build_preprocessor'], | ||||
'common': ['Compose'], | |||||
'common': ['Compose', 'ToTensor', 'Filter'], | |||||
'audio': ['LinearAECAndFbank'], | 'audio': ['LinearAECAndFbank'], | ||||
'asr': ['WavToScp'], | 'asr': ['WavToScp'], | ||||
'video': ['ReadVideoData'], | 'video': ['ReadVideoData'], | ||||
@@ -2,6 +2,10 @@ | |||||
import time | import time | ||||
from collections.abc import Sequence | from collections.abc import Sequence | ||||
from typing import Mapping | |||||
import numpy as np | |||||
import torch | |||||
from .builder import PREPROCESSORS, build_preprocessor | from .builder import PREPROCESSORS, build_preprocessor | ||||
@@ -25,12 +29,18 @@ class Compose(object): | |||||
if isinstance(transform, dict): | if isinstance(transform, dict): | ||||
if self.field_name is None: | if self.field_name is None: | ||||
transform = build_preprocessor(transform, field_name) | transform = build_preprocessor(transform, field_name) | ||||
self.transforms.append(transform) | |||||
else: | |||||
# if not found key in field_name, try field_name=None(default_group) | |||||
try: | |||||
transform = build_preprocessor(transform, field_name) | |||||
except KeyError: | |||||
transform = build_preprocessor(transform, None) | |||||
elif callable(transform): | elif callable(transform): | ||||
self.transforms.append(transform) | |||||
pass | |||||
else: | else: | ||||
raise TypeError('transform must be callable or a dict, but got' | raise TypeError('transform must be callable or a dict, but got' | ||||
f' {type(transform)}') | f' {type(transform)}') | ||||
self.transforms.append(transform) | |||||
def __call__(self, data): | def __call__(self, data): | ||||
for t in self.transforms: | for t in self.transforms: | ||||
@@ -52,3 +62,82 @@ class Compose(object): | |||||
format_string += f'\n {t}' | format_string += f'\n {t}' | ||||
format_string += '\n)' | format_string += '\n)' | ||||
return format_string | return format_string | ||||
def to_tensor(data): | |||||
"""Convert objects of various python types to :obj:`torch.Tensor`. | |||||
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, | |||||
:class:`Sequence`, :class:`int` and :class:`float`. | |||||
Args: | |||||
data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to | |||||
be converted. | |||||
""" | |||||
if isinstance(data, torch.Tensor): | |||||
return data | |||||
elif isinstance(data, np.ndarray): | |||||
return torch.from_numpy(data) | |||||
elif isinstance(data, Sequence) and not isinstance(data, str): | |||||
return torch.tensor(data) | |||||
elif isinstance(data, int): | |||||
return torch.LongTensor([data]) | |||||
elif isinstance(data, float): | |||||
return torch.FloatTensor([data]) | |||||
else: | |||||
raise TypeError(f'type {type(data)} cannot be converted to tensor.') | |||||
@PREPROCESSORS.register_module() | |||||
class ToTensor(object): | |||||
"""Convert target object to tensor. | |||||
Args: | |||||
keys (Sequence[str]): Key of data to be converted to Tensor. | |||||
Only valid when data is type of `Mapping`. If `keys` is None, | |||||
all values of keys will be converted to tensor by default. | |||||
""" | |||||
def __init__(self, keys=None): | |||||
self.keys = keys | |||||
def __call__(self, data): | |||||
if isinstance(data, Mapping): | |||||
if self.keys is None: | |||||
self.keys = list(data.keys()) | |||||
for key in self.keys: | |||||
data[key] = to_tensor(data[key]) | |||||
else: | |||||
data = to_tensor(data) | |||||
return data | |||||
def __repr__(self): | |||||
return self.__class__.__name__ + f'(keys={self.keys})' | |||||
@PREPROCESSORS.register_module() | |||||
class Filter(object): | |||||
"""This is usually the last stage of the dataloader transform. | |||||
Only data of reserved keys will be kept and passed directly to the model, others will be removed. | |||||
Args: | |||||
keys (Sequence[str]): Keys of data to be reserved, others will be removed. | |||||
""" | |||||
def __init__(self, reserved_keys): | |||||
self.reserved_keys = reserved_keys | |||||
def __call__(self, data): | |||||
assert isinstance(data, Mapping) | |||||
reserved_data = {} | |||||
for key in self.reserved_keys: | |||||
reserved_data[key] = data[key] | |||||
return reserved_data | |||||
def __repr__(self): | |||||
return self.__class__.__name__ + f'(keys={self.reserved_keys})' |
@@ -151,6 +151,11 @@ class ImageDenoisePreprocessor(Preprocessor): | |||||
super().__init__(*args, **kwargs) | super().__init__(*args, **kwargs) | ||||
self.model_dir: str = model_dir | self.model_dir: str = model_dir | ||||
from .common import Filter | |||||
# TODO: `Filter` should be moved to configurarion file of each model | |||||
self._transforms = [Filter(reserved_keys=['input', 'target'])] | |||||
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | ||||
"""process the raw input data | """process the raw input data | ||||
@@ -160,6 +165,9 @@ class ImageDenoisePreprocessor(Preprocessor): | |||||
Returns: | Returns: | ||||
Dict[str, Any]: the preprocessed data | Dict[str, Any]: the preprocessed data | ||||
""" | """ | ||||
for t in self._transforms: | |||||
data = t(data) | |||||
return data | return data | ||||
@@ -4,6 +4,7 @@ import os.path as osp | |||||
import uuid | import uuid | ||||
from typing import Any, Dict, Iterable, Optional, Tuple, Union | from typing import Any, Dict, Iterable, Optional, Tuple, Union | ||||
import numpy as np | |||||
from transformers import AutoTokenizer | from transformers import AutoTokenizer | ||||
from modelscope.metainfo import Models, Preprocessors | from modelscope.metainfo import Models, Preprocessors | ||||
@@ -191,6 +192,10 @@ class NLPTokenizerPreprocessorBase(Preprocessor): | |||||
text_b, | text_b, | ||||
return_tensors='pt' if self._mode == ModeKeys.INFERENCE else None, | return_tensors='pt' if self._mode == ModeKeys.INFERENCE else None, | ||||
**self.tokenize_kwargs) | **self.tokenize_kwargs) | ||||
output = { | |||||
k: np.array(v) if isinstance(v, list) else v | |||||
for k, v in output.items() | |||||
} | |||||
self.labels_to_id(labels, output) | self.labels_to_id(labels, output) | ||||
return output | return output | ||||
@@ -240,13 +245,13 @@ class NLPTokenizerPreprocessorBase(Preprocessor): | |||||
if labels is not None: | if labels is not None: | ||||
if isinstance(labels, Iterable) and all([label_can_be_mapped(label) for label in labels]) \ | if isinstance(labels, Iterable) and all([label_can_be_mapped(label) for label in labels]) \ | ||||
and self.label2id is not None: | and self.label2id is not None: | ||||
output[OutputKeys.LABEL] = [ | |||||
output[OutputKeys.LABELS] = [ | |||||
self.label2id[str(label)] for label in labels | self.label2id[str(label)] for label in labels | ||||
] | ] | ||||
elif label_can_be_mapped(labels) and self.label2id is not None: | elif label_can_be_mapped(labels) and self.label2id is not None: | ||||
output[OutputKeys.LABEL] = self.label2id[str(labels)] | |||||
output[OutputKeys.LABELS] = self.label2id[str(labels)] | |||||
else: | else: | ||||
output[OutputKeys.LABEL] = labels | |||||
output[OutputKeys.LABELS] = labels | |||||
@PREPROCESSORS.register_module( | @PREPROCESSORS.register_module( | ||||
@@ -40,7 +40,6 @@ class ImagePortraitEnhancementTrainer(EpochBasedTrainer): | |||||
train_outputs = dict() | train_outputs = dict() | ||||
self._mode = ModeKeys.TRAIN | self._mode = ModeKeys.TRAIN | ||||
inputs = self.collate_fn(inputs) | |||||
# call model forward but not __call__ to skip postprocess | # call model forward but not __call__ to skip postprocess | ||||
if isinstance(inputs, Mapping): | if isinstance(inputs, Mapping): | ||||
d_loss = model._train_forward_d(**inputs) | d_loss = model._train_forward_d(**inputs) | ||||
@@ -110,9 +110,11 @@ class NlpEpochBasedTrainer(EpochBasedTrainer): | |||||
self.train_keys = build_dataset_keys( | self.train_keys = build_dataset_keys( | ||||
self.cfg.dataset.train if hasattr(self.cfg, 'dataset') | self.cfg.dataset.train if hasattr(self.cfg, 'dataset') | ||||
and hasattr(self.cfg.dataset, 'train') else None) | and hasattr(self.cfg.dataset, 'train') else None) | ||||
# TODO eval may has special keys, which is now not supported. | |||||
# because there is only one preprocessor in the trainer, and it only supports one group of keys. | |||||
self.eval_keys = self.train_keys | |||||
self.eval_keys = build_dataset_keys( | |||||
self.cfg.dataset.val if hasattr(self.cfg, 'dataset') | |||||
and hasattr(self.cfg.dataset, 'val') else None) | |||||
if len(self.eval_keys) == 0: | |||||
self.eval_keys = self.train_keys | |||||
super().__init__( | super().__init__( | ||||
model=model_dir, | model=model_dir, | ||||
@@ -148,7 +150,7 @@ class NlpEpochBasedTrainer(EpochBasedTrainer): | |||||
elif isinstance(model, nn.Module): | elif isinstance(model, nn.Module): | ||||
return model | return model | ||||
def build_preprocessor(self) -> Preprocessor: | |||||
def build_preprocessor(self) -> Tuple[Preprocessor, Preprocessor]: | |||||
"""Build the preprocessor. | """Build the preprocessor. | ||||
User can override this method to implement custom logits. | User can override this method to implement custom logits. | ||||
@@ -159,16 +161,38 @@ class NlpEpochBasedTrainer(EpochBasedTrainer): | |||||
model_args = {} if self.label2id is None else { | model_args = {} if self.label2id is None else { | ||||
'label2id': self.label2id | 'label2id': self.label2id | ||||
} | } | ||||
cfg = ConfigDict({ | |||||
**getattr(self.cfg, 'preprocessor'), | |||||
'model_dir': | |||||
self.model_dir, | |||||
**model_args, | |||||
'mode': | |||||
ModeKeys.TRAIN, | |||||
**self.train_keys, | |||||
}) | |||||
return build_preprocessor(cfg, Tasks.find_field_by_task(self.cfg.task)) | |||||
field_name = Tasks.find_field_by_task(self.cfg.task) | |||||
train_preprocessor, eval_preprocessor = None, None | |||||
_train_cfg, _eval_cfg = {}, {} | |||||
if 'type' not in self.cfg.preprocessor and ( | |||||
'train' in self.cfg.preprocessor | |||||
or 'val' in self.cfg.preprocessor): | |||||
if 'train' in self.cfg.preprocessor: | |||||
_train_cfg = self.cfg.preprocessor.train | |||||
if 'val' in self.cfg.preprocessor: | |||||
_eval_cfg = self.cfg.preprocessor.val | |||||
else: | |||||
_train_cfg = self.cfg.preprocessor | |||||
_eval_cfg = self.cfg.preprocessor | |||||
if len(_train_cfg): | |||||
_train_cfg.update({ | |||||
'model_dir': self.model_dir, | |||||
**model_args, | |||||
**self.train_keys, 'mode': ModeKeys.TRAIN | |||||
}) | |||||
train_preprocessor = build_preprocessor(_train_cfg, field_name) | |||||
if len(_eval_cfg): | |||||
_eval_cfg.update({ | |||||
'model_dir': self.model_dir, | |||||
**model_args, | |||||
**self.eval_keys, 'mode': ModeKeys.EVAL | |||||
}) | |||||
eval_preprocessor = build_preprocessor(_eval_cfg, field_name) | |||||
return train_preprocessor, eval_preprocessor | |||||
@TRAINERS.register_module(module_name=Trainers.nlp_veco_trainer) | @TRAINERS.register_module(module_name=Trainers.nlp_veco_trainer) | ||||
@@ -5,15 +5,15 @@ import time | |||||
from collections.abc import Mapping | from collections.abc import Mapping | ||||
from distutils.version import LooseVersion | from distutils.version import LooseVersion | ||||
from functools import partial | from functools import partial | ||||
from typing import Callable, List, Optional, Tuple, Union | |||||
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union | |||||
import json | import json | ||||
import numpy as np | import numpy as np | ||||
import torch | import torch | ||||
from addict import Dict | |||||
from torch import distributed as dist | from torch import distributed as dist | ||||
from torch import nn | from torch import nn | ||||
from torch.utils.data import DataLoader, Dataset | from torch.utils.data import DataLoader, Dataset | ||||
from torch.utils.data.dataloader import default_collate | |||||
from torch.utils.data.distributed import DistributedSampler | from torch.utils.data.distributed import DistributedSampler | ||||
from modelscope.hub.snapshot_download import snapshot_download | from modelscope.hub.snapshot_download import snapshot_download | ||||
@@ -21,8 +21,9 @@ from modelscope.metainfo import Trainers | |||||
from modelscope.metrics import build_metric, task_default_metrics | from modelscope.metrics import build_metric, task_default_metrics | ||||
from modelscope.models.base import Model, TorchModel | from modelscope.models.base import Model, TorchModel | ||||
from modelscope.msdatasets.ms_dataset import MsDataset | from modelscope.msdatasets.ms_dataset import MsDataset | ||||
from modelscope.preprocessors import build_preprocessor | |||||
from modelscope.preprocessors.base import Preprocessor | from modelscope.preprocessors.base import Preprocessor | ||||
from modelscope.preprocessors.builder import build_preprocessor | |||||
from modelscope.preprocessors.common import Compose | |||||
from modelscope.task_datasets.builder import build_task_dataset | from modelscope.task_datasets.builder import build_task_dataset | ||||
from modelscope.task_datasets.torch_base_dataset import TorchTaskDataset | from modelscope.task_datasets.torch_base_dataset import TorchTaskDataset | ||||
from modelscope.trainers.hooks.builder import HOOKS | from modelscope.trainers.hooks.builder import HOOKS | ||||
@@ -30,14 +31,15 @@ from modelscope.trainers.hooks.priority import Priority, get_priority | |||||
from modelscope.trainers.lrscheduler.builder import build_lr_scheduler | from modelscope.trainers.lrscheduler.builder import build_lr_scheduler | ||||
from modelscope.trainers.optimizer.builder import build_optimizer | from modelscope.trainers.optimizer.builder import build_optimizer | ||||
from modelscope.utils.config import Config, ConfigDict | from modelscope.utils.config import Config, ConfigDict | ||||
from modelscope.utils.constant import (DEFAULT_MODEL_REVISION, Hubs, ModeKeys, | |||||
ModelFile, Tasks, TrainerStages) | |||||
from modelscope.utils.constant import (DEFAULT_MODEL_REVISION, ConfigFields, | |||||
ConfigKeys, Hubs, ModeKeys, ModelFile, | |||||
Tasks, TrainerStages) | |||||
from modelscope.utils.data_utils import to_device | |||||
from modelscope.utils.file_utils import func_receive_dict_inputs | from modelscope.utils.file_utils import func_receive_dict_inputs | ||||
from modelscope.utils.logger import get_logger | from modelscope.utils.logger import get_logger | ||||
from modelscope.utils.registry import build_from_cfg | from modelscope.utils.registry import build_from_cfg | ||||
from modelscope.utils.tensor_utils import torch_default_data_collator | |||||
from modelscope.utils.torch_utils import (broadcast, create_device, | |||||
get_dist_info, init_dist) | |||||
from modelscope.utils.torch_utils import (create_device, get_dist_info, | |||||
init_dist) | |||||
from .base import BaseTrainer | from .base import BaseTrainer | ||||
from .builder import TRAINERS | from .builder import TRAINERS | ||||
from .default_config import DEFAULT_CONFIG | from .default_config import DEFAULT_CONFIG | ||||
@@ -83,7 +85,8 @@ class EpochBasedTrainer(BaseTrainer): | |||||
data_collator: Optional[Callable] = None, | data_collator: Optional[Callable] = None, | ||||
train_dataset: Optional[Union[MsDataset, Dataset]] = None, | train_dataset: Optional[Union[MsDataset, Dataset]] = None, | ||||
eval_dataset: Optional[Union[MsDataset, Dataset]] = None, | eval_dataset: Optional[Union[MsDataset, Dataset]] = None, | ||||
preprocessor: Optional[Preprocessor] = None, | |||||
preprocessor: Optional[Union[Preprocessor, | |||||
Dict[str, Preprocessor]]] = None, | |||||
optimizers: Tuple[torch.optim.Optimizer, | optimizers: Tuple[torch.optim.Optimizer, | ||||
torch.optim.lr_scheduler._LRScheduler] = (None, | torch.optim.lr_scheduler._LRScheduler] = (None, | ||||
None), | None), | ||||
@@ -120,24 +123,46 @@ class EpochBasedTrainer(BaseTrainer): | |||||
else: | else: | ||||
self.work_dir = self.cfg.train.get('work_dir', './work_dir') | self.work_dir = self.cfg.train.get('work_dir', './work_dir') | ||||
self.preprocessor = None | |||||
self.train_preprocessor, self.eval_preprocessor = None, None | |||||
if isinstance(preprocessor, Preprocessor): | if isinstance(preprocessor, Preprocessor): | ||||
self.preprocessor = preprocessor | |||||
elif hasattr(self.cfg, 'preprocessor'): | |||||
self.preprocessor = self.build_preprocessor() | |||||
if self.preprocessor is not None: | |||||
self.preprocessor.mode = ModeKeys.TRAIN | |||||
self.train_preprocessor = preprocessor | |||||
self.eval_preprocessor = preprocessor | |||||
elif isinstance(preprocessor, Mapping): | |||||
if not (ConfigKeys.train in preprocessor | |||||
or ConfigKeys.val in preprocessor): | |||||
raise ValueError( | |||||
f'Preprocessor must split with `{ConfigKeys.train}` and `{ConfigKeys.val}` keys!' | |||||
) | |||||
if ConfigKeys.train in preprocessor: | |||||
assert isinstance(preprocessor[ConfigKeys.train], Preprocessor) | |||||
self.train_preprocessor = preprocessor[ConfigKeys.train] | |||||
if ConfigKeys.val in preprocessor: | |||||
assert isinstance(preprocessor[ConfigKeys.val], Preprocessor) | |||||
self.eval_preprocessor = preprocessor[ConfigKeys.val] | |||||
elif hasattr(self.cfg, ConfigFields.preprocessor): | |||||
self.train_preprocessor, self.eval_preprocessor = self.build_preprocessor( | |||||
) | |||||
if self.train_preprocessor is not None: | |||||
self.train_preprocessor.mode = ModeKeys.TRAIN | |||||
if self.eval_preprocessor is not None: | |||||
self.eval_preprocessor.mode = ModeKeys.EVAL | |||||
device_name = kwargs.get('device', 'gpu') | device_name = kwargs.get('device', 'gpu') | ||||
assert device_name in ['gpu', | assert device_name in ['gpu', | ||||
'cpu'], 'device should be either cpu or gpu.' | 'cpu'], 'device should be either cpu or gpu.' | ||||
self.device = create_device(device_name == 'cpu') | self.device = create_device(device_name == 'cpu') | ||||
self.train_dataset = self.to_task_dataset( | self.train_dataset = self.to_task_dataset( | ||||
train_dataset, mode=ModeKeys.TRAIN, preprocessor=self.preprocessor) | |||||
train_dataset, | |||||
mode=ModeKeys.TRAIN, | |||||
preprocessor=self.train_preprocessor) | |||||
self.eval_dataset = self.to_task_dataset( | self.eval_dataset = self.to_task_dataset( | ||||
eval_dataset, mode=ModeKeys.EVAL, preprocessor=self.preprocessor) | |||||
eval_dataset, | |||||
mode=ModeKeys.EVAL, | |||||
preprocessor=self.eval_preprocessor) | |||||
self.data_collator = data_collator if data_collator is not None else torch_default_data_collator | |||||
self.data_collator = data_collator if data_collator is not None else default_collate | |||||
self.metrics = self.get_metrics() | self.metrics = self.get_metrics() | ||||
self._metric_values = None | self._metric_values = None | ||||
self.optimizers = optimizers | self.optimizers = optimizers | ||||
@@ -229,12 +254,12 @@ class EpochBasedTrainer(BaseTrainer): | |||||
return datasets | return datasets | ||||
elif isinstance(datasets, MsDataset): | elif isinstance(datasets, MsDataset): | ||||
datasets = datasets.to_torch_dataset( | datasets = datasets.to_torch_dataset( | ||||
preprocessors=self.preprocessor) | |||||
preprocessors=preprocessor) | |||||
return datasets | return datasets | ||||
elif isinstance(datasets, List) and isinstance( | elif isinstance(datasets, List) and isinstance( | ||||
datasets[0], MsDataset): | datasets[0], MsDataset): | ||||
datasets = [ | datasets = [ | ||||
d.to_torch_dataset(preprocessor=self.preprocessor) | |||||
d.to_torch_dataset(preprocessor=preprocessor) | |||||
for d in datasets | for d in datasets | ||||
] | ] | ||||
cfg = ConfigDict( | cfg = ConfigDict( | ||||
@@ -258,24 +283,44 @@ class EpochBasedTrainer(BaseTrainer): | |||||
else: | else: | ||||
return datasets | return datasets | ||||
def build_preprocessor(self) -> Preprocessor: | |||||
"""Build the preprocessor. | |||||
def build_preprocessor(self) -> Tuple[Preprocessor, Preprocessor]: | |||||
"""Build train and eval preprocessor. | |||||
User can override this method to implement custom logits. | User can override this method to implement custom logits. | ||||
Returns: The preprocessor instance. | |||||
Returns: The train preprocessor and eval preprocessor instance. | |||||
""" | """ | ||||
# TODO @wenmeng.zwm @jiangnana.jnn add support for different preprocessor | |||||
# when they are different ones in training and evaluation | |||||
cfg = ConfigDict({ | |||||
**getattr(self.cfg, 'preprocessor'), | |||||
'model_dir': | |||||
self.model_dir, | |||||
'mode': | |||||
ModeKeys.TRAIN, | |||||
}) | |||||
return build_preprocessor(cfg, Tasks.find_field_by_task(self.cfg.task)) | |||||
field_name = Tasks.find_field_by_task(self.cfg.task) | |||||
train_preprocessor, eval_preprocessor = None, None | |||||
_train_cfg, _eval_cfg = {}, {} | |||||
_dafault_args = {'model_dir': self.model_dir} | |||||
if 'type' not in self.cfg.preprocessor and ( | |||||
'train' in self.cfg.preprocessor | |||||
or 'val' in self.cfg.preprocessor): | |||||
if 'train' in self.cfg.preprocessor: | |||||
_train_cfg = self.cfg.preprocessor.train | |||||
if 'val' in self.cfg.preprocessor: | |||||
_eval_cfg = self.cfg.preprocessor.val | |||||
else: | |||||
_train_cfg = self.cfg.preprocessor | |||||
_eval_cfg = self.cfg.preprocessor | |||||
if len(_train_cfg): | |||||
if isinstance(_train_cfg, Sequence): | |||||
# TODO: for Sequence, need adapt to `mode` and `mode_dir` args, | |||||
# and add mode for Compose or other plans | |||||
raise NotImplementedError('Not supported yet!') | |||||
_train_cfg.update(_dafault_args) | |||||
train_preprocessor = build_preprocessor(_train_cfg, field_name) | |||||
if len(_eval_cfg): | |||||
if isinstance(_eval_cfg, Sequence): | |||||
raise NotImplementedError('Not supported yet!') | |||||
_eval_cfg.update(_dafault_args) | |||||
eval_preprocessor = build_preprocessor(_eval_cfg, field_name) | |||||
return train_preprocessor, eval_preprocessor | |||||
def get_metrics(self) -> List[str]: | def get_metrics(self) -> List[str]: | ||||
"""Get the metric class types. | """Get the metric class types. | ||||
@@ -373,34 +418,6 @@ class EpochBasedTrainer(BaseTrainer): | |||||
return build_parallel(dp_cfg) | return build_parallel(dp_cfg) | ||||
def collate_fn(self, data): | |||||
"""Prepare the input just before the forward function. | |||||
This method will move the tensors to the right device. | |||||
Usually this method does not need to be overridden. | |||||
Args: | |||||
data: The data out of the dataloader. | |||||
Returns: The processed data. | |||||
""" | |||||
from torch.utils.data.dataloader import default_collate | |||||
if isinstance(data, dict) or isinstance(data, Mapping): | |||||
return type(data)({k: self.collate_fn(v) for k, v in data.items()}) | |||||
elif isinstance(data, (tuple, list)): | |||||
if isinstance(data[0], (int, float)): | |||||
return default_collate(data).to(self.device) | |||||
else: | |||||
return type(data)(self.collate_fn(v) for v in data) | |||||
elif isinstance(data, np.ndarray): | |||||
return self.collate_fn(torch.from_numpy(data)) | |||||
elif isinstance(data, torch.Tensor): | |||||
return data.to(self.device) | |||||
elif isinstance(data, (str, int, float, bool)): | |||||
return data | |||||
else: | |||||
raise ValueError(f'Unsupported data type {type(data)}') | |||||
def train_step(self, model, inputs): | def train_step(self, model, inputs): | ||||
""" Perform a training step on a batch of inputs. | """ Perform a training step on a batch of inputs. | ||||
@@ -421,7 +438,6 @@ class EpochBasedTrainer(BaseTrainer): | |||||
# TODO: find more pretty way to change mode | # TODO: find more pretty way to change mode | ||||
model.train() | model.train() | ||||
self._mode = ModeKeys.TRAIN | self._mode = ModeKeys.TRAIN | ||||
inputs = self.collate_fn(inputs) | |||||
# call model forward but not __call__ to skip postprocess | # call model forward but not __call__ to skip postprocess | ||||
if isinstance(inputs, | if isinstance(inputs, | ||||
Mapping) and not func_receive_dict_inputs(model.forward): | Mapping) and not func_receive_dict_inputs(model.forward): | ||||
@@ -486,7 +502,9 @@ class EpochBasedTrainer(BaseTrainer): | |||||
if self.train_dataset is None: | if self.train_dataset is None: | ||||
train_data = self.cfg.dataset.train | train_data = self.cfg.dataset.train | ||||
self.train_dataset = self.build_dataset( | self.train_dataset = self.build_dataset( | ||||
train_data, mode=ModeKeys.TRAIN) | |||||
train_data, | |||||
mode=ModeKeys.TRAIN, | |||||
preprocessor=self.train_preprocessor) | |||||
data_loader = self._build_dataloader_with_dataset( | data_loader = self._build_dataloader_with_dataset( | ||||
self.train_dataset, | self.train_dataset, | ||||
@@ -505,7 +523,9 @@ class EpochBasedTrainer(BaseTrainer): | |||||
if self.eval_dataset is None: | if self.eval_dataset is None: | ||||
val_data = self.cfg.dataset.val | val_data = self.cfg.dataset.val | ||||
self.eval_dataset = self.build_dataset( | self.eval_dataset = self.build_dataset( | ||||
val_data, mode=ModeKeys.EVAL) | |||||
val_data, | |||||
mode=ModeKeys.EVAL, | |||||
preprocessor=self.eval_preprocessor) | |||||
batch_size = self.cfg.evaluation.batch_size | batch_size = self.cfg.evaluation.batch_size | ||||
workers = self.cfg.evaluation.workers | workers = self.cfg.evaluation.workers | ||||
@@ -521,7 +541,7 @@ class EpochBasedTrainer(BaseTrainer): | |||||
) | ) | ||||
return data_loader | return data_loader | ||||
def build_dataset(self, data_cfg, mode): | |||||
def build_dataset(self, data_cfg, mode, preprocessor=None): | |||||
""" Build torch dataset object using data config | """ Build torch dataset object using data config | ||||
""" | """ | ||||
dataset = MsDataset.load( | dataset = MsDataset.load( | ||||
@@ -531,8 +551,7 @@ class EpochBasedTrainer(BaseTrainer): | |||||
data_cfg, 'subset_name') else None, | data_cfg, 'subset_name') else None, | ||||
hub=data_cfg.hub if hasattr(data_cfg, 'hub') else Hubs.modelscope, | hub=data_cfg.hub if hasattr(data_cfg, 'hub') else Hubs.modelscope, | ||||
) | ) | ||||
torch_dataset = dataset.to_torch_dataset( | |||||
preprocessors=self.preprocessor, ) | |||||
torch_dataset = dataset.to_torch_dataset(preprocessors=preprocessor) | |||||
dataset = self.to_task_dataset(torch_dataset, mode) | dataset = self.to_task_dataset(torch_dataset, mode) | ||||
return dataset | return dataset | ||||
@@ -698,6 +717,7 @@ class EpochBasedTrainer(BaseTrainer): | |||||
self.invoke_hook(TrainerStages.before_train_epoch) | self.invoke_hook(TrainerStages.before_train_epoch) | ||||
time.sleep(2) # Prevent possible deadlock during epoch transition | time.sleep(2) # Prevent possible deadlock during epoch transition | ||||
for i, data_batch in enumerate(data_loader): | for i, data_batch in enumerate(data_loader): | ||||
data_batch = to_device(data_batch, self.device) | |||||
self.data_batch = data_batch | self.data_batch = data_batch | ||||
self._inner_iter = i | self._inner_iter = i | ||||
self.invoke_hook(TrainerStages.before_train_iter) | self.invoke_hook(TrainerStages.before_train_iter) | ||||
@@ -721,16 +741,16 @@ class EpochBasedTrainer(BaseTrainer): | |||||
metric_values = multi_gpu_test( | metric_values = multi_gpu_test( | ||||
self.model, | self.model, | ||||
data_loader, | data_loader, | ||||
device=self.device, | |||||
tmpdir=None, | tmpdir=None, | ||||
gpu_collect=False, | gpu_collect=False, | ||||
data_collate_fn=self.collate_fn, | |||||
metric_classes=metric_classes) | metric_classes=metric_classes) | ||||
else: | else: | ||||
from modelscope.trainers.utils.inference import single_gpu_test | from modelscope.trainers.utils.inference import single_gpu_test | ||||
metric_values = single_gpu_test( | metric_values = single_gpu_test( | ||||
self.model, | self.model, | ||||
data_loader, | data_loader, | ||||
data_collate_fn=self.collate_fn, | |||||
device=self.device, | |||||
metric_classes=metric_classes) | metric_classes=metric_classes) | ||||
return metric_values | return metric_values | ||||
@@ -10,21 +10,19 @@ import torch | |||||
from torch import distributed as dist | from torch import distributed as dist | ||||
from tqdm import tqdm | from tqdm import tqdm | ||||
from modelscope.utils.data_utils import to_device | |||||
from modelscope.utils.file_utils import func_receive_dict_inputs | from modelscope.utils.file_utils import func_receive_dict_inputs | ||||
from modelscope.utils.torch_utils import (broadcast, get_dist_info, is_master, | from modelscope.utils.torch_utils import (broadcast, get_dist_info, is_master, | ||||
make_tmp_dir) | make_tmp_dir) | ||||
def single_gpu_test(model, | |||||
data_loader, | |||||
data_collate_fn=None, | |||||
metric_classes=None): | |||||
def single_gpu_test(model, data_loader, device, metric_classes=None): | |||||
"""Test model with a single gpu. | """Test model with a single gpu. | ||||
Args: | Args: | ||||
model (nn.Module): Model to be tested. | model (nn.Module): Model to be tested. | ||||
data_loader (nn.Dataloader): Pytorch data loader. | data_loader (nn.Dataloader): Pytorch data loader. | ||||
data_collate_fn: An optional data_collate_fn before fed into the model | |||||
device: (str | torch.device): The target device for the data. | |||||
metric_classes(List): List of Metric class that uses to collect metrics | metric_classes(List): List of Metric class that uses to collect metrics | ||||
Returns: | Returns: | ||||
@@ -34,8 +32,7 @@ def single_gpu_test(model, | |||||
dataset = data_loader.dataset | dataset = data_loader.dataset | ||||
with tqdm(total=len(dataset), desc='test samples') as pbar: | with tqdm(total=len(dataset), desc='test samples') as pbar: | ||||
for data in data_loader: | for data in data_loader: | ||||
if data_collate_fn is not None: | |||||
data = data_collate_fn(data) | |||||
data = to_device(data, device) | |||||
with torch.no_grad(): | with torch.no_grad(): | ||||
if isinstance(data, Mapping) and not func_receive_dict_inputs( | if isinstance(data, Mapping) and not func_receive_dict_inputs( | ||||
model.forward): | model.forward): | ||||
@@ -62,9 +59,9 @@ def single_gpu_test(model, | |||||
def multi_gpu_test(model, | def multi_gpu_test(model, | ||||
data_loader, | data_loader, | ||||
device, | |||||
tmpdir=None, | tmpdir=None, | ||||
gpu_collect=False, | gpu_collect=False, | ||||
data_collate_fn=None, | |||||
metric_classes=None): | metric_classes=None): | ||||
"""Test model with multiple gpus. | """Test model with multiple gpus. | ||||
@@ -77,10 +74,10 @@ def multi_gpu_test(model, | |||||
Args: | Args: | ||||
model (nn.Module): Model to be tested. | model (nn.Module): Model to be tested. | ||||
data_loader (nn.Dataloader): Pytorch data loader. | data_loader (nn.Dataloader): Pytorch data loader. | ||||
device: (str | torch.device): The target device for the data. | |||||
tmpdir (str): Path of directory to save the temporary results from | tmpdir (str): Path of directory to save the temporary results from | ||||
different gpus under cpu mode. | different gpus under cpu mode. | ||||
gpu_collect (bool): Option to use either gpu or cpu to collect results. | gpu_collect (bool): Option to use either gpu or cpu to collect results. | ||||
data_collate_fn: An optional data_collate_fn before fed into the model | |||||
metric_classes(List): List of Metric class that uses to collect metrics | metric_classes(List): List of Metric class that uses to collect metrics | ||||
Returns: | Returns: | ||||
@@ -98,8 +95,7 @@ def multi_gpu_test(model, | |||||
count = 0 | count = 0 | ||||
with tqdm(total=len(dataset), desc='test samples with multi gpus') as pbar: | with tqdm(total=len(dataset), desc='test samples with multi gpus') as pbar: | ||||
for _, data in enumerate(data_loader): | for _, data in enumerate(data_loader): | ||||
if data_collate_fn is not None: | |||||
data = data_collate_fn(data) | |||||
data = to_device(data, device) | |||||
data_list.append(data) | data_list.append(data) | ||||
with torch.no_grad(): | with torch.no_grad(): | ||||
if isinstance(data, Mapping) and not func_receive_dict_inputs( | if isinstance(data, Mapping) and not func_receive_dict_inputs( | ||||
@@ -219,6 +219,12 @@ class ConfigFields(object): | |||||
evaluation = 'evaluation' | evaluation = 'evaluation' | ||||
class ConfigKeys(object): | |||||
"""Fixed keywords in configuration file""" | |||||
train = 'train' | |||||
val = 'val' | |||||
class Requirements(object): | class Requirements(object): | ||||
"""Requirement names for each module | """Requirement names for each module | ||||
""" | """ | ||||
@@ -0,0 +1,23 @@ | |||||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||||
from collections.abc import Mapping | |||||
import torch | |||||
def to_device(batch, device, non_blocking=False): | |||||
"""Put the data to the target cuda device just before the forward function. | |||||
Args: | |||||
batch: The batch data out of the dataloader. | |||||
device: (str | torch.device): The target device for the data. | |||||
Returns: The data to the target device. | |||||
""" | |||||
if isinstance(batch, dict) or isinstance(batch, Mapping): | |||||
return type(batch)({k: to_device(v, device) for k, v in batch.items()}) | |||||
elif isinstance(batch, (tuple, list)): | |||||
return type(batch)(to_device(v, device) for v in batch) | |||||
elif isinstance(batch, torch.Tensor): | |||||
return batch.to(device, non_blocking=non_blocking) | |||||
else: | |||||
return batch |
@@ -24,65 +24,3 @@ def torch_nested_detach(tensors): | |||||
if isinstance(tensors, torch.Tensor): | if isinstance(tensors, torch.Tensor): | ||||
return tensors.detach() | return tensors.detach() | ||||
return tensors | return tensors | ||||
def torch_default_data_collator(features): | |||||
# TODO @jiangnana.jnn refine this default data collator | |||||
import torch | |||||
first = features[0] | |||||
if isinstance(first, Mapping): | |||||
batch = {} | |||||
# Special handling for labels. | |||||
# Ensure that tensor is created with the correct type | |||||
# (it should be automatically the case, but let's make sure of it.) | |||||
if 'label' in first and first['label'] is not None: | |||||
label = first['label'].item() if isinstance( | |||||
first['label'], torch.Tensor) else first['label'] | |||||
# the msdataset return a 0-dimension np.array with a single value, the following part handle this. | |||||
if isinstance(label, np.ndarray): | |||||
src_dtype = label[()].dtype | |||||
dtype = torch.long if label[( | |||||
)].dtype == np.int64 else torch.float | |||||
else: | |||||
src_dtype = type(label) | |||||
dtype = torch.long if isinstance(label, int) else torch.float | |||||
# add dtype to np.array to fix "TypeError: can't convert np.ndarray of type numpy.object_" | |||||
batch['labels'] = torch.tensor( | |||||
np.array([f['label'] for f in features], dtype=src_dtype), | |||||
dtype=dtype) | |||||
elif 'label_ids' in first and first['label_ids'] is not None: | |||||
if isinstance(first['label_ids'], torch.Tensor): | |||||
batch['labels'] = torch.stack( | |||||
[f['label_ids'] for f in features]) | |||||
else: | |||||
dtype = torch.long if type( | |||||
first['label_ids'][0]) is int else torch.float | |||||
batch['labels'] = torch.tensor( | |||||
[f['label_ids'] for f in features], dtype=dtype) | |||||
# Handling of all other possible keys. | |||||
# Again, we will use the first element to figure out which key/values are not None for this model. | |||||
for k, v in first.items(): | |||||
if k not in ('label', 'label_ids' | |||||
) and v is not None and not isinstance(v, str): | |||||
if isinstance(v, torch.Tensor): | |||||
batch[k] = torch.stack([f[k] for f in features]) | |||||
elif isinstance(v, list) and isinstance(v[0], torch.Tensor): | |||||
batch[k] = torch.stack([d for f in features for d in f[k]]) | |||||
else: | |||||
batch[k] = torch.tensor(np.array([f[k] for f in features])) | |||||
elif isinstance(first, tuple): | |||||
batch = [] | |||||
for idx in range(len(first)): | |||||
if isinstance(first[idx], torch.Tensor): | |||||
batch.append(torch.stack([f[idx] for f in features])) | |||||
else: | |||||
batch.append(torch.tensor([f[idx] for f in features])) | |||||
else: | |||||
if isinstance(first, torch.Tensor): | |||||
batch = torch.stack(features) | |||||
else: | |||||
batch = torch.tensor(features) | |||||
return batch |
@@ -50,7 +50,7 @@ def set_test_level(level: int): | |||||
def create_dummy_test_dataset(feat, label, num): | def create_dummy_test_dataset(feat, label, num): | ||||
return MsDataset.from_hf_dataset( | return MsDataset.from_hf_dataset( | ||||
Dataset.from_dict(dict(feat=[feat] * num, label=[label] * num))) | |||||
Dataset.from_dict(dict(feat=[feat] * num, labels=[label] * num))) | |||||
def download_and_untar(fpath, furl, dst) -> str: | def download_and_untar(fpath, furl, dst) -> str: | ||||
@@ -2,7 +2,10 @@ | |||||
import unittest | import unittest | ||||
from modelscope.preprocessors import PREPROCESSORS, Compose, Preprocessor | |||||
import torch | |||||
from modelscope.preprocessors import (PREPROCESSORS, Compose, Filter, | |||||
Preprocessor, ToTensor) | |||||
class ComposeTest(unittest.TestCase): | class ComposeTest(unittest.TestCase): | ||||
@@ -35,5 +38,27 @@ class ComposeTest(unittest.TestCase): | |||||
self.assertEqual(output['tmp2'], 'tmp2') | self.assertEqual(output['tmp2'], 'tmp2') | ||||
class ToTensorTest(unittest.TestCase): | |||||
def test_totensor(self): | |||||
to_tensor_op = ToTensor(keys=['img']) | |||||
inputs = {'img': [1, 2, 3], 'label': 1, 'path': 'test.jpg'} | |||||
inputs = to_tensor_op(inputs) | |||||
self.assertIsInstance(inputs['img'], torch.Tensor) | |||||
self.assertEqual(inputs['label'], 1) | |||||
self.assertEqual(inputs['path'], 'test.jpg') | |||||
class FilterTest(unittest.TestCase): | |||||
def test_filter(self): | |||||
filter_op = Filter(reserved_keys=['img', 'label']) | |||||
inputs = {'img': [1, 2, 3], 'label': 1, 'path': 'test.jpg'} | |||||
inputs = filter_op(inputs) | |||||
self.assertIn('img', inputs) | |||||
self.assertIn('label', inputs) | |||||
self.assertNotIn('path', inputs) | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
unittest.main() | unittest.main() |
@@ -12,7 +12,7 @@ from torch import nn | |||||
from modelscope.metainfo import Trainers | from modelscope.metainfo import Trainers | ||||
from modelscope.metrics.builder import METRICS, MetricKeys | from modelscope.metrics.builder import METRICS, MetricKeys | ||||
from modelscope.trainers import build_trainer | from modelscope.trainers import build_trainer | ||||
from modelscope.utils.constant import LogKeys, ModelFile | |||||
from modelscope.utils.constant import ModelFile | |||||
from modelscope.utils.registry import default_group | from modelscope.utils.registry import default_group | ||||
from modelscope.utils.test_utils import create_dummy_test_dataset | from modelscope.utils.test_utils import create_dummy_test_dataset | ||||
@@ -9,7 +9,7 @@ import numpy as np | |||||
import torch | import torch | ||||
from torch import nn | from torch import nn | ||||
from torch.optim import SGD | from torch.optim import SGD | ||||
from torch.optim.lr_scheduler import MultiStepLR, ReduceLROnPlateau | |||||
from torch.optim.lr_scheduler import MultiStepLR | |||||
from modelscope.metainfo import Trainers | from modelscope.metainfo import Trainers | ||||
from modelscope.metrics.builder import METRICS, MetricKeys | from modelscope.metrics.builder import METRICS, MetricKeys | ||||
@@ -96,7 +96,8 @@ class LrSchedulerHookTest(unittest.TestCase): | |||||
model=model, | model=model, | ||||
train_dataset=dummy_dataset, | train_dataset=dummy_dataset, | ||||
optimizers=(optimizer, lr_scheduler), | optimizers=(optimizer, lr_scheduler), | ||||
max_epochs=5) | |||||
max_epochs=5, | |||||
device='cpu') | |||||
trainer = build_trainer(trainer_name, kwargs) | trainer = build_trainer(trainer_name, kwargs) | ||||
train_dataloader = trainer._build_dataloader_with_dataset( | train_dataloader = trainer._build_dataloader_with_dataset( | ||||
@@ -160,15 +161,13 @@ class LrSchedulerHookTest(unittest.TestCase): | |||||
json.dump(json_cfg, f) | json.dump(json_cfg, f) | ||||
model = DummyModel() | model = DummyModel() | ||||
# optimmizer = SGD(model.parameters(), lr=0.01) | |||||
# lr_scheduler = MultiStepLR(optimmizer, milestones=[2, 4]) | |||||
trainer_name = Trainers.default | trainer_name = Trainers.default | ||||
kwargs = dict( | kwargs = dict( | ||||
cfg_file=config_path, | cfg_file=config_path, | ||||
model=model, | model=model, | ||||
train_dataset=dummy_dataset, | train_dataset=dummy_dataset, | ||||
# optimizers=(optimmizer, lr_scheduler), | |||||
max_epochs=7) | |||||
max_epochs=7, | |||||
device='cpu') | |||||
trainer = build_trainer(trainer_name, kwargs) | trainer = build_trainer(trainer_name, kwargs) | ||||
train_dataloader = trainer._build_dataloader_with_dataset( | train_dataloader = trainer._build_dataloader_with_dataset( | ||||
@@ -266,7 +265,8 @@ class PlateauLrSchedulerHookTest(unittest.TestCase): | |||||
train_dataset=dummy_dataset, | train_dataset=dummy_dataset, | ||||
eval_dataset=dummy_dataset, | eval_dataset=dummy_dataset, | ||||
optimizers=(optimizer, None), | optimizers=(optimizer, None), | ||||
max_epochs=5) | |||||
max_epochs=5, | |||||
device='cpu') | |||||
trainer = build_trainer(trainer_name, kwargs) | trainer = build_trainer(trainer_name, kwargs) | ||||
train_dataloader = trainer._build_dataloader_with_dataset( | train_dataloader = trainer._build_dataloader_with_dataset( | ||||
@@ -17,7 +17,7 @@ from modelscope.utils.constant import ModelFile, TrainerStages | |||||
from modelscope.utils.test_utils import create_dummy_test_dataset | from modelscope.utils.test_utils import create_dummy_test_dataset | ||||
dummy_dataset = create_dummy_test_dataset( | dummy_dataset = create_dummy_test_dataset( | ||||
np.random.random(size=(2, 2)), np.random.randint(0, 2, (1, )), 10) | |||||
np.random.random(size=(2, )), np.random.randint(0, 2, (1, )), 10) | |||||
class DummyModel(nn.Module): | class DummyModel(nn.Module): | ||||
@@ -71,7 +71,8 @@ class OptimizerHookTest(unittest.TestCase): | |||||
model=model, | model=model, | ||||
train_dataset=dummy_dataset, | train_dataset=dummy_dataset, | ||||
optimizers=(optimizer, lr_scheduler), | optimizers=(optimizer, lr_scheduler), | ||||
max_epochs=2) | |||||
max_epochs=2, | |||||
device='cpu') | |||||
trainer = build_trainer(trainer_name, kwargs) | trainer = build_trainer(trainer_name, kwargs) | ||||
train_dataloader = trainer._build_dataloader_with_dataset( | train_dataloader = trainer._build_dataloader_with_dataset( | ||||
@@ -75,7 +75,8 @@ class IterTimerHookTest(unittest.TestCase): | |||||
model=model, | model=model, | ||||
train_dataset=dummy_dataset, | train_dataset=dummy_dataset, | ||||
optimizers=(optimizer, lr_scheduler), | optimizers=(optimizer, lr_scheduler), | ||||
max_epochs=5) | |||||
max_epochs=5, | |||||
device='cpu') | |||||
trainer = build_trainer(trainer_name, kwargs) | trainer = build_trainer(trainer_name, kwargs) | ||||
train_dataloader = trainer._build_dataloader_with_dataset( | train_dataloader = trainer._build_dataloader_with_dataset( | ||||
@@ -3,19 +3,16 @@ import os | |||||
import shutil | import shutil | ||||
import tempfile | import tempfile | ||||
import unittest | import unittest | ||||
from abc import ABCMeta | |||||
import json | import json | ||||
import numpy as np | import numpy as np | ||||
import torch | import torch | ||||
from datasets import Dataset | |||||
from torch import nn | from torch import nn | ||||
from torch.optim import SGD | from torch.optim import SGD | ||||
from torch.optim.lr_scheduler import StepLR | from torch.optim.lr_scheduler import StepLR | ||||
from modelscope.metainfo import Metrics, Trainers | from modelscope.metainfo import Metrics, Trainers | ||||
from modelscope.metrics.builder import MetricKeys | from modelscope.metrics.builder import MetricKeys | ||||
from modelscope.msdatasets import MsDataset | |||||
from modelscope.trainers import build_trainer | from modelscope.trainers import build_trainer | ||||
from modelscope.utils.constant import LogKeys, ModeKeys, ModelFile | from modelscope.utils.constant import LogKeys, ModeKeys, ModelFile | ||||
from modelscope.utils.test_utils import create_dummy_test_dataset, test_level | from modelscope.utils.test_utils import create_dummy_test_dataset, test_level | ||||
@@ -116,7 +113,8 @@ class TrainerTest(unittest.TestCase): | |||||
data_collator=None, | data_collator=None, | ||||
train_dataset=dummy_dataset_small, | train_dataset=dummy_dataset_small, | ||||
eval_dataset=dummy_dataset_small, | eval_dataset=dummy_dataset_small, | ||||
max_epochs=3) | |||||
max_epochs=3, | |||||
device='cpu') | |||||
trainer = build_trainer(trainer_name, kwargs) | trainer = build_trainer(trainer_name, kwargs) | ||||
trainer.train() | trainer.train() | ||||
@@ -175,7 +173,8 @@ class TrainerTest(unittest.TestCase): | |||||
train_dataset=dummy_dataset_small, | train_dataset=dummy_dataset_small, | ||||
eval_dataset=dummy_dataset_small, | eval_dataset=dummy_dataset_small, | ||||
optimizers=(optimmizer, lr_scheduler), | optimizers=(optimmizer, lr_scheduler), | ||||
max_epochs=3) | |||||
max_epochs=3, | |||||
device='cpu') | |||||
trainer = build_trainer(trainer_name, kwargs) | trainer = build_trainer(trainer_name, kwargs) | ||||
trainer.train() | trainer.train() | ||||
@@ -225,7 +224,8 @@ class TrainerTest(unittest.TestCase): | |||||
train_dataset=dummy_dataset_big, | train_dataset=dummy_dataset_big, | ||||
eval_dataset=dummy_dataset_small, | eval_dataset=dummy_dataset_small, | ||||
optimizers=(optimmizer, lr_scheduler), | optimizers=(optimmizer, lr_scheduler), | ||||
max_epochs=3) | |||||
max_epochs=3, | |||||
device='cpu') | |||||
trainer = build_trainer(trainer_name, kwargs) | trainer = build_trainer(trainer_name, kwargs) | ||||
trainer.train() | trainer.train() | ||||
@@ -37,7 +37,8 @@ class TestTrainerWithNlp(unittest.TestCase): | |||||
model=model_id, | model=model_id, | ||||
train_dataset=self.dataset, | train_dataset=self.dataset, | ||||
eval_dataset=self.dataset, | eval_dataset=self.dataset, | ||||
work_dir=self.tmp_dir) | |||||
work_dir=self.tmp_dir, | |||||
model_revision='beta') | |||||
trainer = build_trainer(default_args=kwargs) | trainer = build_trainer(default_args=kwargs) | ||||
trainer.train() | trainer.train() | ||||
@@ -53,7 +54,8 @@ class TestTrainerWithNlp(unittest.TestCase): | |||||
model=model_id, | model=model_id, | ||||
train_dataset=self.dataset, | train_dataset=self.dataset, | ||||
eval_dataset=self.dataset, | eval_dataset=self.dataset, | ||||
work_dir=self.tmp_dir) | |||||
work_dir=self.tmp_dir, | |||||
model_revision='beta') | |||||
trainer = build_trainer(default_args=kwargs) | trainer = build_trainer(default_args=kwargs) | ||||
trainer.train() | trainer.train() | ||||
@@ -69,7 +71,7 @@ class TestTrainerWithNlp(unittest.TestCase): | |||||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | ||||
def test_trainer_with_user_defined_config(self): | def test_trainer_with_user_defined_config(self): | ||||
model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base' | model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base' | ||||
cfg = read_config(model_id) | |||||
cfg = read_config(model_id, revision='beta') | |||||
cfg.train.max_epochs = 20 | cfg.train.max_epochs = 20 | ||||
cfg.train.work_dir = self.tmp_dir | cfg.train.work_dir = self.tmp_dir | ||||
cfg_file = os.path.join(self.tmp_dir, 'config.json') | cfg_file = os.path.join(self.tmp_dir, 'config.json') | ||||
@@ -78,7 +80,8 @@ class TestTrainerWithNlp(unittest.TestCase): | |||||
model=model_id, | model=model_id, | ||||
train_dataset=self.dataset, | train_dataset=self.dataset, | ||||
eval_dataset=self.dataset, | eval_dataset=self.dataset, | ||||
cfg_file=cfg_file) | |||||
cfg_file=cfg_file, | |||||
model_revision='beta') | |||||
trainer = build_trainer(default_args=kwargs) | trainer = build_trainer(default_args=kwargs) | ||||
trainer.train() | trainer.train() | ||||
@@ -98,7 +101,7 @@ class TestTrainerWithNlp(unittest.TestCase): | |||||
os.makedirs(tmp_dir) | os.makedirs(tmp_dir) | ||||
model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base' | model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base' | ||||
cache_path = snapshot_download(model_id) | |||||
cache_path = snapshot_download(model_id, revision='beta') | |||||
model = SbertForSequenceClassification.from_pretrained(cache_path) | model = SbertForSequenceClassification.from_pretrained(cache_path) | ||||
kwargs = dict( | kwargs = dict( | ||||
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION), | cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION), | ||||
@@ -0,0 +1,116 @@ | |||||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||||
import os | |||||
import shutil | |||||
import tempfile | |||||
import unittest | |||||
import torch | |||||
from torch import nn | |||||
from torch.utils.data import DataLoader | |||||
from modelscope.metrics.builder import MetricKeys | |||||
from modelscope.metrics.sequence_classification_metric import \ | |||||
SequenceClassificationMetric | |||||
from modelscope.trainers.utils.inference import multi_gpu_test, single_gpu_test | |||||
from modelscope.utils.test_utils import (DistributedTestCase, | |||||
create_dummy_test_dataset, test_level) | |||||
from modelscope.utils.torch_utils import get_dist_info, init_dist | |||||
dummy_dataset = create_dummy_test_dataset( | |||||
torch.rand((5, )), torch.randint(0, 4, (1, )), 20) | |||||
class DummyModel(nn.Module): | |||||
def __init__(self): | |||||
super().__init__() | |||||
self.linear = nn.Linear(5, 4) | |||||
self.bn = nn.BatchNorm1d(4) | |||||
def forward(self, feat, labels): | |||||
x = self.linear(feat) | |||||
x = self.bn(x) | |||||
loss = torch.sum(x) | |||||
return dict(logits=x, loss=loss) | |||||
def test_func(dist=False): | |||||
dummy_model = DummyModel() | |||||
dataset = dummy_dataset.to_torch_dataset() | |||||
dummy_loader = DataLoader( | |||||
dataset, | |||||
batch_size=2, | |||||
) | |||||
metric_class = SequenceClassificationMetric() | |||||
if dist: | |||||
init_dist(launcher='pytorch') | |||||
rank, world_size = get_dist_info() | |||||
device = torch.device(f'cuda:{rank}') | |||||
dummy_model.cuda() | |||||
if world_size > 1: | |||||
from torch.nn.parallel.distributed import DistributedDataParallel | |||||
dummy_model = DistributedDataParallel( | |||||
dummy_model, device_ids=[torch.cuda.current_device()]) | |||||
test_func = multi_gpu_test | |||||
else: | |||||
test_func = single_gpu_test | |||||
metric_results = test_func( | |||||
dummy_model, | |||||
dummy_loader, | |||||
device=device, | |||||
metric_classes=[metric_class]) | |||||
return metric_results | |||||
@unittest.skipIf(not torch.cuda.is_available(), 'cuda unittest') | |||||
class SingleGpuTestTest(unittest.TestCase): | |||||
def setUp(self): | |||||
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) | |||||
self.tmp_dir = tempfile.TemporaryDirectory().name | |||||
if not os.path.exists(self.tmp_dir): | |||||
os.makedirs(self.tmp_dir) | |||||
def tearDown(self): | |||||
super().tearDown() | |||||
shutil.rmtree(self.tmp_dir) | |||||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | |||||
def test_single_gpu_test(self): | |||||
metric_results = test_func() | |||||
self.assertIn(MetricKeys.ACCURACY, metric_results) | |||||
@unittest.skipIf(not torch.cuda.is_available() | |||||
or torch.cuda.device_count() <= 1, 'distributed unittest') | |||||
class MultiGpuTestTest(DistributedTestCase): | |||||
def setUp(self): | |||||
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) | |||||
self.tmp_dir = tempfile.TemporaryDirectory().name | |||||
if not os.path.exists(self.tmp_dir): | |||||
os.makedirs(self.tmp_dir) | |||||
def tearDown(self): | |||||
super().tearDown() | |||||
shutil.rmtree(self.tmp_dir) | |||||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | |||||
def test_multi_gpu_test(self): | |||||
self.start( | |||||
test_func, | |||||
num_gpus=2, | |||||
assert_callback=lambda x: self.assertIn(MetricKeys.ACCURACY, x), | |||||
dist=True) | |||||
if __name__ == '__main__': | |||||
unittest.main() |