|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
-
- import json
- import numpy as np
- import torch
- from torch import nn
- from torch.optim import SGD
- from torch.optim.lr_scheduler import MultiStepLR
-
- from modelscope.metainfo import Trainers
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import ModelFile, TrainerStages
- from modelscope.utils.test_utils import create_dummy_test_dataset
-
- dummy_dataset = create_dummy_test_dataset(
- np.random.random(size=(2, )), np.random.randint(0, 2, (1, )), 10)
-
-
- class DummyModel(nn.Module):
-
- def __init__(self):
- super().__init__()
- self.linear = nn.Linear(2, 2)
- self.bn = nn.BatchNorm1d(2)
-
- def forward(self, feat, labels):
- x = self.linear(feat)
- x = self.bn(x)
- loss = torch.sum(x)
- return dict(logits=x, loss=loss)
-
-
- class OptimizerHookTest(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir)
-
- def test_optimizer_hook(self):
- json_cfg = {
- 'task': 'image_classification',
- 'train': {
- 'work_dir': self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- }
- }
- }
-
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- model = DummyModel()
- optimizer = SGD(model.parameters(), lr=0.01)
- lr_scheduler = MultiStepLR(optimizer, milestones=[1, 2])
- trainer_name = Trainers.default
- kwargs = dict(
- cfg_file=config_path,
- model=model,
- train_dataset=dummy_dataset,
- optimizers=(optimizer, lr_scheduler),
- max_epochs=2,
- device='cpu')
-
- trainer = build_trainer(trainer_name, kwargs)
- train_dataloader = trainer._build_dataloader_with_dataset(
- trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
- trainer.register_optimizers_hook()
-
- trainer.invoke_hook(TrainerStages.before_run)
-
- for _ in range(trainer._epoch, trainer._max_epochs):
- trainer.invoke_hook(TrainerStages.before_train_epoch)
- for _, data_batch in enumerate(train_dataloader):
- trainer.invoke_hook(TrainerStages.before_train_iter)
- trainer.train_step(trainer.model, data_batch)
- trainer.invoke_hook(TrainerStages.after_train_iter)
-
- self.assertEqual(
- len(trainer.optimizer.param_groups[0]['params']), 4)
- for i in range(4):
- self.assertTrue(trainer.optimizer.param_groups[0]['params']
- [i].requires_grad)
-
- trainer.invoke_hook(TrainerStages.after_train_epoch)
- trainer._epoch += 1
- trainer.invoke_hook(TrainerStages.after_run)
-
-
- class TorchAMPOptimizerHookTest(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir)
-
- @unittest.skipIf(not torch.cuda.is_available(),
- 'skip this test when cuda is not available')
- def test_amp_optimizer_hook(self):
- json_cfg = {
- 'task': 'image_classification',
- 'train': {
- 'work_dir': self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- }
- }
- }
-
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- model = DummyModel().cuda()
- optimizer = SGD(model.parameters(), lr=0.01)
- lr_scheduler = MultiStepLR(optimizer, milestones=[1, 2])
- trainer_name = Trainers.default
- kwargs = dict(
- cfg_file=config_path,
- model=model,
- train_dataset=dummy_dataset,
- optimizers=(optimizer, lr_scheduler),
- max_epochs=2,
- use_fp16=True)
-
- trainer = build_trainer(trainer_name, kwargs)
- train_dataloader = trainer._build_dataloader_with_dataset(
- trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
- trainer.register_optimizers_hook()
-
- trainer.invoke_hook(TrainerStages.before_run)
-
- for _ in range(trainer._epoch, trainer._max_epochs):
- trainer.invoke_hook(TrainerStages.before_train_epoch)
- for _, data_batch in enumerate(train_dataloader):
- for k, v in data_batch.items():
- data_batch[k] = v.cuda()
- trainer.invoke_hook(TrainerStages.before_train_iter)
- trainer.train_step(trainer.model, data_batch)
- trainer.invoke_hook(TrainerStages.after_train_iter)
-
- self.assertEqual(trainer.train_outputs['logits'].dtype,
- torch.float16)
-
- # test if `after_train_iter`, whether the model is reset to fp32
- trainer.train_step(trainer.model, data_batch)
- self.assertEqual(trainer.train_outputs['logits'].dtype,
- torch.float32)
-
- self.assertEqual(
- len(trainer.optimizer.param_groups[0]['params']), 4)
- for i in range(4):
- self.assertTrue(trainer.optimizer.param_groups[0]['params']
- [i].requires_grad)
-
- trainer.invoke_hook(TrainerStages.after_train_epoch)
- trainer._epoch += 1
- trainer.invoke_hook(TrainerStages.after_run)
-
-
- if __name__ == '__main__':
- unittest.main()
|