|
1234567891011121314151617181920212223242526272829303132 |
- #! /usr/bin/python
- # -*- coding: utf-8 -*-
- """
- ResNet50 for ImageNet using TL models
-
- """
-
- import time
- import numpy as np
- import tensorlayer as tl
- from examples.model_zoo.imagenet_classes import class_names
- from examples.model_zoo.resnet import ResNet50
-
- tl.logging.set_verbosity(tl.logging.DEBUG)
-
- # get the whole model
- resnet = ResNet50(pretrained=True)
- resnet.set_eval()
-
- img1 = tl.vis.read_image('data/tiger.jpeg')
- img1 = tl.prepro.imresize(img1, (224, 224))[:, :, ::-1]
- img1 = img1 - np.array([103.939, 116.779, 123.68]).reshape((1, 1, 3))
-
- img1 = img1.astype(np.float32)[np.newaxis, ...]
-
- start_time = time.time()
- output = resnet(img1)
- prob = tl.ops.softmax(output)[0].numpy()
- print(" End time : %.5ss" % (time.time() - start_time))
- preds = (np.argsort(prob)[::-1])[0:5]
- for p in preds:
- print(class_names[p], prob[p])
|