|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
-
- import json
- import numpy as np
- import torch
- from torch import nn
- from torch.optim import SGD
- from torch.optim.lr_scheduler import MultiStepLR
-
- from modelscope.metainfo import Trainers
- from modelscope.metrics.builder import METRICS, MetricKeys
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import LogKeys, ModelFile, TrainerStages
- from modelscope.utils.registry import default_group
- from modelscope.utils.test_utils import create_dummy_test_dataset
-
- dummy_dataset = create_dummy_test_dataset(
- np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 10)
-
-
- def create_dummy_metric():
- _global_iter = 0
-
- @METRICS.register_module(
- group_key=default_group, module_name='DummyMetric', force=True)
- class DummyMetric:
-
- _fake_acc_by_epoch = {1: 0.1, 2: 0.1, 3: 0.1, 4: 0.1, 5: 0.3}
-
- def add(*args, **kwargs):
- pass
-
- def evaluate(self):
- global _global_iter
- _global_iter += 1
- return {MetricKeys.ACCURACY: self._fake_acc_by_epoch[_global_iter]}
-
-
- class DummyModel(nn.Module):
-
- def __init__(self):
- super().__init__()
- self.linear = nn.Linear(5, 4)
- self.bn = nn.BatchNorm1d(4)
-
- def forward(self, feat, labels):
- x = self.linear(feat)
-
- x = self.bn(x)
- loss = torch.sum(x)
- return dict(logits=x, loss=loss)
-
-
- class LrSchedulerHookTest(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
- create_dummy_metric()
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir)
-
- def test_lr_scheduler_hook(self):
- global _global_iter
- _global_iter = 0
-
- json_cfg = {
- 'task': 'image_classification',
- 'train': {
- 'work_dir': self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- }
- }
- }
-
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- model = DummyModel()
- optimizer = SGD(model.parameters(), lr=0.01)
- lr_scheduler = MultiStepLR(optimizer, milestones=[2, 4])
- trainer_name = Trainers.default
- kwargs = dict(
- cfg_file=config_path,
- model=model,
- train_dataset=dummy_dataset,
- optimizers=(optimizer, lr_scheduler),
- max_epochs=5,
- device='cpu')
-
- trainer = build_trainer(trainer_name, kwargs)
- train_dataloader = trainer._build_dataloader_with_dataset(
- trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
- trainer.register_optimizers_hook()
-
- trainer.invoke_hook(TrainerStages.before_run)
- log_lrs = []
- optim_lrs = []
- for _ in range(trainer._epoch, trainer._max_epochs):
- trainer.invoke_hook(TrainerStages.before_train_epoch)
- for _, data_batch in enumerate(train_dataloader):
- trainer.invoke_hook(TrainerStages.before_train_iter)
- trainer.train_step(trainer.model, data_batch)
- trainer.invoke_hook(TrainerStages.after_train_iter)
-
- log_lrs.append(trainer.log_buffer.output[LogKeys.LR])
- optim_lrs.append(optimizer.param_groups[0]['lr'])
-
- trainer.invoke_hook(TrainerStages.after_train_epoch)
- trainer._epoch += 1
- trainer.invoke_hook(TrainerStages.after_run)
-
- iters = 5
- target_lrs = [0.01] * iters * 2 + [0.001] * iters * 2 + [0.0001
- ] * iters * 1
- self.assertListEqual(log_lrs, target_lrs)
- self.assertListEqual(optim_lrs, target_lrs)
-
- def test_warmup_lr_scheduler_hook(self):
- global _global_iter
- _global_iter = 0
-
- json_cfg = {
- 'task': 'image_classification',
- 'train': {
- 'work_dir': self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- },
- 'optimizer': {
- 'type': 'SGD',
- 'lr': 0.01
- },
- 'lr_scheduler': {
- 'type': 'MultiStepLR',
- 'milestones': [4, 6],
- 'options': {
- 'warmup': {
- 'type': 'LinearWarmup',
- 'warmup_iters': 3
- }
- }
- }
- }
- }
-
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- model = DummyModel()
- trainer_name = Trainers.default
- kwargs = dict(
- cfg_file=config_path,
- model=model,
- train_dataset=dummy_dataset,
- max_epochs=7,
- device='cpu')
-
- trainer = build_trainer(trainer_name, kwargs)
- train_dataloader = trainer._build_dataloader_with_dataset(
- trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
- trainer.register_optimizers_hook()
-
- trainer.invoke_hook(TrainerStages.before_run)
- log_lrs = []
- optim_lrs = []
- for _ in range(trainer._epoch, trainer._max_epochs):
- trainer.invoke_hook(TrainerStages.before_train_epoch)
- for _, data_batch in enumerate(train_dataloader):
- trainer.invoke_hook(TrainerStages.before_train_iter)
- trainer.train_step(trainer.model, data_batch)
- trainer.invoke_hook(TrainerStages.after_train_iter)
-
- log_lrs.append(round(trainer.log_buffer.output[LogKeys.LR], 5))
- optim_lrs.append(
- round(trainer.optimizer.param_groups[0]['lr'], 5))
-
- trainer.invoke_hook(TrainerStages.after_train_epoch)
- trainer.invoke_hook(TrainerStages.after_run)
-
- iters = 5
- target_lrs = [0.001] * iters * 1 + [0.004] * iters * 1 + [
- 0.007
- ] * iters * 1 + [0.01] * iters * 1 + [0.001] * iters * 2 + [
- 0.0001
- ] * iters * 1
-
- self.assertListEqual(log_lrs, target_lrs)
- self.assertListEqual(optim_lrs, target_lrs)
-
-
- class PlateauLrSchedulerHookTest(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
- create_dummy_metric()
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir)
-
- def test_plateau_lr_scheduler_hook(self):
- global _global_iter
- _global_iter = 0
-
- json_cfg = {
- 'task': 'image_classification',
- 'train': {
- 'work_dir': self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- },
- 'lr_scheduler': {
- 'type': 'ReduceLROnPlateau',
- 'mode': 'max',
- 'factor': 0.1,
- 'patience': 2,
- },
- 'lr_scheduler_hook': {
- 'type': 'PlateauLrSchedulerHook',
- 'metric_key': MetricKeys.ACCURACY
- },
- 'hooks': [{
- 'type': 'EvaluationHook',
- 'interval': 1
- }]
- },
- 'evaluation': {
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1,
- 'shuffle': False
- },
- 'metrics': ['DummyMetric']
- }
- }
-
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- model = DummyModel()
- optimizer = SGD(model.parameters(), lr=0.01)
- trainer_name = Trainers.default
- kwargs = dict(
- cfg_file=config_path,
- model=model,
- train_dataset=dummy_dataset,
- eval_dataset=dummy_dataset,
- optimizers=(optimizer, None),
- max_epochs=5,
- device='cpu')
-
- trainer = build_trainer(trainer_name, kwargs)
- train_dataloader = trainer._build_dataloader_with_dataset(
- trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
- trainer.train_dataloader = train_dataloader
- trainer.data_loader = train_dataloader
- trainer.register_optimizers_hook()
- trainer.register_hook_from_cfg(trainer.cfg.train.hooks)
-
- trainer.invoke_hook(TrainerStages.before_run)
- log_lrs = []
- optim_lrs = []
- for _ in range(trainer._epoch, trainer._max_epochs):
- trainer.invoke_hook(TrainerStages.before_train_epoch)
- for _, data_batch in enumerate(train_dataloader):
- trainer.invoke_hook(TrainerStages.before_train_iter)
- trainer.train_step(trainer.model, data_batch)
- trainer.invoke_hook(TrainerStages.after_train_iter)
-
- log_lrs.append(trainer.log_buffer.output[LogKeys.LR])
- optim_lrs.append(optimizer.param_groups[0]['lr'])
-
- trainer.invoke_hook(TrainerStages.after_train_epoch)
- trainer._epoch += 1
- trainer.invoke_hook(TrainerStages.after_run)
-
- iters = 5
- target_lrs = [0.01] * iters * 4 + [0.001] * iters * 1
- self.assertListEqual(log_lrs, target_lrs)
- self.assertListEqual(optim_lrs, target_lrs)
-
-
- if __name__ == '__main__':
- unittest.main()
|