#! /usr/bin/python # -*- coding: utf-8 -*- """ ResNet50 for ImageNet using TL models """ import time import numpy as np import tensorlayer as tl from examples.model_zoo.imagenet_classes import class_names from examples.model_zoo.resnet import ResNet50 tl.logging.set_verbosity(tl.logging.DEBUG) # get the whole model resnet = ResNet50(pretrained=True) resnet.set_eval() img1 = tl.vis.read_image('data/tiger.jpeg') img1 = tl.prepro.imresize(img1, (224, 224))[:, :, ::-1] img1 = img1 - np.array([103.939, 116.779, 123.68]).reshape((1, 1, 3)) img1 = img1.astype(np.float32)[np.newaxis, ...] start_time = time.time() output = resnet(img1) prob = tl.ops.softmax(output)[0].numpy() print(" End time : %.5ss" % (time.time() - start_time)) preds = (np.argsort(prob)[::-1])[0:5] for p in preds: print(class_names[p], prob[p])