Browse Source

Use f2c translations of LAPACK when no Fortran compiler is available (#3539)

* Add C equivalents of the Fortran routines from Reference-LAPACK as fallbacks, and C_LAPACK variable to trigger their use
tags/v0.3.21
Martin Kroeker GitHub 3 years ago
parent
commit
b7873605d4
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
100 changed files with 81525 additions and 19 deletions
  1. +3
    -1
      CMakeLists.txt
  2. +6
    -8
      Makefile
  3. +6
    -1
      Makefile.system
  4. +11
    -3
      cmake/f_check.cmake
  5. +501
    -2
      cmake/lapack.cmake
  6. +9
    -2
      cmake/system.cmake
  7. +31
    -0
      lapack-netlib/INSTALL/Makefile
  8. +1379
    -0
      lapack-netlib/INSTALL/dlamch.c
  9. +445
    -0
      lapack-netlib/INSTALL/dsecnd_INT_ETIME.c
  10. +445
    -0
      lapack-netlib/INSTALL/dsecnd_NONE.c
  11. +458
    -0
      lapack-netlib/INSTALL/ilaver.c
  12. +521
    -0
      lapack-netlib/INSTALL/lsame.c
  13. +595
    -0
      lapack-netlib/INSTALL/lsametst.c
  14. +445
    -0
      lapack-netlib/INSTALL/second_INT_ETIME.c
  15. +445
    -0
      lapack-netlib/INSTALL/second_NONE.c
  16. +566
    -0
      lapack-netlib/INSTALL/secondtst.c
  17. +1378
    -0
      lapack-netlib/INSTALL/slamch.c
  18. +1019
    -0
      lapack-netlib/SRC/DEPRECATED/cgegs.c
  19. +1252
    -0
      lapack-netlib/SRC/DEPRECATED/cgegv.c
  20. +928
    -0
      lapack-netlib/SRC/DEPRECATED/cgelsx.c
  21. +764
    -0
      lapack-netlib/SRC/DEPRECATED/cgeqpf.c
  22. +910
    -0
      lapack-netlib/SRC/DEPRECATED/cggsvd.c
  23. +1030
    -0
      lapack-netlib/SRC/DEPRECATED/cggsvp.c
  24. +755
    -0
      lapack-netlib/SRC/DEPRECATED/clahrd.c
  25. +650
    -0
      lapack-netlib/SRC/DEPRECATED/clatzm.c
  26. +682
    -0
      lapack-netlib/SRC/DEPRECATED/ctzrqf.c
  27. +1031
    -0
      lapack-netlib/SRC/DEPRECATED/dgegs.c
  28. +1325
    -0
      lapack-netlib/SRC/DEPRECATED/dgegv.c
  29. +898
    -0
      lapack-netlib/SRC/DEPRECATED/dgelsx.c
  30. +753
    -0
      lapack-netlib/SRC/DEPRECATED/dgeqpf.c
  31. +906
    -0
      lapack-netlib/SRC/DEPRECATED/dggsvd.c
  32. +1014
    -0
      lapack-netlib/SRC/DEPRECATED/dggsvp.c
  33. +742
    -0
      lapack-netlib/SRC/DEPRECATED/dlahrd.c
  34. +647
    -0
      lapack-netlib/SRC/DEPRECATED/dlatzm.c
  35. +667
    -0
      lapack-netlib/SRC/DEPRECATED/dtzrqf.c
  36. +1026
    -0
      lapack-netlib/SRC/DEPRECATED/sgegs.c
  37. +1316
    -0
      lapack-netlib/SRC/DEPRECATED/sgegv.c
  38. +891
    -0
      lapack-netlib/SRC/DEPRECATED/sgelsx.c
  39. +750
    -0
      lapack-netlib/SRC/DEPRECATED/sgeqpf.c
  40. +905
    -0
      lapack-netlib/SRC/DEPRECATED/sggsvd.c
  41. +1010
    -0
      lapack-netlib/SRC/DEPRECATED/sggsvp.c
  42. +739
    -0
      lapack-netlib/SRC/DEPRECATED/slahrd.c
  43. +643
    -0
      lapack-netlib/SRC/DEPRECATED/slatzm.c
  44. +663
    -0
      lapack-netlib/SRC/DEPRECATED/stzrqf.c
  45. +1024
    -0
      lapack-netlib/SRC/DEPRECATED/zgegs.c
  46. +1255
    -0
      lapack-netlib/SRC/DEPRECATED/zgegv.c
  47. +929
    -0
      lapack-netlib/SRC/DEPRECATED/zgelsx.c
  48. +766
    -0
      lapack-netlib/SRC/DEPRECATED/zgeqpf.c
  49. +913
    -0
      lapack-netlib/SRC/DEPRECATED/zggsvd.c
  50. +1036
    -0
      lapack-netlib/SRC/DEPRECATED/zggsvp.c
  51. +758
    -0
      lapack-netlib/SRC/DEPRECATED/zlahrd.c
  52. +652
    -0
      lapack-netlib/SRC/DEPRECATED/zlatzm.c
  53. +683
    -0
      lapack-netlib/SRC/DEPRECATED/ztzrqf.c
  54. +23
    -2
      lapack-netlib/SRC/Makefile
  55. +1700
    -0
      lapack-netlib/SRC/cbbcsd.c
  56. +1392
    -0
      lapack-netlib/SRC/cbdsqr.c
  57. +1137
    -0
      lapack-netlib/SRC/cgbbrd.c
  58. +808
    -0
      lapack-netlib/SRC/cgbcon.c
  59. +788
    -0
      lapack-netlib/SRC/cgbequ.c
  60. +807
    -0
      lapack-netlib/SRC/cgbequb.c
  61. +971
    -0
      lapack-netlib/SRC/cgbrfs.c
  62. +402
    -0
      lapack-netlib/SRC/cgbrfsx.c
  63. +643
    -0
      lapack-netlib/SRC/cgbsv.c
  64. +1182
    -0
      lapack-netlib/SRC/cgbsvx.c
  65. +1272
    -0
      lapack-netlib/SRC/cgbsvxx.c
  66. +720
    -0
      lapack-netlib/SRC/cgbtf2.c
  67. +1055
    -0
      lapack-netlib/SRC/cgbtrf.c
  68. +744
    -0
      lapack-netlib/SRC/cgbtrs.c
  69. +696
    -0
      lapack-netlib/SRC/cgebak.c
  70. +864
    -0
      lapack-netlib/SRC/cgebal.c
  71. +805
    -0
      lapack-netlib/SRC/cgebd2.c
  72. +819
    -0
      lapack-netlib/SRC/cgebrd.c
  73. +679
    -0
      lapack-netlib/SRC/cgecon.c
  74. +758
    -0
      lapack-netlib/SRC/cgeequ.c
  75. +778
    -0
      lapack-netlib/SRC/cgeequb.c
  76. +876
    -0
      lapack-netlib/SRC/cgees.c
  77. +958
    -0
      lapack-netlib/SRC/cgeesx.c
  78. +1015
    -0
      lapack-netlib/SRC/cgeev.c
  79. +1189
    -0
      lapack-netlib/SRC/cgeevx.c
  80. +653
    -0
      lapack-netlib/SRC/cgehd2.c
  81. +817
    -0
      lapack-netlib/SRC/cgehrd.c
  82. +3448
    -0
      lapack-netlib/SRC/cgejsv.c
  83. +766
    -0
      lapack-netlib/SRC/cgelq.c
  84. +626
    -0
      lapack-netlib/SRC/cgelq2.c
  85. +720
    -0
      lapack-netlib/SRC/cgelqf.c
  86. +622
    -0
      lapack-netlib/SRC/cgelqt.c
  87. +697
    -0
      lapack-netlib/SRC/cgelqt3.c
  88. +982
    -0
      lapack-netlib/SRC/cgels.c
  89. +1204
    -0
      lapack-netlib/SRC/cgelsd.c
  90. +1336
    -0
      lapack-netlib/SRC/cgelss.c
  91. +987
    -0
      lapack-netlib/SRC/cgelsy.c
  92. +707
    -0
      lapack-netlib/SRC/cgemlq.c
  93. +708
    -0
      lapack-netlib/SRC/cgemlqt.c
  94. +706
    -0
      lapack-netlib/SRC/cgemqr.c
  95. +728
    -0
      lapack-netlib/SRC/cgemqrt.c
  96. +617
    -0
      lapack-netlib/SRC/cgeql2.c
  97. +731
    -0
      lapack-netlib/SRC/cgeqlf.c
  98. +826
    -0
      lapack-netlib/SRC/cgeqp3.c
  99. +759
    -0
      lapack-netlib/SRC/cgeqr.c
  100. +628
    -0
      lapack-netlib/SRC/cgeqr2.c

+ 3
- 1
CMakeLists.txt View File

@@ -22,6 +22,8 @@ option(BUILD_WITHOUT_LAPACK "Do not build LAPACK and LAPACKE (Only BLAS or CBLAS

option(BUILD_TESTING "Build LAPACK testsuite when building LAPACK" ON)

option(C_LAPACK "Build LAPACK from C sources instead of the original Fortran" OFF)

option(BUILD_WITHOUT_CBLAS "Do not build the C interface (CBLAS) to the BLAS functions" OFF)

option(DYNAMIC_ARCH "Include support for multiple CPU targets, with automatic selection at runtime (x86/x86_64, aarch64 or ppc only)" OFF)
@@ -175,7 +177,7 @@ endforeach ()

# Can't just use lapack-netlib's CMake files, since they are set up to search for BLAS, build and install a binary. We just want to build a couple of lib files out of lapack and lapacke.
# Not using add_subdirectory here because lapack-netlib already has its own CMakeLists.txt. Instead include a cmake script with the sources we want.
if (NOT NOFORTRAN AND NOT NO_LAPACK)
if (NOT NO_LAPACK)
include("${PROJECT_SOURCE_DIR}/cmake/lapack.cmake")
if (NOT NO_LAPACKE)
include("${PROJECT_SOURCE_DIR}/cmake/lapacke.cmake")


+ 6
- 8
Makefile View File

@@ -25,11 +25,14 @@ ifeq ($(NO_FORTRAN), 1)
define NOFORTRAN
1
endef
define NO_LAPACK
ifneq ($(NO_LAPACK), 1)
define C_LAPACK
1
endef
endif
export NOFORTRAN
export NO_LAPACK
export C_LAPACK
endif

LAPACK_NOOPT := $(filter-out -O0 -O1 -O2 -O3 -Ofast -O -Og -Os,$(LAPACK_FFLAGS))
@@ -241,19 +244,14 @@ hpl_p :
fi; \
done

ifeq ($(NO_LAPACK), 1)
netlib :

else
netlib : lapack_prebuild
ifeq ($(NOFORTRAN), $(filter 0,$(NOFORTRAN)))
ifneq ($(NO_LAPACK), 1)
@$(MAKE) -C $(NETLIB_LAPACK_DIR) lapacklib
@$(MAKE) -C $(NETLIB_LAPACK_DIR) tmglib
endif
ifneq ($(NO_LAPACKE), 1)
@$(MAKE) -C $(NETLIB_LAPACK_DIR) lapackelib
endif
endif

ifeq ($(NO_LAPACK), 1)
re_lapack :
@@ -267,7 +265,7 @@ prof_lapack : lapack_prebuild
@$(MAKE) -C $(NETLIB_LAPACK_DIR) lapack_prof

lapack_prebuild :
ifeq ($(NOFORTRAN), $(filter 0,$(NOFORTRAN)))
ifeq ($(NO_LAPACK), $(filter 0,$(NO_LAPACK)))
-@echo "FC = $(FC)" > $(NETLIB_LAPACK_DIR)/make.inc
-@echo "override FFLAGS = $(LAPACK_FFLAGS)" >> $(NETLIB_LAPACK_DIR)/make.inc
-@echo "FFLAGS_DRV = $(LAPACK_FFLAGS)" >> $(NETLIB_LAPACK_DIR)/make.inc


+ 6
- 1
Makefile.system View File

@@ -352,7 +352,7 @@ OBJCONV = $(CROSS_SUFFIX)objconv

# When fortran support was either not detected or actively deselected, only build BLAS.
ifeq ($(NOFORTRAN), 1)
NO_LAPACK = 1
C_LAPACK = 1
override FEXTRALIB =
endif

@@ -1303,6 +1303,10 @@ ifeq ($(DYNAMIC_OLDER), 1)
CCOMMON_OPT += -DDYNAMIC_OLDER
endif

ifeq ($(C_LAPACK), 1)
CCOMMON_OPT += -DC_LAPACK
endif

ifeq ($(NO_LAPACK), 1)
CCOMMON_OPT += -DNO_LAPACK
#Disable LAPACK C interface
@@ -1661,6 +1665,7 @@ export USE_OPENMP
export CROSS
export CROSS_SUFFIX
export NOFORTRAN
export C_LAPACK
export NO_FBLAS
export EXTRALIB
export CEXTRALIB


+ 11
- 3
cmake/f_check.cmake View File

@@ -25,11 +25,19 @@ check_language(Fortran)
if(CMAKE_Fortran_COMPILER)
enable_language(Fortran)
else()
set (NOFORTRAN 1)
if (NOT NO_LAPACK)
message(STATUS "No Fortran compiler found, can build only BLAS but not LAPACK")
if (NOT MSVC)
message(STATUS "No Fortran compiler found, can build only BLAS and f2c-converted LAPACK")
set(C_LAPACK 1)
if (INTERFACE64)
set (CCOMMON_OPT "${CCOMMON_OPT} -DLAPACK_ILP64")
endif ()
set(TIMER "NONE")
else ()
message(STATUS "No Fortran compiler found, can build only BLAS")
endif()
endif()
set (NOFORTRAN 1)
set (NO_LAPACK 1)
endif()

if (NOT ONLY_CBLAS)


+ 501
- 2
cmake/lapack.cmake View File

@@ -1,5 +1,6 @@
# Sources for compiling lapack-netlib. Can't use CMakeLists.txt because lapack-netlib already has its own cmake files.
if (NOT C_LAPACK)
message (STATUS "fortran lapack")
set(ALLAUX ilaenv.f ilaenv2stage.f ieeeck.f lsamen.f iparmq.f iparam2stage.F
ilaprec.f ilatrans.f ilauplo.f iladiag.f chla_transtype.f dlaset.f
../INSTALL/ilaver.f xerbla_array.f
@@ -488,6 +489,499 @@ if(BUILD_COMPLEX16)
message(STATUS "Building Double Precision Complex")
endif()
else ()
message (STATUS "c lapack")
set(ALLAUX ilaenv.c ilaenv2stage.c ieeeck.c lsamen.c iparmq.c iparam2stage.c
ilaprec.c ilatrans.c ilauplo.c iladiag.c chla_transtype.c dlaset.c
../INSTALL/ilaver.c xerbla_array.c
../INSTALL/slamch.c)
set(SCLAUX
scombssq.c sbdsvdx.c sstevx.c sstein.c
sbdsdc.c
sbdsqr.c sdisna.c slabad.c slacpy.c sladiv.c slae2.c slaebz.c
slaed0.c slaed1.c slaed2.c slaed3.c slaed4.c slaed5.c slaed6.c
slaed7.c slaed8.c slaed9.c slaeda.c slaev2.c slagtf.c
slagts.c slamrg.c slanst.c
slapy2.c slapy3.c slarnv.c
slarra.c slarrb.c slarrc.c slarrd.c slarre.c slarrf.c slarrj.c
slarrk.c slarrr.c slaneg.c
slartg.c slaruv.c slas2.c slascl.c
slasd0.c slasd1.c slasd2.c slasd3.c slasd4.c slasd5.c slasd6.c
slasd7.c slasd8.c slasda.c slasdq.c slasdt.c
slaset.c slasq1.c slasq2.c slasq3.c slasq4.c slasq5.c slasq6.c
slasr.c slasrt.c slassq.c slasv2.c spttrf.c sstebz.c sstedc.c
ssteqr.c ssterf.c slaisnan.c sisnan.c
slartgp.c slartgs.c
../INSTALL/second_${TIMER}.c)
set(DZLAUX
dbdsdc.c
dbdsvdx.c dstevx.c dstein.c
dbdsqr.c ddisna.c dlabad.c dlacpy.c dladiv.c dlae2.c dlaebz.c
dlaed0.c dlaed1.c dlaed2.c dlaed3.c dlaed4.c dlaed5.c dlaed6.c
dlaed7.c dlaed8.c dlaed9.c dlaeda.c dlaev2.c dlagtf.c
dlagts.c dlamrg.c dlanst.c
dlapy2.c dlapy3.c dlarnv.c
dlarra.c dlarrb.c dlarrc.c dlarrd.c dlarre.c dlarrf.c dlarrj.c
dlarrk.c dlarrr.c dlaneg.c
dlartg.c dlaruv.c dlas2.c dlascl.c
dlasd0.c dlasd1.c dlasd2.c dlasd3.c dlasd4.c dlasd5.c dlasd6.c
dlasd7.c dlasd8.c dlasda.c dlasdq.c dlasdt.c
dlasq1.c dlasq2.c dlasq3.c dlasq4.c dlasq5.c dlasq6.c
dlasr.c dlasrt.c dlassq.c dlasv2.c dpttrf.c dstebz.c dstedc.c
dsteqr.c dsterf.c dlaisnan.c disnan.c
dlartgp.c dlartgs.c
../INSTALL/dlamch.c ../INSTALL/dsecnd_${TIMER}.c)
set(SLASRC
sgbbrd.c sgbcon.c sgbequ.c sgbrfs.c sgbsv.c
sgbsvx.c sgbtf2.c sgbtrf.c sgbtrs.c sgebak.c sgebal.c sgebd2.c
sgebrd.c sgecon.c sgeequ.c sgees.c sgeesx.c sgeev.c sgeevx.c
sgehd2.c sgehrd.c sgelq2.c sgelqf.c
sgels.c sgelsd.c sgelss.c sgelsy.c sgeql2.c sgeqlf.c
sgeqp3.c sgeqr2.c sgeqr2p.c sgeqrf.c sgeqrfp.c sgerfs.c sgerq2.c sgerqf.c
sgesc2.c sgesdd.c sgesvd.c sgesvdx.c sgesvx.c sgetc2.c
sgetrf2.c sgetri.c
sggbak.c sggbal.c
sgges.c sgges3.c sggesx.c sggev.c sggev3.c sggevx.c
sggglm.c sgghrd.c sgghd3.c sgglse.c sggqrf.c
sggrqf.c sggsvd3.c sggsvp3.c sgtcon.c sgtrfs.c sgtsv.c
sgtsvx.c sgttrf.c sgttrs.c sgtts2.c shgeqz.c
shsein.c shseqr.c slabrd.c slacon.c slacn2.c
slaein.c slaexc.c slag2.c slags2.c slagtm.c slagv2.c slahqr.c
slahr2.c slaic1.c slaln2.c slals0.c slalsa.c slalsd.c
slangb.c slange.c slangt.c slanhs.c slansb.c slansp.c
slansy.c slantb.c slantp.c slantr.c slanv2.c
slapll.c slapmt.c
slaqgb.c slaqge.c slaqp2.c slaqps.c slaqsb.c slaqsp.c slaqsy.c
slaqr0.c slaqr1.c slaqr2.c slaqr3.c slaqr4.c slaqr5.c
slaqtr.c slar1v.c slar2v.c ilaslr.c ilaslc.c
slarf.c slarfb.c slarfb_gett.c slarfg.c slarfgp.c slarft.c slarfx.c slarfy.c slargv.c
slarrv.c slartv.c
slarz.c slarzb.c slarzt.c slasy2.c
slasyf.c slasyf_rook.c slasyf_rk.c slasyf_aa.c
slatbs.c slatdf.c slatps.c slatrd.c slatrs.c slatrz.c
sopgtr.c sopmtr.c sorg2l.c sorg2r.c
sorgbr.c sorghr.c sorgl2.c sorglq.c sorgql.c sorgqr.c sorgr2.c
sorgrq.c sorgtr.c sorm2l.c sorm2r.c sorm22.c
sormbr.c sormhr.c sorml2.c sormlq.c sormql.c sormqr.c sormr2.c
sormr3.c sormrq.c sormrz.c sormtr.c spbcon.c spbequ.c spbrfs.c
spbstf.c spbsv.c spbsvx.c
spbtf2.c spbtrf.c spbtrs.c spocon.c spoequ.c sporfs.c sposv.c
sposvx.c spotrf2.c spotri.c spstrf.c spstf2.c
sppcon.c sppequ.c
spprfs.c sppsv.c sppsvx.c spptrf.c spptri.c spptrs.c sptcon.c
spteqr.c sptrfs.c sptsv.c sptsvx.c spttrs.c sptts2.c srscl.c
ssbev.c ssbevd.c ssbevx.c ssbgst.c ssbgv.c ssbgvd.c ssbgvx.c
ssbtrd.c sspcon.c sspev.c sspevd.c sspevx.c sspgst.c
sspgv.c sspgvd.c sspgvx.c ssprfs.c sspsv.c sspsvx.c ssptrd.c
ssptrf.c ssptri.c ssptrs.c sstegr.c sstev.c sstevd.c sstevr.c
ssycon.c ssyev.c ssyevd.c ssyevr.c ssyevx.c ssygs2.c
ssygst.c ssygv.c ssygvd.c ssygvx.c ssyrfs.c ssysv.c ssysvx.c
ssytd2.c ssytf2.c ssytrd.c ssytrf.c ssytri.c ssytri2.c ssytri2x.c
ssyswapr.c ssytrs.c ssytrs2.c
ssyconv.c ssyconvf.c ssyconvf_rook.c
ssysv_aa.c ssysv_aa_2stage.c ssytrf_aa.c ssytrf_aa_2stage.c ssytrs_aa.c ssytrs_aa_2stage.c
ssytf2_rook.c ssytrf_rook.c ssytrs_rook.c
ssytri_rook.c ssycon_rook.c ssysv_rook.c
ssytf2_rk.c ssytrf_rk.c ssytrs_3.c
ssytri_3.c ssytri_3x.c ssycon_3.c ssysv_rk.c
ssysv_aa.c ssytrf_aa.c ssytrs_aa.c
stbcon.c
stbrfs.c stbtrs.c stgevc.c stgex2.c stgexc.c stgsen.c
stgsja.c stgsna.c stgsy2.c stgsyl.c stpcon.c stprfs.c stptri.c
stptrs.c
strcon.c strevc.c strevc3.c strexc.c strrfs.c strsen.c strsna.c strsyl.c
strtrs.c stzrzf.c sstemr.c
slansf.c spftrf.c spftri.c spftrs.c ssfrk.c stfsm.c stftri.c stfttp.c
stfttr.c stpttf.c stpttr.c strttf.c strttp.c
sgejsv.c sgesvj.c sgsvj0.c sgsvj1.c
sgeequb.c ssyequb.c spoequb.c sgbequb.c
sbbcsd.c slapmr.c sorbdb.c sorbdb1.c sorbdb2.c sorbdb3.c sorbdb4.c
sorbdb5.c sorbdb6.c sorcsd.c sorcsd2by1.c
sgeqrt.c sgeqrt2.c sgeqrt3.c sgemqrt.c
stpqrt.c stpqrt2.c stpmqrt.c stprfb.c
sgelqt.c sgelqt3.c sgemlqt.c
sgetsls.c sgetsqrhrt.c sgeqr.c slatsqr.c slamtsqr.c sgemqr.c
sgelq.c slaswlq.c slamswlq.c sgemlq.c
stplqt.c stplqt2.c stpmlqt.c
ssytrd_2stage.c ssytrd_sy2sb.c ssytrd_sb2st.c ssb2st_kernels.c
ssyevd_2stage.c ssyev_2stage.c ssyevx_2stage.c ssyevr_2stage.c
ssbev_2stage.c ssbevx_2stage.c ssbevd_2stage.c ssygv_2stage.c
sgesvdq.c slaorhr_col_getrfnp.c
slaorhr_col_getrfnp2.c sorgtsqr.c sorgtsqr_row.c sorhr_col.c )
set(SXLASRC sgesvxx.c sgerfsx.c sla_gerfsx_extended.c sla_geamv.c
sla_gercond.c sla_gerpvgrw.c ssysvxx.c ssyrfsx.c
sla_syrfsx_extended.c sla_syamv.c sla_syrcond.c sla_syrpvgrw.c
sposvxx.c sporfsx.c sla_porfsx_extended.c sla_porcond.c
sla_porpvgrw.c sgbsvxx.c sgbrfsx.c sla_gbrfsx_extended.c
sla_gbamv.c sla_gbrcond.c sla_gbrpvgrw.c sla_lin_berr.c slarscl2.c
slascl2.c sla_wwaddw.c)
set(CLASRC
cbdsqr.c cgbbrd.c cgbcon.c cgbequ.c cgbrfs.c cgbsv.c cgbsvx.c
cgbtf2.c cgbtrf.c cgbtrs.c cgebak.c cgebal.c cgebd2.c cgebrd.c
cgecon.c cgeequ.c cgees.c cgeesx.c cgeev.c cgeevx.c
cgehd2.c cgehrd.c cgelq2.c cgelqf.c
cgels.c cgelsd.c cgelss.c cgelsy.c cgeql2.c cgeqlf.c cgeqp3.c
cgeqr2.c cgeqr2p.c cgeqrf.c cgeqrfp.c cgerfs.c cgerq2.c cgerqf.c
cgesc2.c cgesdd.c cgesvd.c cgesvdx.c
cgesvj.c cgejsv.c cgsvj0.c cgsvj1.c
cgesvx.c cgetc2.c cgetrf2.c
cgetri.c
cggbak.c cggbal.c
cgges.c cgges3.c cggesx.c cggev.c cggev3.c cggevx.c
cggglm.c cgghrd.c cgghd3.c cgglse.c cggqrf.c cggrqf.c
cggsvd3.c cggsvp3.c
cgtcon.c cgtrfs.c cgtsv.c cgtsvx.c cgttrf.c cgttrs.c cgtts2.c chbev.c
chbevd.c chbevx.c chbgst.c chbgv.c chbgvd.c chbgvx.c chbtrd.c
checon.c cheev.c cheevd.c cheevr.c cheevx.c chegs2.c chegst.c
chegv.c chegvd.c chegvx.c cherfs.c chesv.c chesvx.c chetd2.c
chetf2.c chetrd.c
chetrf.c chetri.c chetri2.c chetri2x.c cheswapr.c
chetrs.c chetrs2.c
chetf2_rook.c chetrf_rook.c chetri_rook.c
chetrs_rook.c checon_rook.c chesv_rook.c
chetf2_rk.c chetrf_rk.c chetri_3.c chetri_3x.c
chetrs_3.c checon_3.c chesv_rk.c
chesv_aa.c chesv_aa_2stage.c chetrf_aa.c chetrf_aa_2stage.c chetrs_aa.c chetrs_aa_2stage.c
chgeqz.c chpcon.c chpev.c chpevd.c
chpevx.c chpgst.c chpgv.c chpgvd.c chpgvx.c chprfs.c chpsv.c
chpsvx.c
chptrd.c chptrf.c chptri.c chptrs.c chsein.c chseqr.c clabrd.c
clacgv.c clacon.c clacn2.c clacp2.c clacpy.c clacrm.c clacrt.c cladiv.c
claed0.c claed7.c claed8.c
claein.c claesy.c claev2.c clags2.c clagtm.c
clahef.c clahef_rook.c clahef_rk.c clahef_aa.c clahqr.c
clahr2.c claic1.c clals0.c clalsa.c clalsd.c clangb.c clange.c clangt.c
clanhb.c clanhe.c
clanhp.c clanhs.c clanht.c clansb.c clansp.c clansy.c clantb.c
clantp.c clantr.c clapll.c clapmt.c clarcm.c claqgb.c claqge.c
claqhb.c claqhe.c claqhp.c claqp2.c claqps.c claqsb.c
claqr0.c claqr1.c claqr2.c claqr3.c claqr4.c claqr5.c
claqsp.c claqsy.c clar1v.c clar2v.c ilaclr.c ilaclc.c
clarf.c clarfb.c clarfb_gett.c clarfg.c clarfgp.c clarft.c
clarfx.c clarfy.c clargv.c clarnv.c clarrv.c clartg.c clartv.c
clarz.c clarzb.c clarzt.c clascl.c claset.c clasr.c classq.c
clasyf.c clasyf_rook.c clasyf_rk.c clasyf_aa.c
clatbs.c clatdf.c clatps.c clatrd.c clatrs.c clatrz.c
cpbcon.c cpbequ.c cpbrfs.c cpbstf.c cpbsv.c
cpbsvx.c cpbtf2.c cpbtrf.c cpbtrs.c cpocon.c cpoequ.c cporfs.c
cposv.c cposvx.c cpotrf2.c cpotri.c cpstrf.c cpstf2.c
cppcon.c cppequ.c cpprfs.c cppsv.c cppsvx.c cpptrf.c cpptri.c cpptrs.c
cptcon.c cpteqr.c cptrfs.c cptsv.c cptsvx.c cpttrf.c cpttrs.c cptts2.c
crot.c cspcon.c csprfs.c cspsv.c
cspsvx.c csptrf.c csptri.c csptrs.c csrscl.c cstedc.c
cstegr.c cstein.c csteqr.c csycon.c
csyrfs.c csysv.c csysvx.c csytf2.c csytrf.c csytri.c
csytri2.c csytri2x.c csyswapr.c
csytrs.c csytrs2.c
csyconv.c csyconvf.c csyconvf_rook.c
csytf2_rook.c csytrf_rook.c csytrs_rook.c
csytri_rook.c csycon_rook.c csysv_rook.c
csytf2_rk.c csytrf_rk.c csytrf_aa.c csytrf_aa_2stage.c csytrs_3.c csytrs_aa.c csytrs_aa_2stage.c
csytri_3.c csytri_3x.c csycon_3.c csysv_rk.c csysv_aa.c csysv_aa_2stage.c
ctbcon.c ctbrfs.c ctbtrs.c ctgevc.c ctgex2.c
ctgexc.c ctgsen.c ctgsja.c ctgsna.c ctgsy2.c ctgsyl.c ctpcon.c
ctprfs.c ctptri.c
ctptrs.c ctrcon.c ctrevc.c ctrevc3.c ctrexc.c ctrrfs.c ctrsen.c ctrsna.c
ctrsyl.c ctrtrs.c ctzrzf.c cung2l.c cung2r.c
cungbr.c cunghr.c cungl2.c cunglq.c cungql.c cungqr.c cungr2.c
cungrq.c cungtr.c cunm2l.c cunm2r.c cunmbr.c cunmhr.c cunml2.c cunm22.c
cunmlq.c cunmql.c cunmqr.c cunmr2.c cunmr3.c cunmrq.c cunmrz.c
cunmtr.c cupgtr.c cupmtr.c icmax1.c scsum1.c cstemr.c
chfrk.c ctfttp.c clanhf.c cpftrf.c cpftri.c cpftrs.c ctfsm.c ctftri.c
ctfttr.c ctpttf.c ctpttr.c ctrttf.c ctrttp.c
cgeequb.c cgbequb.c csyequb.c cpoequb.c cheequb.c
cbbcsd.c clapmr.c cunbdb.c cunbdb1.c cunbdb2.c cunbdb3.c cunbdb4.c
cunbdb5.c cunbdb6.c cuncsd.c cuncsd2by1.c
cgeqrt.c cgeqrt2.c cgeqrt3.c cgemqrt.c
ctpqrt.c ctpqrt2.c ctpmqrt.c ctprfb.c
cgelqt.c cgelqt3.c cgemlqt.c
cgetsls.c cgetsqrhrt.c cgeqr.c clatsqr.c clamtsqr.c cgemqr.c
cgelq.c claswlq.c clamswlq.c cgemlq.c
ctplqt.c ctplqt2.c ctpmlqt.c
chetrd_2stage.c chetrd_he2hb.c chetrd_hb2st.c chb2st_kernels.c
cheevd_2stage.c cheev_2stage.c cheevx_2stage.c cheevr_2stage.c
chbev_2stage.c chbevx_2stage.c chbevd_2stage.c chegv_2stage.c
cgesvdq.c claunhr_col_getrfnp.c claunhr_col_getrfnp2.c
cungtsqr.c cungtsqr_row.c cunhr_col.c )
set(CXLASRC cgesvxx.c cgerfsx.c cla_gerfsx_extended.c cla_geamv.c
cla_gercond_c.c cla_gercond_x.c cla_gerpvgrw.c
csysvxx.c csyrfsx.c cla_syrfsx_extended.c cla_syamv.c
cla_syrcond_c.c cla_syrcond_x.c cla_syrpvgrw.c
cposvxx.c cporfsx.c cla_porfsx_extended.c
cla_porcond_c.c cla_porcond_x.c cla_porpvgrw.c
cgbsvxx.c cgbrfsx.c cla_gbrfsx_extended.c cla_gbamv.c
cla_gbrcond_c.c cla_gbrcond_x.c cla_gbrpvgrw.c
chesvxx.c cherfsx.c cla_herfsx_extended.c cla_heamv.c
cla_hercond_c.c cla_hercond_x.c cla_herpvgrw.c
cla_lin_berr.c clarscl2.c clascl2.c cla_wwaddw.c)
set(DLASRC
dgbbrd.c dgbcon.c dgbequ.c dgbrfs.c dgbsv.c
dgbsvx.c dgbtf2.c dgbtrf.c dgbtrs.c dgebak.c dgebal.c dgebd2.c
dgebrd.c dgecon.c dgeequ.c dgees.c dgeesx.c dgeev.c dgeevx.c
dgehd2.c dgehrd.c dgelq2.c dgelqf.c
dgels.c dgelsd.c dgelss.c dgelsy.c dgeql2.c dgeqlf.c
dgeqp3.c dgeqr2.c dgeqr2p.c dgeqrf.c dgeqrfp.c dgerfs.c dgerq2.c dgerqf.c
dgesc2.c dgesdd.c dgesvd.c dgesvdx.c dgesvx.c dgetc2.c
dgetrf2.c dgetri.c
dggbak.c dggbal.c
dgges.c dgges3.c dggesx.c dggev.c dggev3.c dggevx.c
dggglm.c dgghrd.c dgghd3.c dgglse.c dggqrf.c
dggrqf.c dggsvd3.c dggsvp3.c dgtcon.c dgtrfs.c dgtsv.c
dgtsvx.c dgttrf.c dgttrs.c dgtts2.c dhgeqz.c
dhsein.c dhseqr.c dlabrd.c dlacon.c dlacn2.c
dlaein.c dlaexc.c dlag2.c dlags2.c dlagtm.c dlagv2.c dlahqr.c
dlahr2.c dlaic1.c dlaln2.c dlals0.c dlalsa.c dlalsd.c
dlangb.c dlange.c dlangt.c dlanhs.c dlansb.c dlansp.c
dlansy.c dlantb.c dlantp.c dlantr.c dlanv2.c
dlapll.c dlapmt.c
dlaqgb.c dlaqge.c dlaqp2.c dlaqps.c dlaqsb.c dlaqsp.c dlaqsy.c
dlaqr0.c dlaqr1.c dlaqr2.c dlaqr3.c dlaqr4.c dlaqr5.c
dlaqtr.c dlar1v.c dlar2v.c iladlr.c iladlc.c
dlarf.c dlarfb.c dlarfb_gett.c dlarfg.c dlarfgp.c dlarft.c dlarfx.c dlarfy.c
dlargv.c dlarrv.c dlartv.c
dlarz.c dlarzb.c dlarzt.c dlasy2.c
dlasyf.c dlasyf_rook.c dlasyf_rk.c dlasyf_aa.c
dlatbs.c dlatdf.c dlatps.c dlatrd.c dlatrs.c dlatrz.c
dopgtr.c dopmtr.c dorg2l.c dorg2r.c
dorgbr.c dorghr.c dorgl2.c dorglq.c dorgql.c dorgqr.c dorgr2.c
dorgrq.c dorgtr.c dorm2l.c dorm2r.c dorm22.c
dormbr.c dormhr.c dorml2.c dormlq.c dormql.c dormqr.c dormr2.c
dormr3.c dormrq.c dormrz.c dormtr.c dpbcon.c dpbequ.c dpbrfs.c
dpbstf.c dpbsv.c dpbsvx.c
dpbtf2.c dpbtrf.c dpbtrs.c dpocon.c dpoequ.c dporfs.c dposv.c
dposvx.c dpotrf2.c dpotri.c dpotrs.c dpstrf.c dpstf2.c
dppcon.c dppequ.c
dpprfs.c dppsv.c dppsvx.c dpptrf.c dpptri.c dpptrs.c dptcon.c
dpteqr.c dptrfs.c dptsv.c dptsvx.c dpttrs.c dptts2.c drscl.c
dsbev.c dsbevd.c dsbevx.c dsbgst.c dsbgv.c dsbgvd.c dsbgvx.c
dsbtrd.c dspcon.c dspev.c dspevd.c dspevx.c dspgst.c
dspgv.c dspgvd.c dspgvx.c dsprfs.c dspsv.c dspsvx.c dsptrd.c
dsptrf.c dsptri.c dsptrs.c dstegr.c dstev.c dstevd.c dstevr.c
dsycon.c dsyev.c dsyevd.c dsyevr.c
dsyevx.c dsygs2.c dsygst.c dsygv.c dsygvd.c dsygvx.c dsyrfs.c
dsysv.c dsysvx.c
dsytd2.c dsytf2.c dsytrd.c dsytrf.c dsytri.c dsytrs.c dsytrs2.c
dsytri2.c dsytri2x.c dsyswapr.c
dsyconv.c dsyconvf.c dsyconvf_rook.c
dsytf2_rook.c dsytrf_rook.c dsytrs_rook.c
dsytri_rook.c dsycon_rook.c dsysv_rook.c
dsytf2_rk.c dsytrf_rk.c dsytrs_3.c
dsytri_3.c dsytri_3x.c dsycon_3.c dsysv_rk.c
dsysv_aa.c dsysv_aa_2stage.c dsytrf_aa.c dsytrf_aa_2stage.c dsytrs_aa.c dsytrs_aa_2stage.c
dtbcon.c
dtbrfs.c dtbtrs.c dtgevc.c dtgex2.c dtgexc.c dtgsen.c
dtgsja.c dtgsna.c dtgsy2.c dtgsyl.c dtpcon.c dtprfs.c dtptri.c
dtptrs.c
dtrcon.c dtrevc.c dtrevc3.c dtrexc.c dtrrfs.c dtrsen.c dtrsna.c dtrsyl.c
dtrtrs.c dtzrzf.c dstemr.c
dsgesv.c dsposv.c dlag2s.c slag2d.c dlat2s.c
dlansf.c dpftrf.c dpftri.c dpftrs.c dsfrk.c dtfsm.c dtftri.c dtfttp.c
dtfttr.c dtpttf.c dtpttr.c dtrttf.c dtrttp.c
dgejsv.c dgesvj.c dgsvj0.c dgsvj1.c
dgeequb.c dsyequb.c dpoequb.c dgbequb.c
dbbcsd.c dlapmr.c dorbdb.c dorbdb1.c dorbdb2.c dorbdb3.c dorbdb4.c
dorbdb5.c dorbdb6.c dorcsd.c dorcsd2by1.c
dgeqrt.c dgeqrt2.c dgeqrt3.c dgemqrt.c
dtpqrt.c dtpqrt2.c dtpmqrt.c dtprfb.c
dgelqt.c dgelqt3.c dgemlqt.c
dgetsls.c dgetsqrhrt.c dgeqr.c dlatsqr.c dlamtsqr.c dgemqr.c
dgelq.c dlaswlq.c dlamswlq.c dgemlq.c
dtplqt.c dtplqt2.c dtpmlqt.c
dsytrd_2stage.c dsytrd_sy2sb.c dsytrd_sb2st.c dsb2st_kernels.c
dsyevd_2stage.c dsyev_2stage.c dsyevx_2stage.c dsyevr_2stage.c
dsbev_2stage.c dsbevx_2stage.c dsbevd_2stage.c dsygv_2stage.c
dcombssq.c dgesvdq.c dlaorhr_col_getrfnp.c
dlaorhr_col_getrfnp2.c dorgtsqr.c dorgtsqr_row.c dorhr_col.c )
set(DXLASRC dgesvxx.c dgerfsx.c dla_gerfsx_extended.c dla_geamv.c
dla_gercond.c dla_gerpvgrw.c dsysvxx.c dsyrfsx.c
dla_syrfsx_extended.c dla_syamv.c dla_syrcond.c dla_syrpvgrw.c
dposvxx.c dporfsx.c dla_porfsx_extended.c dla_porcond.c
dla_porpvgrw.c dgbsvxx.c dgbrfsx.c dla_gbrfsx_extended.c
dla_gbamv.c dla_gbrcond.c dla_gbrpvgrw.c dla_lin_berr.c dlarscl2.c
dlascl2.c dla_wwaddw.c)
set(ZLASRC
zbdsqr.c zgbbrd.c zgbcon.c zgbequ.c zgbrfs.c zgbsv.c zgbsvx.c
zgbtf2.c zgbtrf.c zgbtrs.c zgebak.c zgebal.c zgebd2.c zgebrd.c
zgecon.c zgeequ.c zgees.c zgeesx.c zgeev.c zgeevx.c
zgehd2.c zgehrd.c zgelq2.c zgelqf.c
zgels.c zgelsd.c zgelss.c zgelsy.c zgeql2.c zgeqlf.c zgeqp3.c
zgeqr2.c zgeqr2p.c zgeqrf.c zgeqrfp.c zgerfs.c zgerq2.c zgerqf.c
zgesc2.c zgesdd.c zgesvd.c zgesvdx.c zgesvx.c
zgesvj.c zgejsv.c zgsvj0.c zgsvj1.c
zgetc2.c zgetrf2.c
zgetri.c
zggbak.c zggbal.c
zgges.c zgges3.c zggesx.c zggev.c zggev3.c zggevx.c
zggglm.c zgghrd.c zgghd3.c zgglse.c zggqrf.c zggrqf.c
zggsvd3.c zggsvp3.c
zgtcon.c zgtrfs.c zgtsv.c zgtsvx.c zgttrf.c zgttrs.c zgtts2.c zhbev.c
zhbevd.c zhbevx.c zhbgst.c zhbgv.c zhbgvd.c zhbgvx.c zhbtrd.c
zhecon.c zheev.c zheevd.c zheevr.c zheevx.c zhegs2.c zhegst.c
zhegv.c zhegvd.c zhegvx.c zherfs.c zhesv.c zhesvx.c zhetd2.c
zhetf2.c zhetrd.c
zhetrf.c zhetri.c zhetri2.c zhetri2x.c zheswapr.c
zhetrs.c zhetrs2.c
zhetf2_rook.c zhetrf_rook.c zhetri_rook.c
zhetrs_rook.c zhecon_rook.c zhesv_rook.c
zhetf2_rk.c zhetrf_rk.c zhetri_3.c zhetri_3x.c
zhetrs_3.c zhecon_3.c zhesv_rk.c
zhesv_aa.c zhesv_aa_2stage.c zhetrf_aa.c zhetrf_aa_2stage.c zhetrs_aa.c zhetrs_aa_2stage.c
zhgeqz.c zhpcon.c zhpev.c zhpevd.c
zhpevx.c zhpgst.c zhpgv.c zhpgvd.c zhpgvx.c zhprfs.c zhpsv.c
zhpsvx.c
zhptrd.c zhptrf.c zhptri.c zhptrs.c zhsein.c zhseqr.c zlabrd.c
zlacgv.c zlacon.c zlacn2.c zlacp2.c zlacpy.c zlacrm.c zlacrt.c zladiv.c
zlaed0.c zlaed7.c zlaed8.c
zlaein.c zlaesy.c zlaev2.c zlags2.c zlagtm.c
zlahef.c zlahef_rook.c zlahef_rk.c zlahef_aa.c zlahqr.c
zlahr2.c zlaic1.c zlals0.c zlalsa.c zlalsd.c zlangb.c zlange.c
zlangt.c zlanhb.c
zlanhe.c
zlanhp.c zlanhs.c zlanht.c zlansb.c zlansp.c zlansy.c zlantb.c
zlantp.c zlantr.c zlapll.c zlapmt.c zlaqgb.c zlaqge.c
zlaqhb.c zlaqhe.c zlaqhp.c zlaqp2.c zlaqps.c zlaqsb.c
zlaqr0.c zlaqr1.c zlaqr2.c zlaqr3.c zlaqr4.c zlaqr5.c
zlaqsp.c zlaqsy.c zlar1v.c zlar2v.c ilazlr.c ilazlc.c
zlarcm.c zlarf.c zlarfb.c zlarfb_gett.c
zlarfg.c zlarfgp.c zlarft.c
zlarfx.c zlarfy.c zlargv.c zlarnv.c zlarrv.c zlartg.c zlartv.c
zlarz.c zlarzb.c zlarzt.c zlascl.c zlaset.c zlasr.c
zlassq.c zlasyf.c zlasyf_rook.c zlasyf_rk.c zlasyf_aa.c
zlatbs.c zlatdf.c zlatps.c zlatrd.c zlatrs.c zlatrz.c
zpbcon.c zpbequ.c zpbrfs.c zpbstf.c zpbsv.c
zpbsvx.c zpbtf2.c zpbtrf.c zpbtrs.c zpocon.c zpoequ.c zporfs.c
zposv.c zposvx.c zpotrf2.c zpotri.c zpotrs.c zpstrf.c zpstf2.c
zppcon.c zppequ.c zpprfs.c zppsv.c zppsvx.c zpptrf.c zpptri.c zpptrs.c
zptcon.c zpteqr.c zptrfs.c zptsv.c zptsvx.c zpttrf.c zpttrs.c zptts2.c
zrot.c zspcon.c zsprfs.c zspsv.c
zspsvx.c zsptrf.c zsptri.c zsptrs.c zdrscl.c zstedc.c
zstegr.c zstein.c zsteqr.c zsycon.c
zsyrfs.c zsysv.c zsysvx.c zsytf2.c zsytrf.c zsytri.c
zsytri2.c zsytri2x.c zsyswapr.c
zsytrs.c zsytrs2.c
zsyconv.c zsyconvf.c zsyconvf_rook.c
zsytf2_rook.c zsytrf_rook.c zsytrs_rook.c zsytrs_aa.c zsytrs_aa_2stage.c
zsytri_rook.c zsycon_rook.c zsysv_rook.c
zsytf2_rk.c zsytrf_rk.c zsytrf_aa.c zsytrf_aa_2stage.c zsytrs_3.c
zsytri_3.c zsytri_3x.c zsycon_3.c zsysv_rk.c zsysv_aa.c zsysv_aa_2stage.c
ztbcon.c ztbrfs.c ztbtrs.c ztgevc.c ztgex2.c
ztgexc.c ztgsen.c ztgsja.c ztgsna.c ztgsy2.c ztgsyl.c ztpcon.c
ztprfs.c ztptri.c
ztptrs.c ztrcon.c ztrevc.c ztrevc3.c ztrexc.c ztrrfs.c ztrsen.c ztrsna.c
ztrsyl.c ztrtrs.c ztzrzf.c zung2l.c
zung2r.c zungbr.c zunghr.c zungl2.c zunglq.c zungql.c zungqr.c zungr2.c
zungrq.c zungtr.c zunm2l.c zunm2r.c zunmbr.c zunmhr.c zunml2.c zunm22.c
zunmlq.c zunmql.c zunmqr.c zunmr2.c zunmr3.c zunmrq.c zunmrz.c
zunmtr.c zupgtr.c
zupmtr.c izmax1.c dzsum1.c zstemr.c
zcgesv.c zcposv.c zlag2c.c clag2z.c zlat2c.c
zhfrk.c ztfttp.c zlanhf.c zpftrf.c zpftri.c zpftrs.c ztfsm.c ztftri.c
ztfttr.c ztpttf.c ztpttr.c ztrttf.c ztrttp.c
zgeequb.c zgbequb.c zsyequb.c zpoequb.c zheequb.c
zbbcsd.c zlapmr.c zunbdb.c zunbdb1.c zunbdb2.c zunbdb3.c zunbdb4.c
zunbdb5.c zunbdb6.c zuncsd.c zuncsd2by1.c
zgeqrt.c zgeqrt2.c zgeqrt3.c zgemqrt.c
ztpqrt.c ztpqrt2.c ztpmqrt.c ztprfb.c
ztplqt.c ztplqt2.c ztpmlqt.c
zgelqt.c zgelqt3.c zgemlqt.c
zgetsls.c zgetsqrhrt.c zgeqr.c zlatsqr.c zlamtsqr.c zgemqr.c
zgelq.c zlaswlq.c zlamswlq.c zgemlq.c
zhetrd_2stage.c zhetrd_he2hb.c zhetrd_hb2st.c zhb2st_kernels.c
zheevd_2stage.c zheev_2stage.c zheevx_2stage.c zheevr_2stage.c
zhbev_2stage.c zhbevx_2stage.c zhbevd_2stage.c zhegv_2stage.c
zgesvdq.c zlaunhr_col_getrfnp.c zlaunhr_col_getrfnp2.c
zungtsqr.c zungtsqr_row.c zunhr_col.c)
set(ZXLASRC zgesvxx.c zgerfsx.c zla_gerfsx_extended.c zla_geamv.c
zla_gercond_c.c zla_gercond_x.c zla_gerpvgrw.c zsysvxx.c zsyrfsx.c
zla_syrfsx_extended.c zla_syamv.c zla_syrcond_c.c zla_syrcond_x.c
zla_syrpvgrw.c zposvxx.c zporfsx.c zla_porfsx_extended.c
zla_porcond_c.c zla_porcond_x.c zla_porpvgrw.c zgbsvxx.c zgbrfsx.c
zla_gbrfsx_extended.c zla_gbamv.c zla_gbrcond_c.c zla_gbrcond_x.c
zla_gbrpvgrw.c zhesvxx.c zherfsx.c zla_herfsx_extended.c
zla_heamv.c zla_hercond_c.c zla_hercond_x.c zla_herpvgrw.c
zla_lin_berr.c zlarscl2.c zlascl2.c zla_wwaddw.c)
if(USE_XBLAS)
set(ALLXOBJ ${SXLASRC} ${DXLASRC} ${CXLASRC} ${ZXLASRC})
endif()
list(APPEND SLASRC DEPRECATED/sgegs.c DEPRECATED/sgegv.c
DEPRECATED/sgeqpf.c DEPRECATED/sgelsx.c DEPRECATED/sggsvd.c
DEPRECATED/sggsvp.c DEPRECATED/slahrd.c DEPRECATED/slatzm.c DEPRECATED/stzrqf.c)
list(APPEND DLASRC DEPRECATED/dgegs.c DEPRECATED/dgegv.c
DEPRECATED/dgeqpf.c DEPRECATED/dgelsx.c DEPRECATED/dggsvd.c
DEPRECATED/dggsvp.c DEPRECATED/dlahrd.c DEPRECATED/dlatzm.c DEPRECATED/dtzrqf.c)
list(APPEND CLASRC DEPRECATED/cgegs.c DEPRECATED/cgegv.c
DEPRECATED/cgeqpf.c DEPRECATED/cgelsx.c DEPRECATED/cggsvd.c
DEPRECATED/cggsvp.c DEPRECATED/clahrd.c DEPRECATED/clatzm.c DEPRECATED/ctzrqf.c)
list(APPEND ZLASRC DEPRECATED/zgegs.c DEPRECATED/zgegv.c
DEPRECATED/zgeqpf.c DEPRECATED/zgelsx.c DEPRECATED/zggsvd.c
DEPRECATED/zggsvp.c DEPRECATED/zlahrd.c DEPRECATED/zlatzm.c DEPRECATED/ztzrqf.c)
message(STATUS "Building deprecated routines")
set(DSLASRC spotrs.c)
set(ZCLASRC cpotrs.c)
set(SCATGEN slatm1.c slaran.c slarnd.c)
set(SMATGEN slatms.c slatme.c slatmr.c slatmt.c
slagge.c slagsy.c slakf2.c slarge.c slaror.c slarot.c slatm2.c
slatm3.c slatm5.c slatm6.c slatm7.c slahilb.c)
set(CMATGEN clatms.c clatme.c clatmr.c clatmt.c
clagge.c claghe.c clagsy.c clakf2.c clarge.c claror.c clarot.c
clatm1.c clarnd.c clatm2.c clatm3.c clatm5.c clatm6.c clahilb.c slatm7.c)
set(DZATGEN dlatm1.c dlaran.c dlarnd.c)
set(DMATGEN dlatms.c dlatme.c dlatmr.c dlatmt.c
dlagge.c dlagsy.c dlakf2.c dlarge.c dlaror.c dlarot.c dlatm2.c
dlatm3.c dlatm5.c dlatm6.c dlatm7.c dlahilb.c)
set(ZMATGEN zlatms.c zlatme.c zlatmr.c zlatmt.c
zlagge.c zlaghe.c zlagsy.c zlakf2.c zlarge.c zlaror.c zlarot.c
zlatm1.c zlarnd.c zlatm2.c zlatm3.c zlatm5.c zlatm6.c zlahilb.c dlatm7.c)
if(BUILD_SINGLE)
set(LA_REL_SRC ${SLASRC} ${DSLASRC} ${ALLAUX} ${SCLAUX})
set(LA_GEN_SRC ${SMATGEN} ${SCATGEN})
message(STATUS "Building Single Precision")
endif()
if(BUILD_DOUBLE)
set(LA_REL_SRC ${LA_REL_SRC} ${DLASRC} ${DSLASRC} ${ALLAUX} ${DZLAUX})
set(LA_GEN_SRC ${LA_GEN_SRC} ${DMATGEN} ${DZATGEN})
message(STATUS "Building Double Precision")
endif()
if(BUILD_COMPLEX)
set(LA_REL_SRC ${LA_REL_SRC} ${CLASRC} ${ZCLASRC} ${ALLAUX} ${SCLAUX})
SET(LA_GEN_SRC ${LA_GEN_SRC} ${CMATGEN} ${SCATGEN})
message(STATUS "Building Single Precision Complex")
endif()
if(BUILD_COMPLEX16)
set(LA_REL_SRC ${LA_REL_SRC} ${ZLASRC} ${ZCLASRC} ${ALLAUX} ${DZLAUX})
SET(LA_GEN_SRC ${LA_GEN_SRC} ${ZMATGEN} ${DZATGEN})
# for zlange/zlanhe
if (NOT BUILD_DOUBLE)
set (LA_REL_SRC ${LA_REL_SRC} dcombssq.c)
endif ()
message(STATUS "Building Double Precision Complex")
endif()
endif()
# add lapack-netlib folder to the sources
set(LA_SOURCES "")
foreach (LA_FILE ${LA_REL_SRC})
@@ -496,4 +990,9 @@ endforeach ()
foreach (LA_FILE ${LA_GEN_SRC})
list(APPEND LA_SOURCES "${NETLIB_LAPACK_DIR}/TESTING/MATGEN/${LA_FILE}")
endforeach ()
set_source_files_properties(${LA_SOURCES} PROPERTIES COMPILE_FLAGS "${LAPACK_FFLAGS}")
if (NOT C_LAPACK)
set_source_files_properties(${LA_SOURCES} PROPERTIES COMPILE_FLAGS "${LAPACK_FFLAGS}")
else ()
set_source_files_properties(${LA_SOURCES} PROPERTIES COMPILE_FLAGS "${LAPACK_CFLAGS}")
endif ()

+ 9
- 2
cmake/system.cmake View File

@@ -284,8 +284,15 @@ if (NOT NOFORTRAN)
# Fortran Compiler dependent settings
include("${PROJECT_SOURCE_DIR}/cmake/fc.cmake")
else ()
set(NO_LAPACK 1)
set(NO_LAPACKE 1)
if (NOT MSVC)
set(C_LAPACK 1)
if (INTERFACE64)
set (CCOMMON_OPT "${CCOMMON_OPT} -DLAPACK_ILP64")
endif ()
set(TIMER "NONE")
else ()
set (NO_LAPACK 1)
endif ()
endif ()

if (BINARY64)


+ 31
- 0
lapack-netlib/INSTALL/Makefile View File

@@ -4,6 +4,7 @@ include $(TOPSRCDIR)/make.inc
.PHONY: all testlsame testslamch testdlamch testsecond testdsecnd testieee testversion
all: testlsame testslamch testdlamch testsecond testdsecnd testieee testversion

ifneq ($(C_LAPACK), 1)
testlsame: lsame.o lsametst.o
$(FC) $(FFLAGS) $(LDFLAGS) -o $@ $^

@@ -27,6 +28,31 @@ testieee: tstiee.o
testversion: ilaver.o LAPACK_version.o
$(FC) $(FFLAGS) $(LDFLAGS) -o $@ $^

else
testlsame: lsame.o lsametst.o
$(CC) -O2 -o $@ $^

testslamch: slamch.o lsame.o slamchtst.o
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^

testdlamch: dlamch.o lsame.o dlamchtst.o
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^

testsecond: second_$(TIMER).o secondtst.o
@echo "[INFO] : TIMER value: $(TIMER) (given by make.inc)"
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^

testdsecnd: dsecnd_$(TIMER).o dsecndtst.o
@echo "[INFO] : TIMER value: $(TIMER) (given by make.inc)"
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^

testieee: tstiee.o
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^

testversion: ilaver.o LAPACK_version.o
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^
endif

.PHONY: run
run: all
./testlsame
@@ -46,5 +72,10 @@ cleanexe:
cleantest:
rm -f core

ifneq ($(C_LAPACK), 1)
slamch.o: slamch.f ; $(FC) $(FFLAGS_NOOPT) -c -o $@ $<
dlamch.o: dlamch.f ; $(FC) $(FFLAGS_NOOPT) -c -o $@ $<
else
slamch.o: slamch.c ; $(CC) $(CFLAGS) -c -o $@ $<
dlamch.o: dlamch.c ; $(CC) $(CFLAGS) -c -o $@ $<
endif

+ 1379
- 0
lapack-netlib/INSTALL/dlamch.c
File diff suppressed because it is too large
View File


+ 445
- 0
lapack-netlib/INSTALL/dsecnd_INT_ETIME.c View File

@@ -0,0 +1,445 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

typedef int integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) ceil(w)
#define myhuge_(w) HUGE_VAL
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b DSECND returns nothing */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* Definition: */
/* =========== */

/* DOUBLE PRECISION FUNCTION DSECND( ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSECND returns nothing instead of returning the user time for a process in seconds. */
/* > If you are using that routine, it means that neither EXTERNAL ETIME, */
/* > EXTERNAL ETIME_, INTERNAL ETIME, INTERNAL CPU_TIME is available on */
/* > your machine. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup auxOTHERauxiliary */

/* ===================================================================== */
doublereal dsecnd_(void)
{
/* System generated locals */
doublereal ret_val;


/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */

/* ===================================================================== */

ret_val = 0.;
return ret_val;

/* End of DSECND */

} /* dsecnd_ */


+ 445
- 0
lapack-netlib/INSTALL/dsecnd_NONE.c View File

@@ -0,0 +1,445 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

typedef int integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) ceil(w)
#define myhuge_(w) HUGE_VAL
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b DSECND returns nothing */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* Definition: */
/* =========== */

/* DOUBLE PRECISION FUNCTION DSECND( ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSECND returns nothing instead of returning the user time for a process in seconds. */
/* > If you are using that routine, it means that neither EXTERNAL ETIME, */
/* > EXTERNAL ETIME_, INTERNAL ETIME, INTERNAL CPU_TIME is available on */
/* > your machine. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup auxOTHERauxiliary */

/* ===================================================================== */
doublereal dsecnd_(void)
{
/* System generated locals */
doublereal ret_val;


/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */

/* ===================================================================== */

ret_val = 0.;
return ret_val;

/* End of DSECND */

} /* dsecnd_ */


+ 458
- 0
lapack-netlib/INSTALL/ilaver.c View File

@@ -0,0 +1,458 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

typedef int integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) ceil(w)
#define myhuge_(w) HUGE_VAL
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b ILAVER returns the LAPACK version. */
/* * */
/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* Definition: */
/* =========== */

/* SUBROUTINE ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) */

/* INTEGER VERS_MAJOR, VERS_MINOR, VERS_PATCH */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This subroutine returns the LAPACK version. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[out] VERS_MAJOR */
/* > VERS_MAJOR is INTEGER */
/* > return the lapack major version */
/* > */
/* > \param[out] VERS_MINOR */
/* > VERS_MINOR is INTEGER */
/* > return the lapack minor version from the major version */
/* > */
/* > \param[out] VERS_PATCH */
/* > VERS_PATCH is INTEGER */
/* > return the lapack patch version from the minor version */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date November 2019 */

/* > \ingroup auxOTHERauxiliary */

/* ===================================================================== */
/* Subroutine */ int ilaver_(integer *vers_major__, integer *vers_minor__,
integer *vers_patch__)
{

/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */

/* ===================================================================== */

/* ===================================================================== */
*vers_major__ = 3;
*vers_minor__ = 9;
*vers_patch__ = 0;
/* ===================================================================== */

return 0;
} /* ilaver_ */


+ 521
- 0
lapack-netlib/INSTALL/lsame.c View File

@@ -0,0 +1,521 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

typedef int integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) ceil(w)
#define myhuge_(w) HUGE_VAL
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b LSAME */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* Definition: */
/* =========== */

/* LOGICAL FUNCTION LSAME( CA, CB ) */

/* CHARACTER CA, CB */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > LSAME returns .TRUE. if CA is the same letter as CB regardless of */
/* > case. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] CA */
/* > \verbatim */
/* > \endverbatim */
/* > */
/* > \param[in] CB */
/* > \verbatim */
/* > CA and CB specify the single characters to be compared. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup auxOTHERauxiliary */

/* ===================================================================== */
logical lsame_(char *ca, char *cb)
{
/* System generated locals */
logical ret_val;

/* Local variables */
integer inta, intb, zcode;


/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test if the characters are equal */

ret_val = *(unsigned char *)ca == *(unsigned char *)cb;
if (ret_val) {
return ret_val;
}

/* Now test for equivalence if both characters are alphabetic. */

zcode = 'Z';

/* Use 'Z' rather than 'A' so that ASCII can be detected on Prime */
/* machines, on which ICHAR returns a value with bit 8 set. */
/* ICHAR('A') on Prime machines returns 193 which is the same as */
/* ICHAR('A') on an EBCDIC machine. */

inta = *(unsigned char *)ca;
intb = *(unsigned char *)cb;

if (zcode == 90 || zcode == 122) {

/* ASCII is assumed - ZCODE is the ASCII code of either lower or */
/* upper case 'Z'. */

if (inta >= 97 && inta <= 122) {
inta += -32;
}
if (intb >= 97 && intb <= 122) {
intb += -32;
}

} else if (zcode == 233 || zcode == 169) {

/* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or */
/* upper case 'Z'. */

if (inta >= 129 && inta <= 137 || inta >= 145 && inta <= 153 || inta
>= 162 && inta <= 169) {
inta += 64;
}
if (intb >= 129 && intb <= 137 || intb >= 145 && intb <= 153 || intb
>= 162 && intb <= 169) {
intb += 64;
}

} else if (zcode == 218 || zcode == 250) {

/* ASCII is assumed, on Prime machines - ZCODE is the ASCII code */
/* plus 128 of either lower or upper case 'Z'. */

if (inta >= 225 && inta <= 250) {
inta += -32;
}
if (intb >= 225 && intb <= 250) {
intb += -32;
}
}
ret_val = inta == intb;

/* RETURN */

/* End of LSAME */

return ret_val;
} /* lsame_ */


+ 595
- 0
lapack-netlib/INSTALL/lsametst.c View File

@@ -0,0 +1,595 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

typedef int integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) ceil(w)
#define myhuge_(w) HUGE_VAL
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__9 = 9;
static integer c__1 = 1;
static integer c__3 = 3;

/* > \brief \b LSAMETST */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* Definition: */
/* =========== */

/* PROGRAM LSAMETST */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup auxOTHERauxiliary */

/* ===================================================================== PROGRAM LSAMETST */

/* -- LAPACK test routine (version 3.7.0) -- */

/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */

/* ===================================================================== */
/* Main program */ main(void)
{
/* Format strings */
static char fmt_9999[] = "(\002 *** Error: LSAME( \002,a1,\002, \002,"
"a1,\002) is .FALSE.\002)";
static char fmt_9998[] = "(\002 *** Error: LSAME( \002,a1,\002, \002,"
"a1,\002) is .TRUE.\002)";

/* System generated locals */
integer i__1;

/* Local variables */
extern logical lsame_(char *, char *);
integer i1, i2;

/* Fortran I/O blocks */
static cilist io___3 = { 0, 6, 0, 0, 0 };
static cilist io___4 = { 0, 6, 0, 0, 0 };
static cilist io___5 = { 0, 6, 0, fmt_9999, 0 };
static cilist io___6 = { 0, 6, 0, fmt_9999, 0 };
static cilist io___7 = { 0, 6, 0, fmt_9999, 0 };
static cilist io___8 = { 0, 6, 0, fmt_9999, 0 };
static cilist io___9 = { 0, 6, 0, fmt_9998, 0 };
static cilist io___10 = { 0, 6, 0, fmt_9998, 0 };
static cilist io___11 = { 0, 6, 0, fmt_9998, 0 };
static cilist io___12 = { 0, 6, 0, fmt_9998, 0 };
static cilist io___13 = { 0, 6, 0, fmt_9998, 0 };
static cilist io___14 = { 0, 6, 0, fmt_9998, 0 };
static cilist io___15 = { 0, 6, 0, fmt_9998, 0 };
static cilist io___16 = { 0, 6, 0, fmt_9998, 0 };
static cilist io___17 = { 0, 6, 0, 0, 0 };




/* Determine the character set. */

i1 = 'A';
i2 = 'a';
if (i2 - i1 == 32) {
/*
s_wsle(&io___3);
do_lio(&c__9, &c__1, " ASCII character set", (ftnlen)20);
e_wsle();
*/
printf(" ASCII character set");
} else {

printf(" Non-ASCII character set, IOFF should be %d",i2-i1);
/*
s_wsle(&io___4);
do_lio(&c__9, &c__1, " Non-ASCII character set, IOFF should be ", (
ftnlen)41);
i__1 = i2 - i1;
do_lio(&c__3, &c__1, (char *)&i__1, (ftnlen)sizeof(integer));
e_wsle();
*/
}

/* Test LSAME. */

if (! lsame_("A", "A")) {
printf(" *** Error: LSAME(A,A) is .FALSE.\n");
/* s_wsfe(&io___5);
do_fio(&c__1, "A", (ftnlen)1);
do_fio(&c__1, "A", (ftnlen)1);
e_wsfe();
*/
}
if (! lsame_("A", "a")) {
printf(" *** Error: LSAME(A,a) is .FALSE.\n");
/*
s_wsfe(&io___6);
do_fio(&c__1, "A", (ftnlen)1);
do_fio(&c__1, "a", (ftnlen)1);
e_wsfe();
*/
}
if (! lsame_("a", "A")) {
printf(" *** Error: LSAME(a,A) is .FALSE.\n");
/* s_wsfe(&io___7);
do_fio(&c__1, "a", (ftnlen)1);
do_fio(&c__1, "A", (ftnlen)1);
e_wsfe();
*/
}
if (! lsame_("a", "a")) {
printf(" *** Error: LSAME(a,a) is .FALSE.\n");
/* s_wsfe(&io___8);
do_fio(&c__1, "a", (ftnlen)1);
do_fio(&c__1, "a", (ftnlen)1);
e_wsfe();
*/
}
if (lsame_("A", "B")) {
printf(" *** Error: LSAME(A,B) is .TRUE.\n");
/* s_wsfe(&io___9);
do_fio(&c__1, "A", (ftnlen)1);
do_fio(&c__1, "B", (ftnlen)1);
e_wsfe();
*/
}
if (lsame_("A", "b")) {
printf(" *** Error: LSAME(A,b) is .TRUE.\n");
/* s_wsfe(&io___10);
do_fio(&c__1, "A", (ftnlen)1);
do_fio(&c__1, "b", (ftnlen)1);
e_wsfe();
*/
}
if (lsame_("a", "B")) {
printf(" *** Error: LSAME(a,B) is .TRUE.\n");
/* s_wsfe(&io___11);
do_fio(&c__1, "a", (ftnlen)1);
do_fio(&c__1, "B", (ftnlen)1);
e_wsfe();
*/
}
if (lsame_("a", "b")) {
printf(" *** Error: LSAME(a,b) is .TRUE.\n");
/* s_wsfe(&io___12);
do_fio(&c__1, "a", (ftnlen)1);
do_fio(&c__1, "b", (ftnlen)1);
e_wsfe();
*/
}
if (lsame_("O", "/")) {
printf(" *** Error: LSAME(O,/) is .TRUE.\n");
/* s_wsfe(&io___13);
do_fio(&c__1, "O", (ftnlen)1);
do_fio(&c__1, "/", (ftnlen)1);
e_wsfe();
*/
}
if (lsame_("/", "O")) {
printf(" *** Error: LSAME(/,O) is .TRUE.\n");
/* s_wsfe(&io___14);
do_fio(&c__1, "/", (ftnlen)1);
do_fio(&c__1, "O", (ftnlen)1);
e_wsfe();
*/
}
if (lsame_("o", "/")) {
printf(" *** Error: LSAME(o,/) is .TRUE.\n");
/* s_wsfe(&io___15);
do_fio(&c__1, "o", (ftnlen)1);
do_fio(&c__1, "/", (ftnlen)1);
e_wsfe();
*/
}
if (lsame_("/", "o")) {
printf(" *** Error: LSAME(/,o) is .TRUE.\n");
/* s_wsfe(&io___16);
do_fio(&c__1, "/", (ftnlen)1);
do_fio(&c__1, "o", (ftnlen)1);
e_wsfe();
*/
}
printf(" Tests completed");

/* s_wsle(&io___17);
do_lio(&c__9, &c__1, " Tests completed", (ftnlen)16);
e_wsle();
*/
return 0;
} /* MAIN__ */


+ 445
- 0
lapack-netlib/INSTALL/second_INT_ETIME.c View File

@@ -0,0 +1,445 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

typedef int integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) ceil(w)
#define myhuge_(w) HUGE_VAL
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b SECOND returns nothing */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* Definition: */
/* =========== */

/* REAL FUNCTION SECOND( ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > SECOND returns nothing instead of returning the user time for a process in seconds. */
/* > If you are using that routine, it means that neither EXTERNAL ETIME, */
/* > EXTERNAL ETIME_, INTERNAL ETIME, INTERNAL CPU_TIME is available on */
/* > your machine. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup auxOTHERauxiliary */

/* ===================================================================== */
real second_(void)
{
/* System generated locals */
real ret_val;


/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */

/* ===================================================================== */

ret_val = 0.f;
return ret_val;

/* End of SECOND */

} /* second_ */


+ 445
- 0
lapack-netlib/INSTALL/second_NONE.c View File

@@ -0,0 +1,445 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

typedef int integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) ceil(w)
#define myhuge_(w) HUGE_VAL
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b SECOND returns nothing */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* Definition: */
/* =========== */

/* REAL FUNCTION SECOND( ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > SECOND returns nothing instead of returning the user time for a process in seconds. */
/* > If you are using that routine, it means that neither EXTERNAL ETIME, */
/* > EXTERNAL ETIME_, INTERNAL ETIME, INTERNAL CPU_TIME is available on */
/* > your machine. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup auxOTHERauxiliary */

/* ===================================================================== */
real second_(void)
{
/* System generated locals */
real ret_val;


/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */

/* ===================================================================== */

ret_val = 0.f;
return ret_val;

/* End of SECOND */

} /* second_ */


+ 566
- 0
lapack-netlib/INSTALL/secondtst.c View File

@@ -0,0 +1,566 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

typedef int integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) ceil(w)
#define myhuge_(w) HUGE_VAL
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static integer c__1000 = 1000;

/* > \brief \b SECONDTST */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */


/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date November 2017 */

/* > \ingroup auxOTHERcomputational */

/* ===================================================================== PROGRAM SECONDTST */

/* -- LAPACK test routine (version 3.8.0) -- */

/* -- LAPACK computational routine (version 3.8.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2017 */

/* ===================================================================== */

/* Main program */ main(void)
{
/* Format strings */
static char fmt_9999[] = "(\002 Time for \002,g10.3,\002 SAXPY ops = "
"\002,g10.3,\002 seconds\002)";
static char fmt_9998[] = "(\002 SAXPY performance rate = \002,g10"
".3,\002 mflops \002)";
static char fmt_9994[] = "(\002 *** Warning: Time for operations was le"
"ss or equal\002,\002 than zero => timing in TESTING might be dub"
"ious\002)";
static char fmt_9997[] = "(\002 Including SECOND, time = \002,g10"
".3,\002 seconds\002)";
static char fmt_9996[] = "(\002 Average time for SECOND = \002,g10"
".3,\002 milliseconds\002)";
static char fmt_9995[] = "(\002 Equivalent floating point ops = \002,g10"
".3,\002 ops\002)";

/* System generated locals */
real r__1;

/* Local variables */
integer i__, j;
real alpha, x[1000], y[1000], total;
extern /* Subroutine */ int mysub_(integer *, real *, real *);
real t1, t2;
extern real second_(void);
real tnosec, avg;

/* Fortran I/O blocks */
static cilist io___10 = { 0, 6, 0, fmt_9999, 0 };
static cilist io___11 = { 0, 6, 0, fmt_9998, 0 };
static cilist io___12 = { 0, 6, 0, fmt_9994, 0 };
static cilist io___13 = { 0, 6, 0, fmt_9997, 0 };
static cilist io___15 = { 0, 6, 0, fmt_9996, 0 };
static cilist io___16 = { 0, 6, 0, fmt_9995, 0 };



total = 1e8f;

/* Initialize X and Y */

for (i__ = 1; i__ <= 1000; ++i__) {
x[i__ - 1] = 1.f / (real) i__;
y[i__ - 1] = (real) (1000 - i__) / 1e3f;
/* L10: */
}
alpha = .315f;

/* Time TOTAL SAXPY operations */

t1 = second_();
for (j = 1; j <= 50000; ++j) {
for (i__ = 1; i__ <= 1000; ++i__) {
y[i__ - 1] += alpha * x[i__ - 1];
/* L20: */
}
alpha = -alpha;
/* L30: */
}
t2 = second_();
tnosec = t2 - t1;
/*
s_wsfe(&io___10);
do_fio(&c__1, (char *)&total, (ftnlen)sizeof(real));
do_fio(&c__1, (char *)&tnosec, (ftnlen)sizeof(real));
e_wsfe();
if (tnosec > 0.f) {
s_wsfe(&io___11);
r__1 = total / 1e6f / tnosec;
do_fio(&c__1, (char *)&r__1, (ftnlen)sizeof(real));
e_wsfe();
} else {
s_wsfe(&io___12);
e_wsfe();
}
*/
printf("Time for %f10.3 SAXPY ops = %f10.3 seconds\n",total,tnosec);
if (tnosec > 0.f) {
printf("SAXPY performance rate = %f10.3 mflops\n",total/1.e6/tnosec );
} else {
printf("*** Warning: Time for operations was less or equal than zero => timing in TESTING might be dubious\n" );
}
/* Time TOTAL SAXPY operations with SECOND in the outer loop */

t1 = second_();
for (j = 1; j <= 50000; ++j) {
for (i__ = 1; i__ <= 1000; ++i__) {
y[i__ - 1] += alpha * x[i__ - 1];
/* L40: */
}
alpha = -alpha;
t2 = second_();
/* L50: */
}

/* Compute the time used in milliseconds used by an average call */
/* to SECOND. */
/*
s_wsfe(&io___13);
r__1 = t2 - t1;
do_fio(&c__1, (char *)&r__1, (ftnlen)sizeof(real));
e_wsfe();
*/
printf("Including SECOND, time = %f10.3 seconds\n",t2-t1);
avg = (t2 - t1 - tnosec) * 1e3f / 5e4f;
if (avg > 0.f) {
printf("Average time for SECOND = %f10.3 milliseconds\n",avg );

/*
s_wsfe(&io___15);
do_fio(&c__1, (char *)&avg, (ftnlen)sizeof(real));
e_wsfe();
*/
}

/* Compute the equivalent number of floating point operations used */
/* by an average call to SECOND. */

if (avg > 0.f && tnosec > 0.f) {
printf("Equivalent floating point ops = %f10.3 ops\n", avg/1000*total/tnosec);
/* s_wsfe(&io___16);
r__1 = avg / 1000 * total / tnosec;
do_fio(&c__1, (char *)&r__1, (ftnlen)sizeof(real));
e_wsfe();
*/
}

mysub_(&c__1000, x, y);
return 0;
} /* MAIN__ */

/* Subroutine */ int mysub_(integer *n, real *x, real *y)
{
/* Parameter adjustments */
--y;
--x;

/* Function Body */
return 0;
} /* mysub_ */


+ 1378
- 0
lapack-netlib/INSTALL/slamch.c
File diff suppressed because it is too large
View File


+ 1019
- 0
lapack-netlib/SRC/DEPRECATED/cgegs.c
File diff suppressed because it is too large
View File


+ 1252
- 0
lapack-netlib/SRC/DEPRECATED/cgegv.c
File diff suppressed because it is too large
View File


+ 928
- 0
lapack-netlib/SRC/DEPRECATED/cgelsx.c View File

@@ -0,0 +1,928 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {0.f,0.f};
static complex c_b2 = {1.f,0.f};
static integer c__0 = 0;
static integer c__2 = 2;
static integer c__1 = 1;

/* > \brief <b> CGELSX solves overdetermined or underdetermined systems for GE matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGELSX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsx.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsx.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsx.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
/* WORK, RWORK, INFO ) */

/* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK */
/* REAL RCOND */
/* INTEGER JPVT( * ) */
/* REAL RWORK( * ) */
/* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine CGELSY. */
/* > */
/* > CGELSX computes the minimum-norm solution to a complex linear least */
/* > squares problem: */
/* > minimize || A * X - B || */
/* > using a complete orthogonal factorization of A. A is an M-by-N */
/* > matrix which may be rank-deficient. */
/* > */
/* > Several right hand side vectors b and solution vectors x can be */
/* > handled in a single call; they are stored as the columns of the */
/* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/* > matrix X. */
/* > */
/* > The routine first computes a QR factorization with column pivoting: */
/* > A * P = Q * [ R11 R12 ] */
/* > [ 0 R22 ] */
/* > with R11 defined as the largest leading submatrix whose estimated */
/* > condition number is less than 1/RCOND. The order of R11, RANK, */
/* > is the effective rank of A. */
/* > */
/* > Then, R22 is considered to be negligible, and R12 is annihilated */
/* > by unitary transformations from the right, arriving at the */
/* > complete orthogonal factorization: */
/* > A * P = Q * [ T11 0 ] * Z */
/* > [ 0 0 ] */
/* > The minimum-norm solution is then */
/* > X = P * Z**H [ inv(T11)*Q1**H*B ] */
/* > [ 0 ] */
/* > where Q1 consists of the first RANK columns of Q. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of */
/* > columns of matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A has been overwritten by details of its */
/* > complete orthogonal factorization. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,NRHS) */
/* > On entry, the M-by-NRHS right hand side matrix B. */
/* > On exit, the N-by-NRHS solution matrix X. */
/* > If m >= n and RANK = n, the residual sum-of-squares for */
/* > the solution in the i-th column is given by the sum of */
/* > squares of elements N+1:M in that column. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(i) .ne. 0, the i-th column of A is an */
/* > initial column, otherwise it is a free column. Before */
/* > the QR factorization of A, all initial columns are */
/* > permuted to the leading positions; only the remaining */
/* > free columns are moved as a result of column pivoting */
/* > during the factorization. */
/* > On exit, if JPVT(i) = k, then the i-th column of A*P */
/* > was the k-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[in] RCOND */
/* > \verbatim */
/* > RCOND is REAL */
/* > RCOND is used to determine the effective rank of A, which */
/* > is defined as the order of the largest leading triangular */
/* > submatrix R11 in the QR factorization with pivoting of A, */
/* > whose estimated condition number < 1/RCOND. */
/* > \endverbatim */
/* > */
/* > \param[out] RANK */
/* > \verbatim */
/* > RANK is INTEGER */
/* > The effective rank of A, i.e., the order of the submatrix */
/* > R11. This is the same as the order of the submatrix T11 */
/* > in the complete orthogonal factorization of A. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension */
/* > (f2cmin(M,N) + f2cmax( N, 2*f2cmin(M,N)+NRHS )), */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEsolve */

/* ===================================================================== */
/* Subroutine */ int cgelsx_(integer *m, integer *n, integer *nrhs, complex *
a, integer *lda, complex *b, integer *ldb, integer *jpvt, real *rcond,
integer *rank, complex *work, real *rwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
complex q__1;

/* Local variables */
real anrm, bnrm, smin, smax;
integer i__, j, k, iascl, ibscl, ismin, ismax;
complex c1, c2;
extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *,
integer *, integer *, complex *, complex *, integer *, complex *,
integer *), claic1_(integer *,
integer *, complex *, real *, complex *, complex *, real *,
complex *, complex *);
complex s1, s2, t1, t2;
extern /* Subroutine */ int cunm2r_(char *, char *, integer *, integer *,
integer *, complex *, integer *, complex *, complex *, integer *,
complex *, integer *), slabad_(real *, real *);
extern real clange_(char *, integer *, integer *, complex *, integer *,
real *);
integer mn;
extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, complex *, integer *, integer *), cgeqpf_(integer *, integer *, complex *, integer *,
integer *, complex *, complex *, real *, integer *);
extern real slamch_(char *);
extern /* Subroutine */ int claset_(char *, integer *, integer *, complex
*, complex *, complex *, integer *), xerbla_(char *,
integer *);
real bignum;
extern /* Subroutine */ int clatzm_(char *, integer *, integer *, complex
*, integer *, complex *, complex *, complex *, integer *, complex
*);
real sminpr;
extern /* Subroutine */ int ctzrqf_(integer *, integer *, complex *,
integer *, complex *, integer *);
real smaxpr, smlnum;


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--jpvt;
--work;
--rwork;

/* Function Body */
mn = f2cmin(*m,*n);
ismin = mn + 1;
ismax = (mn << 1) + 1;

/* Test the input arguments. */

*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < f2cmax(1,*m)) {
*info = -5;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = f2cmax(1,*m);
if (*ldb < f2cmax(i__1,*n)) {
*info = -7;
}
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGELSX", &i__1);
return 0;
}

/* Quick return if possible */

/* Computing MIN */
i__1 = f2cmin(*m,*n);
if (f2cmin(i__1,*nrhs) == 0) {
*rank = 0;
return 0;
}

/* Get machine parameters */

smlnum = slamch_("S") / slamch_("P");
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);

/* Scale A, B if f2cmax elements outside range [SMLNUM,BIGNUM] */

anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
iascl = 0;
if (anrm > 0.f && anrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info);
iascl = 1;
} else if (anrm > bignum) {

/* Scale matrix norm down to BIGNUM */

clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info);
iascl = 2;
} else if (anrm == 0.f) {

/* Matrix all zero. Return zero solution. */

i__1 = f2cmax(*m,*n);
claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
*rank = 0;
goto L100;
}

bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
ibscl = 0;
if (bnrm > 0.f && bnrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 1;
} else if (bnrm > bignum) {

/* Scale matrix norm down to BIGNUM */

clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 2;
}

/* Compute QR factorization with column pivoting of A: */
/* A * P = Q * R */

cgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &
rwork[1], info);

/* complex workspace MN+N. Real workspace 2*N. Details of Householder */
/* rotations stored in WORK(1:MN). */

/* Determine RANK using incremental condition estimation */

i__1 = ismin;
work[i__1].r = 1.f, work[i__1].i = 0.f;
i__1 = ismax;
work[i__1].r = 1.f, work[i__1].i = 0.f;
smax = c_abs(&a[a_dim1 + 1]);
smin = smax;
if (c_abs(&a[a_dim1 + 1]) == 0.f) {
*rank = 0;
i__1 = f2cmax(*m,*n);
claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
goto L100;
} else {
*rank = 1;
}

L10:
if (*rank < mn) {
i__ = *rank + 1;
claic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &sminpr, &s1, &c1);
claic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &smaxpr, &s2, &c2);

if (smaxpr * *rcond <= sminpr) {
i__1 = *rank;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = ismin + i__ - 1;
i__3 = ismin + i__ - 1;
q__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, q__1.i =
s1.r * work[i__3].i + s1.i * work[i__3].r;
work[i__2].r = q__1.r, work[i__2].i = q__1.i;
i__2 = ismax + i__ - 1;
i__3 = ismax + i__ - 1;
q__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, q__1.i =
s2.r * work[i__3].i + s2.i * work[i__3].r;
work[i__2].r = q__1.r, work[i__2].i = q__1.i;
/* L20: */
}
i__1 = ismin + *rank;
work[i__1].r = c1.r, work[i__1].i = c1.i;
i__1 = ismax + *rank;
work[i__1].r = c2.r, work[i__1].i = c2.i;
smin = sminpr;
smax = smaxpr;
++(*rank);
goto L10;
}
}

/* Logically partition R = [ R11 R12 ] */
/* [ 0 R22 ] */
/* where R11 = R(1:RANK,1:RANK) */

/* [R11,R12] = [ T11, 0 ] * Y */

if (*rank < *n) {
ctzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
}

/* Details of Householder rotations stored in WORK(MN+1:2*MN) */

/* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS) */

cunm2r_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, &
work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], info);

/* workspace NRHS */

/* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

ctrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[
a_offset], lda, &b[b_offset], ldb);

i__1 = *n;
for (i__ = *rank + 1; i__ <= i__1; ++i__) {
i__2 = *nrhs;
for (j = 1; j <= i__2; ++j) {
i__3 = i__ + j * b_dim1;
b[i__3].r = 0.f, b[i__3].i = 0.f;
/* L30: */
}
/* L40: */
}

/* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS) */

if (*rank < *n) {
i__1 = *rank;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n - *rank + 1;
r_cnjg(&q__1, &work[mn + i__]);
clatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda,
&q__1, &b[i__ + b_dim1], &b[*rank + 1 + b_dim1], ldb, &
work[(mn << 1) + 1]);
/* L50: */
}
}

/* workspace NRHS */

/* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = (mn << 1) + i__;
work[i__3].r = 1.f, work[i__3].i = 0.f;
/* L60: */
}
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = (mn << 1) + i__;
if (work[i__3].r == 1.f && work[i__3].i == 0.f) {
if (jpvt[i__] != i__) {
k = i__;
i__3 = k + j * b_dim1;
t1.r = b[i__3].r, t1.i = b[i__3].i;
i__3 = jpvt[k] + j * b_dim1;
t2.r = b[i__3].r, t2.i = b[i__3].i;
L70:
i__3 = jpvt[k] + j * b_dim1;
b[i__3].r = t1.r, b[i__3].i = t1.i;
i__3 = (mn << 1) + k;
work[i__3].r = 0.f, work[i__3].i = 0.f;
t1.r = t2.r, t1.i = t2.i;
k = jpvt[k];
i__3 = jpvt[k] + j * b_dim1;
t2.r = b[i__3].r, t2.i = b[i__3].i;
if (jpvt[k] != i__) {
goto L70;
}
i__3 = i__ + j * b_dim1;
b[i__3].r = t1.r, b[i__3].i = t1.i;
i__3 = (mn << 1) + k;
work[i__3].r = 0.f, work[i__3].i = 0.f;
}
}
/* L80: */
}
/* L90: */
}

/* Undo scaling */

if (iascl == 1) {
clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
info);
clascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
lda, info);
} else if (iascl == 2) {
clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
info);
clascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
lda, info);
}
if (ibscl == 1) {
clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
} else if (ibscl == 2) {
clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
}

L100:

return 0;

/* End of CGELSX */

} /* cgelsx_ */


+ 764
- 0
lapack-netlib/SRC/DEPRECATED/cgeqpf.c View File

@@ -0,0 +1,764 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b CGEQPF */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEQPF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqpf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqpf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqpf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* INTEGER JPVT( * ) */
/* REAL RWORK( * ) */
/* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine CGEQP3. */
/* > */
/* > CGEQPF computes a QR factorization with column pivoting of a */
/* > complex M-by-N matrix A: A*P = Q*R. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0 */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the upper triangle of the array contains the */
/* > f2cmin(M,N)-by-N upper triangular matrix R; the elements */
/* > below the diagonal, together with the array TAU, */
/* > represent the unitary matrix Q as a product of */
/* > f2cmin(m,n) elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/* > to the front of A*P (a leading column); if JPVT(i) = 0, */
/* > the i-th column of A is a free column. */
/* > On exit, if JPVT(i) = k, then the i-th column of A*P */
/* > was the k-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(n) */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */
/* > */
/* > The matrix P is represented in jpvt as follows: If */
/* > jpvt(j) = i */
/* > then the jth column of P is the ith canonical unit vector. */
/* > */
/* > Partial column norm updating strategy modified by */
/* > Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
/* > University of Zagreb, Croatia. */
/* > -- April 2011 -- */
/* > For more details see LAPACK Working Note 176. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgeqpf_(integer *m, integer *n, complex *a, integer *lda,
integer *jpvt, complex *tau, complex *work, real *rwork, integer *
info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
real r__1, r__2;
complex q__1;

/* Local variables */
real temp, temp2;
integer i__, j;
real tol3z;
extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
, integer *, complex *, complex *, integer *, complex *),
cswap_(integer *, complex *, integer *, complex *, integer *);
integer itemp;
extern /* Subroutine */ int cgeqr2_(integer *, integer *, complex *,
integer *, complex *, complex *, integer *);
extern real scnrm2_(integer *, complex *, integer *);
extern /* Subroutine */ int cunm2r_(char *, char *, integer *, integer *,
integer *, complex *, integer *, complex *, complex *, integer *,
complex *, integer *);
integer ma, mn;
extern /* Subroutine */ int clarfg_(integer *, complex *, complex *,
integer *, complex *);
extern real slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer isamax_(integer *, real *, integer *);
complex aii;
integer pvt;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--jpvt;
--tau;
--work;
--rwork;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEQPF", &i__1);
return 0;
}

mn = f2cmin(*m,*n);
tol3z = sqrt(slamch_("Epsilon"));

/* Move initial columns up front */

itemp = 1;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (jpvt[i__] != 0) {
if (i__ != itemp) {
cswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1],
&c__1);
jpvt[i__] = jpvt[itemp];
jpvt[itemp] = i__;
} else {
jpvt[i__] = i__;
}
++itemp;
} else {
jpvt[i__] = i__;
}
/* L10: */
}
--itemp;

/* Compute the QR factorization and update remaining columns */

if (itemp > 0) {
ma = f2cmin(itemp,*m);
cgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
if (ma < *n) {
i__1 = *n - ma;
cunm2r_("Left", "Conjugate transpose", m, &i__1, &ma, &a[a_offset]
, lda, &tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1],
info);
}
}

if (itemp < mn) {

/* Initialize partial column norms. The first n elements of */
/* work store the exact column norms. */

i__1 = *n;
for (i__ = itemp + 1; i__ <= i__1; ++i__) {
i__2 = *m - itemp;
rwork[i__] = scnrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
rwork[*n + i__] = rwork[i__];
/* L20: */
}

/* Compute factorization */

i__1 = mn;
for (i__ = itemp + 1; i__ <= i__1; ++i__) {

/* Determine ith pivot column and swap if necessary */

i__2 = *n - i__ + 1;
pvt = i__ - 1 + isamax_(&i__2, &rwork[i__], &c__1);

if (pvt != i__) {
cswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
c__1);
itemp = jpvt[pvt];
jpvt[pvt] = jpvt[i__];
jpvt[i__] = itemp;
rwork[pvt] = rwork[i__];
rwork[*n + pvt] = rwork[*n + i__];
}

/* Generate elementary reflector H(i) */

i__2 = i__ + i__ * a_dim1;
aii.r = a[i__2].r, aii.i = a[i__2].i;
i__2 = *m - i__ + 1;
/* Computing MIN */
i__3 = i__ + 1;
clarfg_(&i__2, &aii, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1, &tau[
i__]);
i__2 = i__ + i__ * a_dim1;
a[i__2].r = aii.r, a[i__2].i = aii.i;

if (i__ < *n) {

/* Apply H(i) to A(i:m,i+1:n) from the left */

i__2 = i__ + i__ * a_dim1;
aii.r = a[i__2].r, aii.i = a[i__2].i;
i__2 = i__ + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;
i__2 = *m - i__ + 1;
i__3 = *n - i__;
r_cnjg(&q__1, &tau[i__]);
clarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
q__1, &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
i__2 = i__ + i__ * a_dim1;
a[i__2].r = aii.r, a[i__2].i = aii.i;
}

/* Update partial column norms */

i__2 = *n;
for (j = i__ + 1; j <= i__2; ++j) {
if (rwork[j] != 0.f) {

/* NOTE: The following 4 lines follow from the analysis in */
/* Lapack Working Note 176. */

temp = c_abs(&a[i__ + j * a_dim1]) / rwork[j];
/* Computing MAX */
r__1 = 0.f, r__2 = (temp + 1.f) * (1.f - temp);
temp = f2cmax(r__1,r__2);
/* Computing 2nd power */
r__1 = rwork[j] / rwork[*n + j];
temp2 = temp * (r__1 * r__1);
if (temp2 <= tol3z) {
if (*m - i__ > 0) {
i__3 = *m - i__;
rwork[j] = scnrm2_(&i__3, &a[i__ + 1 + j * a_dim1]
, &c__1);
rwork[*n + j] = rwork[j];
} else {
rwork[j] = 0.f;
rwork[*n + j] = 0.f;
}
} else {
rwork[j] *= sqrt(temp);
}
}
/* L30: */
}

/* L40: */
}
}
return 0;

/* End of CGEQPF */

} /* cgeqpf_ */


+ 910
- 0
lapack-netlib/SRC/DEPRECATED/cggsvd.c View File

@@ -0,0 +1,910 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief <b> CGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGGSVD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggsvd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggsvd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggsvd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, */
/* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, */
/* RWORK, IWORK, INFO ) */

/* CHARACTER JOBQ, JOBU, JOBV */
/* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P */
/* INTEGER IWORK( * ) */
/* REAL ALPHA( * ), BETA( * ), RWORK( * ) */
/* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
/* $ U( LDU, * ), V( LDV, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine CGGSVD3. */
/* > */
/* > CGGSVD computes the generalized singular value decomposition (GSVD) */
/* > of an M-by-N complex matrix A and P-by-N complex matrix B: */
/* > */
/* > U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R ) */
/* > */
/* > where U, V and Q are unitary matrices. */
/* > Let K+L = the effective numerical rank of the */
/* > matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper */
/* > triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal" */
/* > matrices and of the following structures, respectively: */
/* > */
/* > If M-K-L >= 0, */
/* > */
/* > K L */
/* > D1 = K ( I 0 ) */
/* > L ( 0 C ) */
/* > M-K-L ( 0 0 ) */
/* > */
/* > K L */
/* > D2 = L ( 0 S ) */
/* > P-L ( 0 0 ) */
/* > */
/* > N-K-L K L */
/* > ( 0 R ) = K ( 0 R11 R12 ) */
/* > L ( 0 0 R22 ) */
/* > */
/* > where */
/* > */
/* > C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
/* > S = diag( BETA(K+1), ... , BETA(K+L) ), */
/* > C**2 + S**2 = I. */
/* > */
/* > R is stored in A(1:K+L,N-K-L+1:N) on exit. */
/* > */
/* > If M-K-L < 0, */
/* > */
/* > K M-K K+L-M */
/* > D1 = K ( I 0 0 ) */
/* > M-K ( 0 C 0 ) */
/* > */
/* > K M-K K+L-M */
/* > D2 = M-K ( 0 S 0 ) */
/* > K+L-M ( 0 0 I ) */
/* > P-L ( 0 0 0 ) */
/* > */
/* > N-K-L K M-K K+L-M */
/* > ( 0 R ) = K ( 0 R11 R12 R13 ) */
/* > M-K ( 0 0 R22 R23 ) */
/* > K+L-M ( 0 0 0 R33 ) */
/* > */
/* > where */
/* > */
/* > C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
/* > S = diag( BETA(K+1), ... , BETA(M) ), */
/* > C**2 + S**2 = I. */
/* > */
/* > (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored */
/* > ( 0 R22 R23 ) */
/* > in B(M-K+1:L,N+M-K-L+1:N) on exit. */
/* > */
/* > The routine computes C, S, R, and optionally the unitary */
/* > transformation matrices U, V and Q. */
/* > */
/* > In particular, if B is an N-by-N nonsingular matrix, then the GSVD of */
/* > A and B implicitly gives the SVD of A*inv(B): */
/* > A*inv(B) = U*(D1*inv(D2))*V**H. */
/* > If ( A**H,B**H)**H has orthnormal columns, then the GSVD of A and B is also */
/* > equal to the CS decomposition of A and B. Furthermore, the GSVD can */
/* > be used to derive the solution of the eigenvalue problem: */
/* > A**H*A x = lambda* B**H*B x. */
/* > In some literature, the GSVD of A and B is presented in the form */
/* > U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 ) */
/* > where U and V are orthogonal and X is nonsingular, and D1 and D2 are */
/* > ``diagonal''. The former GSVD form can be converted to the latter */
/* > form by taking the nonsingular matrix X as */
/* > */
/* > X = Q*( I 0 ) */
/* > ( 0 inv(R) ) */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] JOBU */
/* > \verbatim */
/* > JOBU is CHARACTER*1 */
/* > = 'U': Unitary matrix U is computed; */
/* > = 'N': U is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBV */
/* > \verbatim */
/* > JOBV is CHARACTER*1 */
/* > = 'V': Unitary matrix V is computed; */
/* > = 'N': V is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBQ */
/* > \verbatim */
/* > JOBQ is CHARACTER*1 */
/* > = 'Q': Unitary matrix Q is computed; */
/* > = 'N': Q is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrices A and B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] P */
/* > \verbatim */
/* > P is INTEGER */
/* > The number of rows of the matrix B. P >= 0. */
/* > \endverbatim */
/* > */
/* > \param[out] K */
/* > \verbatim */
/* > K is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[out] L */
/* > \verbatim */
/* > L is INTEGER */
/* > */
/* > On exit, K and L specify the dimension of the subblocks */
/* > described in Purpose. */
/* > K + L = effective numerical rank of (A**H,B**H)**H. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A contains the triangular matrix R, or part of R. */
/* > See Purpose for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,N) */
/* > On entry, the P-by-N matrix B. */
/* > On exit, B contains part of the triangular matrix R if */
/* > M-K-L < 0. See Purpose for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHA */
/* > \verbatim */
/* > ALPHA is REAL array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] BETA */
/* > \verbatim */
/* > BETA is REAL array, dimension (N) */
/* > */
/* > On exit, ALPHA and BETA contain the generalized singular */
/* > value pairs of A and B; */
/* > ALPHA(1:K) = 1, */
/* > BETA(1:K) = 0, */
/* > and if M-K-L >= 0, */
/* > ALPHA(K+1:K+L) = C, */
/* > BETA(K+1:K+L) = S, */
/* > or if M-K-L < 0, */
/* > ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 */
/* > BETA(K+1:M) =S, BETA(M+1:K+L) =1 */
/* > and */
/* > ALPHA(K+L+1:N) = 0 */
/* > BETA(K+L+1:N) = 0 */
/* > \endverbatim */
/* > */
/* > \param[out] U */
/* > \verbatim */
/* > U is COMPLEX array, dimension (LDU,M) */
/* > If JOBU = 'U', U contains the M-by-M unitary matrix U. */
/* > If JOBU = 'N', U is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU */
/* > \verbatim */
/* > LDU is INTEGER */
/* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
/* > JOBU = 'U'; LDU >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] V */
/* > \verbatim */
/* > V is COMPLEX array, dimension (LDV,P) */
/* > If JOBV = 'V', V contains the P-by-P unitary matrix V. */
/* > If JOBV = 'N', V is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV */
/* > \verbatim */
/* > LDV is INTEGER */
/* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
/* > JOBV = 'V'; LDV >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] Q */
/* > \verbatim */
/* > Q is COMPLEX array, dimension (LDQ,N) */
/* > If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q. */
/* > If JOBQ = 'N', Q is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDQ */
/* > \verbatim */
/* > LDQ is INTEGER */
/* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
/* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (f2cmax(3*N,M,P)+N) */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (N) */
/* > On exit, IWORK stores the sorting information. More */
/* > precisely, the following loop will sort ALPHA */
/* > for I = K+1, f2cmin(M,K+L) */
/* > swap ALPHA(I) and ALPHA(IWORK(I)) */
/* > endfor */
/* > such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = 1, the Jacobi-type procedure failed to */
/* > converge. For further details, see subroutine CTGSJA. */
/* > \endverbatim */

/* > \par Internal Parameters: */
/* ========================= */
/* > */
/* > \verbatim */
/* > TOLA REAL */
/* > TOLB REAL */
/* > TOLA and TOLB are the thresholds to determine the effective */
/* > rank of (A**H,B**H)**H. Generally, they are set to */
/* > TOLA = MAX(M,N)*norm(A)*MACHEPS, */
/* > TOLB = MAX(P,N)*norm(B)*MACHEPS. */
/* > The size of TOLA and TOLB may affect the size of backward */
/* > errors of the decomposition. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexOTHERsing */

/* > \par Contributors: */
/* ================== */
/* > */
/* > Ming Gu and Huan Ren, Computer Science Division, University of */
/* > California at Berkeley, USA */
/* > */
/* ===================================================================== */
/* Subroutine */ int cggsvd_(char *jobu, char *jobv, char *jobq, integer *m,
integer *n, integer *p, integer *k, integer *l, complex *a, integer *
lda, complex *b, integer *ldb, real *alpha, real *beta, complex *u,
integer *ldu, complex *v, integer *ldv, complex *q, integer *ldq,
complex *work, real *rwork, integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
u_offset, v_dim1, v_offset, i__1, i__2;

/* Local variables */
integer ibnd;
real tola;
integer isub;
real tolb, unfl, temp, smax;
integer ncallmycycle, i__, j;
extern logical lsame_(char *, char *);
real anorm, bnorm;
logical wantq;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
logical wantu, wantv;
extern real clange_(char *, integer *, integer *, complex *, integer *,
real *), slamch_(char *);
extern /* Subroutine */ int ctgsja_(char *, char *, char *, integer *,
integer *, integer *, integer *, integer *, complex *, integer *,
complex *, integer *, real *, real *, real *, real *, complex *,
integer *, complex *, integer *, complex *, integer *, complex *,
integer *, integer *), xerbla_(char *,
integer *), cggsvp_(char *, char *, char *, integer *,
integer *, integer *, complex *, integer *, complex *, integer *,
real *, real *, integer *, integer *, complex *, integer *,
complex *, integer *, complex *, integer *, integer *, real *,
complex *, complex *, integer *);
real ulp;


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Decode and test the input parameters */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--alpha;
--beta;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
--work;
--rwork;
--iwork;

/* Function Body */
wantu = lsame_(jobu, "U");
wantv = lsame_(jobv, "V");
wantq = lsame_(jobq, "Q");

*info = 0;
if (! (wantu || lsame_(jobu, "N"))) {
*info = -1;
} else if (! (wantv || lsame_(jobv, "N"))) {
*info = -2;
} else if (! (wantq || lsame_(jobq, "N"))) {
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*p < 0) {
*info = -6;
} else if (*lda < f2cmax(1,*m)) {
*info = -10;
} else if (*ldb < f2cmax(1,*p)) {
*info = -12;
} else if (*ldu < 1 || wantu && *ldu < *m) {
*info = -16;
} else if (*ldv < 1 || wantv && *ldv < *p) {
*info = -18;
} else if (*ldq < 1 || wantq && *ldq < *n) {
*info = -20;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGGSVD", &i__1);
return 0;
}

/* Compute the Frobenius norm of matrices A and B */

anorm = clange_("1", m, n, &a[a_offset], lda, &rwork[1]);
bnorm = clange_("1", p, n, &b[b_offset], ldb, &rwork[1]);

/* Get machine precision and set up threshold for determining */
/* the effective numerical rank of the matrices A and B. */

ulp = slamch_("Precision");
unfl = slamch_("Safe Minimum");
tola = f2cmax(*m,*n) * f2cmax(anorm,unfl) * ulp;
tolb = f2cmax(*p,*n) * f2cmax(bnorm,unfl) * ulp;

cggsvp_(jobu, jobv, jobq, m, p, n, &a[a_offset], lda, &b[b_offset], ldb, &
tola, &tolb, k, l, &u[u_offset], ldu, &v[v_offset], ldv, &q[
q_offset], ldq, &iwork[1], &rwork[1], &work[1], &work[*n + 1],
info);

/* Compute the GSVD of two upper "triangular" matrices */

ctgsja_(jobu, jobv, jobq, m, p, n, k, l, &a[a_offset], lda, &b[b_offset],
ldb, &tola, &tolb, &alpha[1], &beta[1], &u[u_offset], ldu, &v[
v_offset], ldv, &q[q_offset], ldq, &work[1], &ncallmycycle, info);

/* Sort the singular values and store the pivot indices in IWORK */
/* Copy ALPHA to RWORK, then sort ALPHA in RWORK */

scopy_(n, &alpha[1], &c__1, &rwork[1], &c__1);
/* Computing MIN */
i__1 = *l, i__2 = *m - *k;
ibnd = f2cmin(i__1,i__2);
i__1 = ibnd;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Scan for largest ALPHA(K+I) */

isub = i__;
smax = rwork[*k + i__];
i__2 = ibnd;
for (j = i__ + 1; j <= i__2; ++j) {
temp = rwork[*k + j];
if (temp > smax) {
isub = j;
smax = temp;
}
/* L10: */
}
if (isub != i__) {
rwork[*k + isub] = rwork[*k + i__];
rwork[*k + i__] = smax;
iwork[*k + i__] = *k + isub;
} else {
iwork[*k + i__] = *k + i__;
}
/* L20: */
}

return 0;

/* End of CGGSVD */

} /* cggsvd_ */


+ 1030
- 0
lapack-netlib/SRC/DEPRECATED/cggsvp.c
File diff suppressed because it is too large
View File


+ 755
- 0
lapack-netlib/SRC/DEPRECATED/clahrd.c View File

@@ -0,0 +1,755 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {0.f,0.f};
static complex c_b2 = {1.f,0.f};
static integer c__1 = 1;

/* > \brief \b CLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below th
e k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformati
on to the unreduced part of A. */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CLAHRD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahrd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahrd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahrd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) */

/* INTEGER K, LDA, LDT, LDY, N, NB */
/* COMPLEX A( LDA, * ), T( LDT, NB ), TAU( NB ), */
/* $ Y( LDY, NB ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine CLAHR2. */
/* > */
/* > CLAHRD reduces the first NB columns of a complex general n-by-(n-k+1) */
/* > matrix A so that elements below the k-th subdiagonal are zero. The */
/* > reduction is performed by a unitary similarity transformation */
/* > Q**H * A * Q. The routine returns the matrices V and T which determine */
/* > Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The offset for the reduction. Elements below the k-th */
/* > subdiagonal in the first NB columns are reduced to zero. */
/* > \endverbatim */
/* > */
/* > \param[in] NB */
/* > \verbatim */
/* > NB is INTEGER */
/* > The number of columns to be reduced. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N-K+1) */
/* > On entry, the n-by-(n-k+1) general matrix A. */
/* > On exit, the elements on and above the k-th subdiagonal in */
/* > the first NB columns are overwritten with the corresponding */
/* > elements of the reduced matrix; the elements below the k-th */
/* > subdiagonal, with the array TAU, represent the matrix Q as a */
/* > product of elementary reflectors. The other columns of A are */
/* > unchanged. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (NB) */
/* > The scalar factors of the elementary reflectors. See Further */
/* > Details. */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (LDT,NB) */
/* > The upper triangular matrix T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= NB. */
/* > \endverbatim */
/* > */
/* > \param[out] Y */
/* > \verbatim */
/* > Y is COMPLEX array, dimension (LDY,NB) */
/* > The n-by-nb matrix Y. */
/* > \endverbatim */
/* > */
/* > \param[in] LDY */
/* > \verbatim */
/* > LDY is INTEGER */
/* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexOTHERauxiliary */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of nb elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(nb). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
/* > A(i+k+1:n,i), and tau in TAU(i). */
/* > */
/* > The elements of the vectors v together form the (n-k+1)-by-nb matrix */
/* > V which is needed, with T and Y, to apply the transformation to the */
/* > unreduced part of the matrix, using an update of the form: */
/* > A := (I - V*T*V**H) * (A - Y*V**H). */
/* > */
/* > The contents of A on exit are illustrated by the following example */
/* > with n = 7, k = 3 and nb = 2: */
/* > */
/* > ( a h a a a ) */
/* > ( a h a a a ) */
/* > ( a h a a a ) */
/* > ( h h a a a ) */
/* > ( v1 h a a a ) */
/* > ( v1 v2 a a a ) */
/* > ( v1 v2 a a a ) */
/* > */
/* > where a denotes an element of the original matrix A, h denotes a */
/* > modified element of the upper Hessenberg matrix H, and vi denotes an */
/* > element of the vector defining H(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int clahrd_(integer *n, integer *k, integer *nb, complex *a,
integer *lda, complex *tau, complex *t, integer *ldt, complex *y,
integer *ldy)
{
/* System generated locals */
integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
i__3;
complex q__1;

/* Local variables */
integer i__;
extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
integer *), cgemv_(char *, integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, complex *,
integer *), ccopy_(integer *, complex *, integer *,
complex *, integer *), caxpy_(integer *, complex *, complex *,
integer *, complex *, integer *), ctrmv_(char *, char *, char *,
integer *, complex *, integer *, complex *, integer *);
complex ei;
extern /* Subroutine */ int clarfg_(integer *, complex *, complex *,
integer *, complex *), clacgv_(integer *, complex *, integer *);


/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Quick return if possible */

/* Parameter adjustments */
--tau;
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
y_dim1 = *ldy;
y_offset = 1 + y_dim1 * 1;
y -= y_offset;

/* Function Body */
if (*n <= 1) {
return 0;
}

i__1 = *nb;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ > 1) {

/* Update A(1:n,i) */

/* Compute i-th column of A - Y * V**H */

i__2 = i__ - 1;
clacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda);
i__2 = i__ - 1;
q__1.r = -1.f, q__1.i = 0.f;
cgemv_("No transpose", n, &i__2, &q__1, &y[y_offset], ldy, &a[*k
+ i__ - 1 + a_dim1], lda, &c_b2, &a[i__ * a_dim1 + 1], &
c__1);
i__2 = i__ - 1;
clacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda);

/* Apply I - V * T**H * V**H to this column (call it b) from the */
/* left, using the last column of T as workspace */

/* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */
/* ( V2 ) ( b2 ) */

/* where V1 is unit lower triangular */

/* w := V1**H * b1 */

i__2 = i__ - 1;
ccopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
1], &c__1);
i__2 = i__ - 1;
ctrmv_("Lower", "Conjugate transpose", "Unit", &i__2, &a[*k + 1 +
a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1);

/* w := w + V2**H *b2 */

i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ +
a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b2, &
t[*nb * t_dim1 + 1], &c__1);

/* w := T**H *w */

i__2 = i__ - 1;
ctrmv_("Upper", "Conjugate transpose", "Non-unit", &i__2, &t[
t_offset], ldt, &t[*nb * t_dim1 + 1], &c__1);

/* b2 := b2 - V2*w */

i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
q__1.r = -1.f, q__1.i = 0.f;
cgemv_("No transpose", &i__2, &i__3, &q__1, &a[*k + i__ + a_dim1],
lda, &t[*nb * t_dim1 + 1], &c__1, &c_b2, &a[*k + i__ +
i__ * a_dim1], &c__1);

/* b1 := b1 - V1*w */

i__2 = i__ - 1;
ctrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
, lda, &t[*nb * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
q__1.r = -1.f, q__1.i = 0.f;
caxpy_(&i__2, &q__1, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
* a_dim1], &c__1);

i__2 = *k + i__ - 1 + (i__ - 1) * a_dim1;
a[i__2].r = ei.r, a[i__2].i = ei.i;
}

/* Generate the elementary reflector H(i) to annihilate */
/* A(k+i+1:n,i) */

i__2 = *k + i__ + i__ * a_dim1;
ei.r = a[i__2].r, ei.i = a[i__2].i;
i__2 = *n - *k - i__ + 1;
/* Computing MIN */
i__3 = *k + i__ + 1;
clarfg_(&i__2, &ei, &a[f2cmin(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__])
;
i__2 = *k + i__ + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;

/* Compute Y(1:n,i) */

i__2 = *n - *k - i__ + 1;
cgemv_("No transpose", n, &i__2, &c_b2, &a[(i__ + 1) * a_dim1 + 1],
lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &y[i__ *
y_dim1 + 1], &c__1);
i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ +
a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &t[
i__ * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
q__1.r = -1.f, q__1.i = 0.f;
cgemv_("No transpose", n, &i__2, &q__1, &y[y_offset], ldy, &t[i__ *
t_dim1 + 1], &c__1, &c_b2, &y[i__ * y_dim1 + 1], &c__1);
cscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);

/* Compute T(1:i,i) */

i__2 = i__ - 1;
i__3 = i__;
q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i;
cscal_(&i__2, &q__1, &t[i__ * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
ctrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
&t[i__ * t_dim1 + 1], &c__1)
;
i__2 = i__ + i__ * t_dim1;
i__3 = i__;
t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i;

/* L10: */
}
i__1 = *k + *nb + *nb * a_dim1;
a[i__1].r = ei.r, a[i__1].i = ei.i;

return 0;

/* End of CLAHRD */

} /* clahrd_ */


+ 650
- 0
lapack-netlib/SRC/DEPRECATED/clatzm.c View File

@@ -0,0 +1,650 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;

/* > \brief \b CLATZM */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CLATZM + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatzm.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatzm.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatzm.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK ) */

/* CHARACTER SIDE */
/* INTEGER INCV, LDC, M, N */
/* COMPLEX TAU */
/* COMPLEX C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine CUNMRZ. */
/* > */
/* > CLATZM applies a Householder matrix generated by CTZRQF to a matrix. */
/* > */
/* > Let P = I - tau*u*u**H, u = ( 1 ), */
/* > ( v ) */
/* > where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if */
/* > SIDE = 'R'. */
/* > */
/* > If SIDE equals 'L', let */
/* > C = [ C1 ] 1 */
/* > [ C2 ] m-1 */
/* > n */
/* > Then C is overwritten by P*C. */
/* > */
/* > If SIDE equals 'R', let */
/* > C = [ C1, C2 ] m */
/* > 1 n-1 */
/* > Then C is overwritten by C*P. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': form P * C */
/* > = 'R': form C * P */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] V */
/* > \verbatim */
/* > V is COMPLEX array, dimension */
/* > (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
/* > (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
/* > The vector v in the representation of P. V is not used */
/* > if TAU = 0. */
/* > \endverbatim */
/* > */
/* > \param[in] INCV */
/* > \verbatim */
/* > INCV is INTEGER */
/* > The increment between elements of v. INCV <> 0 */
/* > \endverbatim */
/* > */
/* > \param[in] TAU */
/* > \verbatim */
/* > TAU is COMPLEX */
/* > The value tau in the representation of P. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C1 */
/* > \verbatim */
/* > C1 is COMPLEX array, dimension */
/* > (LDC,N) if SIDE = 'L' */
/* > (M,1) if SIDE = 'R' */
/* > On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 */
/* > if SIDE = 'R'. */
/* > */
/* > On exit, the first row of P*C if SIDE = 'L', or the first */
/* > column of C*P if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C2 */
/* > \verbatim */
/* > C2 is COMPLEX array, dimension */
/* > (LDC, N) if SIDE = 'L' */
/* > (LDC, N-1) if SIDE = 'R' */
/* > On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the */
/* > m x (n - 1) matrix C2 if SIDE = 'R'. */
/* > */
/* > On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P */
/* > if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the arrays C1 and C2. */
/* > LDC >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension */
/* > (N) if SIDE = 'L' */
/* > (M) if SIDE = 'R' */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexOTHERcomputational */

/* ===================================================================== */
/* Subroutine */ int clatzm_(char *side, integer *m, integer *n, complex *v,
integer *incv, complex *tau, complex *c1, complex *c2, integer *ldc,
complex *work)
{
/* System generated locals */
integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1;
complex q__1;

/* Local variables */
extern /* Subroutine */ int cgerc_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *),
cgemv_(char *, integer *, integer *, complex *, complex *,
integer *, complex *, integer *, complex *, complex *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cgeru_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *),
ccopy_(integer *, complex *, integer *, complex *, integer *),
caxpy_(integer *, complex *, complex *, integer *, complex *,
integer *), clacgv_(integer *, complex *, integer *);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Parameter adjustments */
--v;
c2_dim1 = *ldc;
c2_offset = 1 + c2_dim1 * 1;
c2 -= c2_offset;
c1_dim1 = *ldc;
c1_offset = 1 + c1_dim1 * 1;
c1 -= c1_offset;
--work;

/* Function Body */
if (f2cmin(*m,*n) == 0 || tau->r == 0.f && tau->i == 0.f) {
return 0;
}

if (lsame_(side, "L")) {

/* w := ( C1 + v**H * C2 )**H */

ccopy_(n, &c1[c1_offset], ldc, &work[1], &c__1);
clacgv_(n, &work[1], &c__1);
i__1 = *m - 1;
cgemv_("Conjugate transpose", &i__1, n, &c_b1, &c2[c2_offset], ldc, &
v[1], incv, &c_b1, &work[1], &c__1);

/* [ C1 ] := [ C1 ] - tau* [ 1 ] * w**H */
/* [ C2 ] [ C2 ] [ v ] */

clacgv_(n, &work[1], &c__1);
q__1.r = -tau->r, q__1.i = -tau->i;
caxpy_(n, &q__1, &work[1], &c__1, &c1[c1_offset], ldc);
i__1 = *m - 1;
q__1.r = -tau->r, q__1.i = -tau->i;
cgeru_(&i__1, n, &q__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset],
ldc);

} else if (lsame_(side, "R")) {

/* w := C1 + C2 * v */

ccopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1);
i__1 = *n - 1;
cgemv_("No transpose", m, &i__1, &c_b1, &c2[c2_offset], ldc, &v[1],
incv, &c_b1, &work[1], &c__1);

/* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**H] */

q__1.r = -tau->r, q__1.i = -tau->i;
caxpy_(m, &q__1, &work[1], &c__1, &c1[c1_offset], &c__1);
i__1 = *n - 1;
q__1.r = -tau->r, q__1.i = -tau->i;
cgerc_(m, &i__1, &q__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset],
ldc);
}

return 0;

/* End of CLATZM */

} /* clatzm_ */


+ 682
- 0
lapack-netlib/SRC/DEPRECATED/ctzrqf.c View File

@@ -0,0 +1,682 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;

/* > \brief \b CTZRQF */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CTZRQF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctzrqf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctzrqf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctzrqf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CTZRQF( M, N, A, LDA, TAU, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* COMPLEX A( LDA, * ), TAU( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine CTZRZF. */
/* > */
/* > CTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A */
/* > to upper triangular form by means of unitary transformations. */
/* > */
/* > The upper trapezoidal matrix A is factored as */
/* > */
/* > A = ( R 0 ) * Z, */
/* > */
/* > where Z is an N-by-N unitary matrix and R is an M-by-M upper */
/* > triangular matrix. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= M. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the leading M-by-N upper trapezoidal part of the */
/* > array A must contain the matrix to be factorized. */
/* > On exit, the leading M-by-M upper triangular part of A */
/* > contains the upper triangular matrix R, and elements M+1 to */
/* > N of the first M rows of A, with the array TAU, represent the */
/* > unitary matrix Z as a product of M elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (M) */
/* > The scalar factors of the elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexOTHERcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The factorization is obtained by Householder's method. The kth */
/* > transformation matrix, Z( k ), whose conjugate transpose is used to */
/* > introduce zeros into the (m - k + 1)th row of A, is given in the form */
/* > */
/* > Z( k ) = ( I 0 ), */
/* > ( 0 T( k ) ) */
/* > */
/* > where */
/* > */
/* > T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ), */
/* > ( 0 ) */
/* > ( z( k ) ) */
/* > */
/* > tau is a scalar and z( k ) is an ( n - m ) element vector. */
/* > tau and z( k ) are chosen to annihilate the elements of the kth row */
/* > of X. */
/* > */
/* > The scalar tau is returned in the kth element of TAU and the vector */
/* > u( k ) in the kth row of A, such that the elements of z( k ) are */
/* > in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
/* > the upper triangular part of A. */
/* > */
/* > Z is given by */
/* > */
/* > Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int ctzrqf_(integer *m, integer *n, complex *a, integer *lda,
complex *tau, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
complex q__1, q__2;

/* Local variables */
integer i__, k;
extern /* Subroutine */ int cgerc_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *);
complex alpha;
extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *), ccopy_(integer *, complex *, integer *,
complex *, integer *), caxpy_(integer *, complex *, complex *,
integer *, complex *, integer *);
integer m1;
extern /* Subroutine */ int clarfg_(integer *, complex *, complex *,
integer *, complex *), clacgv_(integer *, complex *, integer *),
xerbla_(char *, integer *);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < *m) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CTZRQF", &i__1);
return 0;
}

/* Perform the factorization. */

if (*m == 0) {
return 0;
}
if (*m == *n) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
tau[i__2].r = 0.f, tau[i__2].i = 0.f;
/* L10: */
}
} else {
/* Computing MIN */
i__1 = *m + 1;
m1 = f2cmin(i__1,*n);
for (k = *m; k >= 1; --k) {

/* Use a Householder reflection to zero the kth row of A. */
/* First set up the reflection. */

i__1 = k + k * a_dim1;
r_cnjg(&q__1, &a[k + k * a_dim1]);
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = *n - *m;
clacgv_(&i__1, &a[k + m1 * a_dim1], lda);
i__1 = k + k * a_dim1;
alpha.r = a[i__1].r, alpha.i = a[i__1].i;
i__1 = *n - *m + 1;
clarfg_(&i__1, &alpha, &a[k + m1 * a_dim1], lda, &tau[k]);
i__1 = k + k * a_dim1;
a[i__1].r = alpha.r, a[i__1].i = alpha.i;
i__1 = k;
r_cnjg(&q__1, &tau[k]);
tau[i__1].r = q__1.r, tau[i__1].i = q__1.i;

i__1 = k;
if ((tau[i__1].r != 0.f || tau[i__1].i != 0.f) && k > 1) {

/* We now perform the operation A := A*P( k )**H. */

/* Use the first ( k - 1 ) elements of TAU to store a( k ), */
/* where a( k ) consists of the first ( k - 1 ) elements of */
/* the kth column of A. Also let B denote the first */
/* ( k - 1 ) rows of the last ( n - m ) columns of A. */

i__1 = k - 1;
ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);

/* Form w = a( k ) + B*z( k ) in TAU. */

i__1 = k - 1;
i__2 = *n - *m;
cgemv_("No transpose", &i__1, &i__2, &c_b1, &a[m1 * a_dim1 +
1], lda, &a[k + m1 * a_dim1], lda, &c_b1, &tau[1], &
c__1);

/* Now form a( k ) := a( k ) - conjg(tau)*w */
/* and B := B - conjg(tau)*w*z( k )**H. */

i__1 = k - 1;
r_cnjg(&q__2, &tau[k]);
q__1.r = -q__2.r, q__1.i = -q__2.i;
caxpy_(&i__1, &q__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
c__1);
i__1 = k - 1;
i__2 = *n - *m;
r_cnjg(&q__2, &tau[k]);
q__1.r = -q__2.r, q__1.i = -q__2.i;
cgerc_(&i__1, &i__2, &q__1, &tau[1], &c__1, &a[k + m1 *
a_dim1], lda, &a[m1 * a_dim1 + 1], lda);
}
/* L20: */
}
}

return 0;

/* End of CTZRQF */

} /* ctzrqf_ */


+ 1031
- 0
lapack-netlib/SRC/DEPRECATED/dgegs.c
File diff suppressed because it is too large
View File


+ 1325
- 0
lapack-netlib/SRC/DEPRECATED/dgegv.c
File diff suppressed because it is too large
View File


+ 898
- 0
lapack-netlib/SRC/DEPRECATED/dgelsx.c View File

@@ -0,0 +1,898 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__0 = 0;
static doublereal c_b13 = 0.;
static integer c__2 = 2;
static integer c__1 = 1;
static doublereal c_b36 = 1.;

/* > \brief <b> DGELSX solves overdetermined or underdetermined systems for GE matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download DGELSX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsx.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsx.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsx.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
/* WORK, INFO ) */

/* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK */
/* DOUBLE PRECISION RCOND */
/* INTEGER JPVT( * ) */
/* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine DGELSY. */
/* > */
/* > DGELSX computes the minimum-norm solution to a real linear least */
/* > squares problem: */
/* > minimize || A * X - B || */
/* > using a complete orthogonal factorization of A. A is an M-by-N */
/* > matrix which may be rank-deficient. */
/* > */
/* > Several right hand side vectors b and solution vectors x can be */
/* > handled in a single call; they are stored as the columns of the */
/* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/* > matrix X. */
/* > */
/* > The routine first computes a QR factorization with column pivoting: */
/* > A * P = Q * [ R11 R12 ] */
/* > [ 0 R22 ] */
/* > with R11 defined as the largest leading submatrix whose estimated */
/* > condition number is less than 1/RCOND. The order of R11, RANK, */
/* > is the effective rank of A. */
/* > */
/* > Then, R22 is considered to be negligible, and R12 is annihilated */
/* > by orthogonal transformations from the right, arriving at the */
/* > complete orthogonal factorization: */
/* > A * P = Q * [ T11 0 ] * Z */
/* > [ 0 0 ] */
/* > The minimum-norm solution is then */
/* > X = P * Z**T [ inv(T11)*Q1**T*B ] */
/* > [ 0 ] */
/* > where Q1 consists of the first RANK columns of Q. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of */
/* > columns of matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A has been overwritten by details of its */
/* > complete orthogonal factorization. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* > On entry, the M-by-NRHS right hand side matrix B. */
/* > On exit, the N-by-NRHS solution matrix X. */
/* > If m >= n and RANK = n, the residual sum-of-squares for */
/* > the solution in the i-th column is given by the sum of */
/* > squares of elements N+1:M in that column. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(i) .ne. 0, the i-th column of A is an */
/* > initial column, otherwise it is a free column. Before */
/* > the QR factorization of A, all initial columns are */
/* > permuted to the leading positions; only the remaining */
/* > free columns are moved as a result of column pivoting */
/* > during the factorization. */
/* > On exit, if JPVT(i) = k, then the i-th column of A*P */
/* > was the k-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[in] RCOND */
/* > \verbatim */
/* > RCOND is DOUBLE PRECISION */
/* > RCOND is used to determine the effective rank of A, which */
/* > is defined as the order of the largest leading triangular */
/* > submatrix R11 in the QR factorization with pivoting of A, */
/* > whose estimated condition number < 1/RCOND. */
/* > \endverbatim */
/* > */
/* > \param[out] RANK */
/* > \verbatim */
/* > RANK is INTEGER */
/* > The effective rank of A, i.e., the order of the submatrix */
/* > R11. This is the same as the order of the submatrix T11 */
/* > in the complete orthogonal factorization of A. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension */
/* > (f2cmax( f2cmin(M,N)+3*N, 2*f2cmin(M,N)+NRHS )), */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup doubleGEsolve */

/* ===================================================================== */
/* Subroutine */ int dgelsx_(integer *m, integer *n, integer *nrhs,
doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
jpvt, doublereal *rcond, integer *rank, doublereal *work, integer *
info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
doublereal d__1;

/* Local variables */
doublereal anrm, bnrm, smin, smax;
integer i__, j, k, iascl, ibscl, ismin, ismax;
doublereal c1, c2;
extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *), dlaic1_(
integer *, integer *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *);
doublereal s1, s2, t1, t2;
extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *), dlabad_(
doublereal *, doublereal *);
extern doublereal dlamch_(char *), dlange_(char *, integer *,
integer *, doublereal *, integer *, doublereal *);
integer mn;
extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *), dgeqpf_(integer *, integer *,
doublereal *, integer *, integer *, doublereal *, doublereal *,
integer *), dlaset_(char *, integer *, integer *, doublereal *,
doublereal *, doublereal *, integer *), xerbla_(char *,
integer *);
doublereal bignum;
extern /* Subroutine */ int dlatzm_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
integer *, doublereal *);
doublereal sminpr, smaxpr, smlnum;
extern /* Subroutine */ int dtzrqf_(integer *, integer *, doublereal *,
integer *, doublereal *, integer *);


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--jpvt;
--work;

/* Function Body */
mn = f2cmin(*m,*n);
ismin = mn + 1;
ismax = (mn << 1) + 1;

/* Test the input arguments. */

*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < f2cmax(1,*m)) {
*info = -5;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = f2cmax(1,*m);
if (*ldb < f2cmax(i__1,*n)) {
*info = -7;
}
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("DGELSX", &i__1);
return 0;
}

/* Quick return if possible */

/* Computing MIN */
i__1 = f2cmin(*m,*n);
if (f2cmin(i__1,*nrhs) == 0) {
*rank = 0;
return 0;
}

/* Get machine parameters */

smlnum = dlamch_("S") / dlamch_("P");
bignum = 1. / smlnum;
dlabad_(&smlnum, &bignum);

/* Scale A, B if f2cmax elements outside range [SMLNUM,BIGNUM] */

anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
iascl = 0;
if (anrm > 0. && anrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info);
iascl = 1;
} else if (anrm > bignum) {

/* Scale matrix norm down to BIGNUM */

dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info);
iascl = 2;
} else if (anrm == 0.) {

/* Matrix all zero. Return zero solution. */

i__1 = f2cmax(*m,*n);
dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
*rank = 0;
goto L100;
}

bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
ibscl = 0;
if (bnrm > 0. && bnrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 1;
} else if (bnrm > bignum) {

/* Scale matrix norm down to BIGNUM */

dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 2;
}

/* Compute QR factorization with column pivoting of A: */
/* A * P = Q * R */

dgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], info);

/* workspace 3*N. Details of Householder rotations stored */
/* in WORK(1:MN). */

/* Determine RANK using incremental condition estimation */

work[ismin] = 1.;
work[ismax] = 1.;
smax = (d__1 = a[a_dim1 + 1], abs(d__1));
smin = smax;
if ((d__1 = a[a_dim1 + 1], abs(d__1)) == 0.) {
*rank = 0;
i__1 = f2cmax(*m,*n);
dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
goto L100;
} else {
*rank = 1;
}

L10:
if (*rank < mn) {
i__ = *rank + 1;
dlaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &sminpr, &s1, &c1);
dlaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &smaxpr, &s2, &c2);

if (smaxpr * *rcond <= sminpr) {
i__1 = *rank;
for (i__ = 1; i__ <= i__1; ++i__) {
work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];
work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];
/* L20: */
}
work[ismin + *rank] = c1;
work[ismax + *rank] = c2;
smin = sminpr;
smax = smaxpr;
++(*rank);
goto L10;
}
}

/* Logically partition R = [ R11 R12 ] */
/* [ 0 R22 ] */
/* where R11 = R(1:RANK,1:RANK) */

/* [R11,R12] = [ T11, 0 ] * Y */

if (*rank < *n) {
dtzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
}

/* Details of Householder rotations stored in WORK(MN+1:2*MN) */

/* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) */

dorm2r_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &
b[b_offset], ldb, &work[(mn << 1) + 1], info);

/* workspace NRHS */

/* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

dtrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b36, &
a[a_offset], lda, &b[b_offset], ldb);

i__1 = *n;
for (i__ = *rank + 1; i__ <= i__1; ++i__) {
i__2 = *nrhs;
for (j = 1; j <= i__2; ++j) {
b[i__ + j * b_dim1] = 0.;
/* L30: */
}
/* L40: */
}

/* B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS) */

if (*rank < *n) {
i__1 = *rank;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n - *rank + 1;
dlatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda,
&work[mn + i__], &b[i__ + b_dim1], &b[*rank + 1 + b_dim1],
ldb, &work[(mn << 1) + 1]);
/* L50: */
}
}

/* workspace NRHS */

/* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
work[(mn << 1) + i__] = 1.;
/* L60: */
}
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
if (work[(mn << 1) + i__] == 1.) {
if (jpvt[i__] != i__) {
k = i__;
t1 = b[k + j * b_dim1];
t2 = b[jpvt[k] + j * b_dim1];
L70:
b[jpvt[k] + j * b_dim1] = t1;
work[(mn << 1) + k] = 0.;
t1 = t2;
k = jpvt[k];
t2 = b[jpvt[k] + j * b_dim1];
if (jpvt[k] != i__) {
goto L70;
}
b[i__ + j * b_dim1] = t1;
work[(mn << 1) + k] = 0.;
}
}
/* L80: */
}
/* L90: */
}

/* Undo scaling */

if (iascl == 1) {
dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
info);
dlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
lda, info);
} else if (iascl == 2) {
dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
info);
dlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
lda, info);
}
if (ibscl == 1) {
dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
} else if (ibscl == 2) {
dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
}

L100:

return 0;

/* End of DGELSX */

} /* dgelsx_ */


+ 753
- 0
lapack-netlib/SRC/DEPRECATED/dgeqpf.c View File

@@ -0,0 +1,753 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b DGEQPF */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download DGEQPF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqpf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqpf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqpf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE DGEQPF( M, N, A, LDA, JPVT, TAU, WORK, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* INTEGER JPVT( * ) */
/* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine DGEQP3. */
/* > */
/* > DGEQPF computes a QR factorization with column pivoting of a */
/* > real M-by-N matrix A: A*P = Q*R. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0 */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the upper triangle of the array contains the */
/* > f2cmin(M,N)-by-N upper triangular matrix R; the elements */
/* > below the diagonal, together with the array TAU, */
/* > represent the orthogonal matrix Q as a product of */
/* > f2cmin(m,n) elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/* > to the front of A*P (a leading column); if JPVT(i) = 0, */
/* > the i-th column of A is a free column. */
/* > On exit, if JPVT(i) = k, then the i-th column of A*P */
/* > was the k-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (3*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup doubleGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(n) */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H = I - tau * v * v**T */
/* > */
/* > where tau is a real scalar, and v is a real vector with */
/* > v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */
/* > */
/* > The matrix P is represented in jpvt as follows: If */
/* > jpvt(j) = i */
/* > then the jth column of P is the ith canonical unit vector. */
/* > */
/* > Partial column norm updating strategy modified by */
/* > Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
/* > University of Zagreb, Croatia. */
/* > -- April 2011 -- */
/* > For more details see LAPACK Working Note 176. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int dgeqpf_(integer *m, integer *n, doublereal *a, integer *
lda, integer *jpvt, doublereal *tau, doublereal *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1, d__2;

/* Local variables */
doublereal temp;
extern doublereal dnrm2_(integer *, doublereal *, integer *);
doublereal temp2;
integer i__, j;
doublereal tol3z;
extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
doublereal *);
integer itemp;
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
doublereal *, integer *), dgeqr2_(integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *),
dorm2r_(char *, char *, integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *);
integer ma;
extern doublereal dlamch_(char *);
integer mn;
extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
integer *, doublereal *);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *);
doublereal aii;
integer pvt;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--jpvt;
--tau;
--work;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGEQPF", &i__1);
return 0;
}

mn = f2cmin(*m,*n);
tol3z = sqrt(dlamch_("Epsilon"));

/* Move initial columns up front */

itemp = 1;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (jpvt[i__] != 0) {
if (i__ != itemp) {
dswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1],
&c__1);
jpvt[i__] = jpvt[itemp];
jpvt[itemp] = i__;
} else {
jpvt[i__] = i__;
}
++itemp;
} else {
jpvt[i__] = i__;
}
/* L10: */
}
--itemp;

/* Compute the QR factorization and update remaining columns */

if (itemp > 0) {
ma = f2cmin(itemp,*m);
dgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
if (ma < *n) {
i__1 = *n - ma;
dorm2r_("Left", "Transpose", m, &i__1, &ma, &a[a_offset], lda, &
tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], info);
}
}

if (itemp < mn) {

/* Initialize partial column norms. The first n elements of */
/* work store the exact column norms. */

i__1 = *n;
for (i__ = itemp + 1; i__ <= i__1; ++i__) {
i__2 = *m - itemp;
work[i__] = dnrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
work[*n + i__] = work[i__];
/* L20: */
}

/* Compute factorization */

i__1 = mn;
for (i__ = itemp + 1; i__ <= i__1; ++i__) {

/* Determine ith pivot column and swap if necessary */

i__2 = *n - i__ + 1;
pvt = i__ - 1 + idamax_(&i__2, &work[i__], &c__1);

if (pvt != i__) {
dswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
c__1);
itemp = jpvt[pvt];
jpvt[pvt] = jpvt[i__];
jpvt[i__] = itemp;
work[pvt] = work[i__];
work[*n + pvt] = work[*n + i__];
}

/* Generate elementary reflector H(i) */

if (i__ < *m) {
i__2 = *m - i__ + 1;
dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + 1 + i__ *
a_dim1], &c__1, &tau[i__]);
} else {
dlarfg_(&c__1, &a[*m + *m * a_dim1], &a[*m + *m * a_dim1], &
c__1, &tau[*m]);
}

if (i__ < *n) {

/* Apply H(i) to A(i:m,i+1:n) from the left */

aii = a[i__ + i__ * a_dim1];
a[i__ + i__ * a_dim1] = 1.;
i__2 = *m - i__ + 1;
i__3 = *n - i__;
dlarf_("LEFT", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
tau[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[(*
n << 1) + 1]);
a[i__ + i__ * a_dim1] = aii;
}

/* Update partial column norms */

i__2 = *n;
for (j = i__ + 1; j <= i__2; ++j) {
if (work[j] != 0.) {

/* NOTE: The following 4 lines follow from the analysis in */
/* Lapack Working Note 176. */

temp = (d__1 = a[i__ + j * a_dim1], abs(d__1)) / work[j];
/* Computing MAX */
d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
temp = f2cmax(d__1,d__2);
/* Computing 2nd power */
d__1 = work[j] / work[*n + j];
temp2 = temp * (d__1 * d__1);
if (temp2 <= tol3z) {
if (*m - i__ > 0) {
i__3 = *m - i__;
work[j] = dnrm2_(&i__3, &a[i__ + 1 + j * a_dim1],
&c__1);
work[*n + j] = work[j];
} else {
work[j] = 0.;
work[*n + j] = 0.;
}
} else {
work[j] *= sqrt(temp);
}
}
/* L30: */
}

/* L40: */
}
}
return 0;

/* End of DGEQPF */

} /* dgeqpf_ */


+ 906
- 0
lapack-netlib/SRC/DEPRECATED/dggsvd.c View File

@@ -0,0 +1,906 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief <b> DGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download DGGSVD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, */
/* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, */
/* IWORK, INFO ) */

/* CHARACTER JOBQ, JOBU, JOBV */
/* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P */
/* INTEGER IWORK( * ) */
/* DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ), */
/* $ BETA( * ), Q( LDQ, * ), U( LDU, * ), */
/* $ V( LDV, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine DGGSVD3. */
/* > */
/* > DGGSVD computes the generalized singular value decomposition (GSVD) */
/* > of an M-by-N real matrix A and P-by-N real matrix B: */
/* > */
/* > U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R ) */
/* > */
/* > where U, V and Q are orthogonal matrices. */
/* > Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T, */
/* > then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and */
/* > D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the */
/* > following structures, respectively: */
/* > */
/* > If M-K-L >= 0, */
/* > */
/* > K L */
/* > D1 = K ( I 0 ) */
/* > L ( 0 C ) */
/* > M-K-L ( 0 0 ) */
/* > */
/* > K L */
/* > D2 = L ( 0 S ) */
/* > P-L ( 0 0 ) */
/* > */
/* > N-K-L K L */
/* > ( 0 R ) = K ( 0 R11 R12 ) */
/* > L ( 0 0 R22 ) */
/* > */
/* > where */
/* > */
/* > C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
/* > S = diag( BETA(K+1), ... , BETA(K+L) ), */
/* > C**2 + S**2 = I. */
/* > */
/* > R is stored in A(1:K+L,N-K-L+1:N) on exit. */
/* > */
/* > If M-K-L < 0, */
/* > */
/* > K M-K K+L-M */
/* > D1 = K ( I 0 0 ) */
/* > M-K ( 0 C 0 ) */
/* > */
/* > K M-K K+L-M */
/* > D2 = M-K ( 0 S 0 ) */
/* > K+L-M ( 0 0 I ) */
/* > P-L ( 0 0 0 ) */
/* > */
/* > N-K-L K M-K K+L-M */
/* > ( 0 R ) = K ( 0 R11 R12 R13 ) */
/* > M-K ( 0 0 R22 R23 ) */
/* > K+L-M ( 0 0 0 R33 ) */
/* > */
/* > where */
/* > */
/* > C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
/* > S = diag( BETA(K+1), ... , BETA(M) ), */
/* > C**2 + S**2 = I. */
/* > */
/* > (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored */
/* > ( 0 R22 R23 ) */
/* > in B(M-K+1:L,N+M-K-L+1:N) on exit. */
/* > */
/* > The routine computes C, S, R, and optionally the orthogonal */
/* > transformation matrices U, V and Q. */
/* > */
/* > In particular, if B is an N-by-N nonsingular matrix, then the GSVD of */
/* > A and B implicitly gives the SVD of A*inv(B): */
/* > A*inv(B) = U*(D1*inv(D2))*V**T. */
/* > If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is */
/* > also equal to the CS decomposition of A and B. Furthermore, the GSVD */
/* > can be used to derive the solution of the eigenvalue problem: */
/* > A**T*A x = lambda* B**T*B x. */
/* > In some literature, the GSVD of A and B is presented in the form */
/* > U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 ) */
/* > where U and V are orthogonal and X is nonsingular, D1 and D2 are */
/* > ``diagonal''. The former GSVD form can be converted to the latter */
/* > form by taking the nonsingular matrix X as */
/* > */
/* > X = Q*( I 0 ) */
/* > ( 0 inv(R) ). */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] JOBU */
/* > \verbatim */
/* > JOBU is CHARACTER*1 */
/* > = 'U': Orthogonal matrix U is computed; */
/* > = 'N': U is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBV */
/* > \verbatim */
/* > JOBV is CHARACTER*1 */
/* > = 'V': Orthogonal matrix V is computed; */
/* > = 'N': V is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBQ */
/* > \verbatim */
/* > JOBQ is CHARACTER*1 */
/* > = 'Q': Orthogonal matrix Q is computed; */
/* > = 'N': Q is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrices A and B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] P */
/* > \verbatim */
/* > P is INTEGER */
/* > The number of rows of the matrix B. P >= 0. */
/* > \endverbatim */
/* > */
/* > \param[out] K */
/* > \verbatim */
/* > K is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[out] L */
/* > \verbatim */
/* > L is INTEGER */
/* > */
/* > On exit, K and L specify the dimension of the subblocks */
/* > described in Purpose. */
/* > K + L = effective numerical rank of (A**T,B**T)**T. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A contains the triangular matrix R, or part of R. */
/* > See Purpose for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB,N) */
/* > On entry, the P-by-N matrix B. */
/* > On exit, B contains the triangular matrix R if M-K-L < 0. */
/* > See Purpose for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHA */
/* > \verbatim */
/* > ALPHA is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] BETA */
/* > \verbatim */
/* > BETA is DOUBLE PRECISION array, dimension (N) */
/* > */
/* > On exit, ALPHA and BETA contain the generalized singular */
/* > value pairs of A and B; */
/* > ALPHA(1:K) = 1, */
/* > BETA(1:K) = 0, */
/* > and if M-K-L >= 0, */
/* > ALPHA(K+1:K+L) = C, */
/* > BETA(K+1:K+L) = S, */
/* > or if M-K-L < 0, */
/* > ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 */
/* > BETA(K+1:M) =S, BETA(M+1:K+L) =1 */
/* > and */
/* > ALPHA(K+L+1:N) = 0 */
/* > BETA(K+L+1:N) = 0 */
/* > \endverbatim */
/* > */
/* > \param[out] U */
/* > \verbatim */
/* > U is DOUBLE PRECISION array, dimension (LDU,M) */
/* > If JOBU = 'U', U contains the M-by-M orthogonal matrix U. */
/* > If JOBU = 'N', U is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU */
/* > \verbatim */
/* > LDU is INTEGER */
/* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
/* > JOBU = 'U'; LDU >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] V */
/* > \verbatim */
/* > V is DOUBLE PRECISION array, dimension (LDV,P) */
/* > If JOBV = 'V', V contains the P-by-P orthogonal matrix V. */
/* > If JOBV = 'N', V is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV */
/* > \verbatim */
/* > LDV is INTEGER */
/* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
/* > JOBV = 'V'; LDV >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] Q */
/* > \verbatim */
/* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
/* > If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. */
/* > If JOBQ = 'N', Q is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDQ */
/* > \verbatim */
/* > LDQ is INTEGER */
/* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
/* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, */
/* > dimension (f2cmax(3*N,M,P)+N) */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (N) */
/* > On exit, IWORK stores the sorting information. More */
/* > precisely, the following loop will sort ALPHA */
/* > for I = K+1, f2cmin(M,K+L) */
/* > swap ALPHA(I) and ALPHA(IWORK(I)) */
/* > endfor */
/* > such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = 1, the Jacobi-type procedure failed to */
/* > converge. For further details, see subroutine DTGSJA. */
/* > \endverbatim */

/* > \par Internal Parameters: */
/* ========================= */
/* > */
/* > \verbatim */
/* > TOLA DOUBLE PRECISION */
/* > TOLB DOUBLE PRECISION */
/* > TOLA and TOLB are the thresholds to determine the effective */
/* > rank of (A',B')**T. Generally, they are set to */
/* > TOLA = MAX(M,N)*norm(A)*MAZHEPS, */
/* > TOLB = MAX(P,N)*norm(B)*MAZHEPS. */
/* > The size of TOLA and TOLB may affect the size of backward */
/* > errors of the decomposition. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup doubleOTHERsing */

/* > \par Contributors: */
/* ================== */
/* > */
/* > Ming Gu and Huan Ren, Computer Science Division, University of */
/* > California at Berkeley, USA */
/* > */
/* ===================================================================== */
/* Subroutine */ int dggsvd_(char *jobu, char *jobv, char *jobq, integer *m,
integer *n, integer *p, integer *k, integer *l, doublereal *a,
integer *lda, doublereal *b, integer *ldb, doublereal *alpha,
doublereal *beta, doublereal *u, integer *ldu, doublereal *v, integer
*ldv, doublereal *q, integer *ldq, doublereal *work, integer *iwork,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
u_offset, v_dim1, v_offset, i__1, i__2;

/* Local variables */
integer ibnd;
doublereal tola;
integer isub;
doublereal tolb, unfl, temp, smax;
integer ncallmycycle, i__, j;
extern logical lsame_(char *, char *);
doublereal anorm, bnorm;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
logical wantq, wantu, wantv;
extern doublereal dlamch_(char *), dlange_(char *, integer *,
integer *, doublereal *, integer *, doublereal *);
extern /* Subroutine */ int dtgsja_(char *, char *, char *, integer *,
integer *, integer *, integer *, integer *, doublereal *, integer
*, doublereal *, integer *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
integer *), xerbla_(char *, integer *), dggsvp_(char *, char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
integer *, doublereal *, doublereal *, integer *);
doublereal ulp;


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--alpha;
--beta;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
--work;
--iwork;

/* Function Body */
wantu = lsame_(jobu, "U");
wantv = lsame_(jobv, "V");
wantq = lsame_(jobq, "Q");

*info = 0;
if (! (wantu || lsame_(jobu, "N"))) {
*info = -1;
} else if (! (wantv || lsame_(jobv, "N"))) {
*info = -2;
} else if (! (wantq || lsame_(jobq, "N"))) {
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*p < 0) {
*info = -6;
} else if (*lda < f2cmax(1,*m)) {
*info = -10;
} else if (*ldb < f2cmax(1,*p)) {
*info = -12;
} else if (*ldu < 1 || wantu && *ldu < *m) {
*info = -16;
} else if (*ldv < 1 || wantv && *ldv < *p) {
*info = -18;
} else if (*ldq < 1 || wantq && *ldq < *n) {
*info = -20;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGGSVD", &i__1);
return 0;
}

/* Compute the Frobenius norm of matrices A and B */

anorm = dlange_("1", m, n, &a[a_offset], lda, &work[1]);
bnorm = dlange_("1", p, n, &b[b_offset], ldb, &work[1]);

/* Get machine precision and set up threshold for determining */
/* the effective numerical rank of the matrices A and B. */

ulp = dlamch_("Precision");
unfl = dlamch_("Safe Minimum");
tola = f2cmax(*m,*n) * f2cmax(anorm,unfl) * ulp;
tolb = f2cmax(*p,*n) * f2cmax(bnorm,unfl) * ulp;

/* Preprocessing */

dggsvp_(jobu, jobv, jobq, m, p, n, &a[a_offset], lda, &b[b_offset], ldb, &
tola, &tolb, k, l, &u[u_offset], ldu, &v[v_offset], ldv, &q[
q_offset], ldq, &iwork[1], &work[1], &work[*n + 1], info);

/* Compute the GSVD of two upper "triangular" matrices */

dtgsja_(jobu, jobv, jobq, m, p, n, k, l, &a[a_offset], lda, &b[b_offset],
ldb, &tola, &tolb, &alpha[1], &beta[1], &u[u_offset], ldu, &v[
v_offset], ldv, &q[q_offset], ldq, &work[1], &ncallmycycle, info);

/* Sort the singular values and store the pivot indices in IWORK */
/* Copy ALPHA to WORK, then sort ALPHA in WORK */

dcopy_(n, &alpha[1], &c__1, &work[1], &c__1);
/* Computing MIN */
i__1 = *l, i__2 = *m - *k;
ibnd = f2cmin(i__1,i__2);
i__1 = ibnd;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Scan for largest ALPHA(K+I) */

isub = i__;
smax = work[*k + i__];
i__2 = ibnd;
for (j = i__ + 1; j <= i__2; ++j) {
temp = work[*k + j];
if (temp > smax) {
isub = j;
smax = temp;
}
/* L10: */
}
if (isub != i__) {
work[*k + isub] = work[*k + i__];
work[*k + i__] = smax;
iwork[*k + i__] = *k + isub;
} else {
iwork[*k + i__] = *k + i__;
}
/* L20: */
}

return 0;

/* End of DGGSVD */

} /* dggsvd_ */


+ 1014
- 0
lapack-netlib/SRC/DEPRECATED/dggsvp.c
File diff suppressed because it is too large
View File


+ 742
- 0
lapack-netlib/SRC/DEPRECATED/dlahrd.c View File

@@ -0,0 +1,742 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static doublereal c_b4 = -1.;
static doublereal c_b5 = 1.;
static integer c__1 = 1;
static doublereal c_b38 = 0.;

/* > \brief \b DLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below th
e k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformati
on to the unreduced part of A. */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download DLAHRD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahrd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahrd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahrd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) */

/* INTEGER K, LDA, LDT, LDY, N, NB */
/* DOUBLE PRECISION A( LDA, * ), T( LDT, NB ), TAU( NB ), */
/* $ Y( LDY, NB ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine DLAHR2. */
/* > */
/* > DLAHRD reduces the first NB columns of a real general n-by-(n-k+1) */
/* > matrix A so that elements below the k-th subdiagonal are zero. The */
/* > reduction is performed by an orthogonal similarity transformation */
/* > Q**T * A * Q. The routine returns the matrices V and T which determine */
/* > Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The offset for the reduction. Elements below the k-th */
/* > subdiagonal in the first NB columns are reduced to zero. */
/* > \endverbatim */
/* > */
/* > \param[in] NB */
/* > \verbatim */
/* > NB is INTEGER */
/* > The number of columns to be reduced. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N-K+1) */
/* > On entry, the n-by-(n-k+1) general matrix A. */
/* > On exit, the elements on and above the k-th subdiagonal in */
/* > the first NB columns are overwritten with the corresponding */
/* > elements of the reduced matrix; the elements below the k-th */
/* > subdiagonal, with the array TAU, represent the matrix Q as a */
/* > product of elementary reflectors. The other columns of A are */
/* > unchanged. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION array, dimension (NB) */
/* > The scalar factors of the elementary reflectors. See Further */
/* > Details. */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is DOUBLE PRECISION array, dimension (LDT,NB) */
/* > The upper triangular matrix T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= NB. */
/* > \endverbatim */
/* > */
/* > \param[out] Y */
/* > \verbatim */
/* > Y is DOUBLE PRECISION array, dimension (LDY,NB) */
/* > The n-by-nb matrix Y. */
/* > \endverbatim */
/* > */
/* > \param[in] LDY */
/* > \verbatim */
/* > LDY is INTEGER */
/* > The leading dimension of the array Y. LDY >= N. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup doubleOTHERauxiliary */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of nb elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(nb). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**T */
/* > */
/* > where tau is a real scalar, and v is a real vector with */
/* > v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
/* > A(i+k+1:n,i), and tau in TAU(i). */
/* > */
/* > The elements of the vectors v together form the (n-k+1)-by-nb matrix */
/* > V which is needed, with T and Y, to apply the transformation to the */
/* > unreduced part of the matrix, using an update of the form: */
/* > A := (I - V*T*V**T) * (A - Y*V**T). */
/* > */
/* > The contents of A on exit are illustrated by the following example */
/* > with n = 7, k = 3 and nb = 2: */
/* > */
/* > ( a h a a a ) */
/* > ( a h a a a ) */
/* > ( a h a a a ) */
/* > ( h h a a a ) */
/* > ( v1 h a a a ) */
/* > ( v1 v2 a a a ) */
/* > ( v1 v2 a a a ) */
/* > */
/* > where a denotes an element of the original matrix A, h denotes a */
/* > modified element of the upper Hessenberg matrix H, and vi denotes an */
/* > element of the vector defining H(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int dlahrd_(integer *n, integer *k, integer *nb, doublereal *
a, integer *lda, doublereal *tau, doublereal *t, integer *ldt,
doublereal *y, integer *ldy)
{
/* System generated locals */
integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
i__3;
doublereal d__1;

/* Local variables */
integer i__;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *), dgemv_(char *, integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *), dcopy_(integer *, doublereal *,
integer *, doublereal *, integer *), daxpy_(integer *, doublereal
*, doublereal *, integer *, doublereal *, integer *), dtrmv_(char
*, char *, char *, integer *, doublereal *, integer *, doublereal
*, integer *);
doublereal ei;
extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
integer *, doublereal *);


/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Quick return if possible */

/* Parameter adjustments */
--tau;
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
y_dim1 = *ldy;
y_offset = 1 + y_dim1 * 1;
y -= y_offset;

/* Function Body */
if (*n <= 1) {
return 0;
}

i__1 = *nb;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ > 1) {

/* Update A(1:n,i) */

/* Compute i-th column of A - Y * V**T */

i__2 = i__ - 1;
dgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &a[*k
+ i__ - 1 + a_dim1], lda, &c_b5, &a[i__ * a_dim1 + 1], &
c__1);

/* Apply I - V * T**T * V**T to this column (call it b) from the */
/* left, using the last column of T as workspace */

/* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */
/* ( V2 ) ( b2 ) */

/* where V1 is unit lower triangular */

/* w := V1**T * b1 */

i__2 = i__ - 1;
dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
1], &c__1);
i__2 = i__ - 1;
dtrmv_("Lower", "Transpose", "Unit", &i__2, &a[*k + 1 + a_dim1],
lda, &t[*nb * t_dim1 + 1], &c__1);

/* w := w + V2**T *b2 */

i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1],
lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb *
t_dim1 + 1], &c__1);

/* w := T**T *w */

i__2 = i__ - 1;
dtrmv_("Upper", "Transpose", "Non-unit", &i__2, &t[t_offset], ldt,
&t[*nb * t_dim1 + 1], &c__1);

/* b2 := b2 - V2*w */

i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1],
lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ +
i__ * a_dim1], &c__1);

/* b1 := b1 - V1*w */

i__2 = i__ - 1;
dtrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
, lda, &t[*nb * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
daxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
* a_dim1], &c__1);

a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
}

/* Generate the elementary reflector H(i) to annihilate */
/* A(k+i+1:n,i) */

i__2 = *n - *k - i__ + 1;
/* Computing MIN */
i__3 = *k + i__ + 1;
dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[f2cmin(i__3,*n) + i__ *
a_dim1], &c__1, &tau[i__]);
ei = a[*k + i__ + i__ * a_dim1];
a[*k + i__ + i__ * a_dim1] = 1.;

/* Compute Y(1:n,i) */

i__2 = *n - *k - i__ + 1;
dgemv_("No transpose", n, &i__2, &c_b5, &a[(i__ + 1) * a_dim1 + 1],
lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[i__ *
y_dim1 + 1], &c__1);
i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, &
a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 +
1], &c__1);
i__2 = i__ - 1;
dgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &t[i__ *
t_dim1 + 1], &c__1, &c_b5, &y[i__ * y_dim1 + 1], &c__1);
dscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);

/* Compute T(1:i,i) */

i__2 = i__ - 1;
d__1 = -tau[i__];
dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
&t[i__ * t_dim1 + 1], &c__1)
;
t[i__ + i__ * t_dim1] = tau[i__];

/* L10: */
}
a[*k + *nb + *nb * a_dim1] = ei;

return 0;

/* End of DLAHRD */

} /* dlahrd_ */


+ 647
- 0
lapack-netlib/SRC/DEPRECATED/dlatzm.c View File

@@ -0,0 +1,647 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static doublereal c_b5 = 1.;

/* > \brief \b DLATZM */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download DLATZM + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatzm.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatzm.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatzm.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE DLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK ) */

/* CHARACTER SIDE */
/* INTEGER INCV, LDC, M, N */
/* DOUBLE PRECISION TAU */
/* DOUBLE PRECISION C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine DORMRZ. */
/* > */
/* > DLATZM applies a Householder matrix generated by DTZRQF to a matrix. */
/* > */
/* > Let P = I - tau*u*u**T, u = ( 1 ), */
/* > ( v ) */
/* > where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if */
/* > SIDE = 'R'. */
/* > */
/* > If SIDE equals 'L', let */
/* > C = [ C1 ] 1 */
/* > [ C2 ] m-1 */
/* > n */
/* > Then C is overwritten by P*C. */
/* > */
/* > If SIDE equals 'R', let */
/* > C = [ C1, C2 ] m */
/* > 1 n-1 */
/* > Then C is overwritten by C*P. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': form P * C */
/* > = 'R': form C * P */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] V */
/* > \verbatim */
/* > V is DOUBLE PRECISION array, dimension */
/* > (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
/* > (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
/* > The vector v in the representation of P. V is not used */
/* > if TAU = 0. */
/* > \endverbatim */
/* > */
/* > \param[in] INCV */
/* > \verbatim */
/* > INCV is INTEGER */
/* > The increment between elements of v. INCV <> 0 */
/* > \endverbatim */
/* > */
/* > \param[in] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION */
/* > The value tau in the representation of P. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C1 */
/* > \verbatim */
/* > C1 is DOUBLE PRECISION array, dimension */
/* > (LDC,N) if SIDE = 'L' */
/* > (M,1) if SIDE = 'R' */
/* > On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 */
/* > if SIDE = 'R'. */
/* > */
/* > On exit, the first row of P*C if SIDE = 'L', or the first */
/* > column of C*P if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C2 */
/* > \verbatim */
/* > C2 is DOUBLE PRECISION array, dimension */
/* > (LDC, N) if SIDE = 'L' */
/* > (LDC, N-1) if SIDE = 'R' */
/* > On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the */
/* > m x (n - 1) matrix C2 if SIDE = 'R'. */
/* > */
/* > On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P */
/* > if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the arrays C1 and C2. LDC >= (1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension */
/* > (N) if SIDE = 'L' */
/* > (M) if SIDE = 'R' */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup doubleOTHERcomputational */

/* ===================================================================== */
/* Subroutine */ int dlatzm_(char *side, integer *m, integer *n, doublereal *
v, integer *incv, doublereal *tau, doublereal *c1, doublereal *c2,
integer *ldc, doublereal *work)
{
/* System generated locals */
integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1;
doublereal d__1;

/* Local variables */
extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *), dcopy_(integer *,
doublereal *, integer *, doublereal *, integer *), daxpy_(integer
*, doublereal *, doublereal *, integer *, doublereal *, integer *)
;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Parameter adjustments */
--v;
c2_dim1 = *ldc;
c2_offset = 1 + c2_dim1 * 1;
c2 -= c2_offset;
c1_dim1 = *ldc;
c1_offset = 1 + c1_dim1 * 1;
c1 -= c1_offset;
--work;

/* Function Body */
if (f2cmin(*m,*n) == 0 || *tau == 0.) {
return 0;
}

if (lsame_(side, "L")) {

/* w := (C1 + v**T * C2)**T */

dcopy_(n, &c1[c1_offset], ldc, &work[1], &c__1);
i__1 = *m - 1;
dgemv_("Transpose", &i__1, n, &c_b5, &c2[c2_offset], ldc, &v[1], incv,
&c_b5, &work[1], &c__1);

/* [ C1 ] := [ C1 ] - tau* [ 1 ] * w**T */
/* [ C2 ] [ C2 ] [ v ] */

d__1 = -(*tau);
daxpy_(n, &d__1, &work[1], &c__1, &c1[c1_offset], ldc);
i__1 = *m - 1;
d__1 = -(*tau);
dger_(&i__1, n, &d__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset],
ldc);

} else if (lsame_(side, "R")) {

/* w := C1 + C2 * v */

dcopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1);
i__1 = *n - 1;
dgemv_("No transpose", m, &i__1, &c_b5, &c2[c2_offset], ldc, &v[1],
incv, &c_b5, &work[1], &c__1);

/* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**T] */

d__1 = -(*tau);
daxpy_(m, &d__1, &work[1], &c__1, &c1[c1_offset], &c__1);
i__1 = *n - 1;
d__1 = -(*tau);
dger_(m, &i__1, &d__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset],
ldc);
}

return 0;

/* End of DLATZM */

} /* dlatzm_ */


+ 667
- 0
lapack-netlib/SRC/DEPRECATED/dtzrqf.c View File

@@ -0,0 +1,667 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static doublereal c_b8 = 1.;

/* > \brief \b DTZRQF */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download DTZRQF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtzrqf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtzrqf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtzrqf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE DTZRQF( M, N, A, LDA, TAU, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* DOUBLE PRECISION A( LDA, * ), TAU( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine DTZRZF. */
/* > */
/* > DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */
/* > to upper triangular form by means of orthogonal transformations. */
/* > */
/* > The upper trapezoidal matrix A is factored as */
/* > */
/* > A = ( R 0 ) * Z, */
/* > */
/* > where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */
/* > triangular matrix. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= M. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the leading M-by-N upper trapezoidal part of the */
/* > array A must contain the matrix to be factorized. */
/* > On exit, the leading M-by-M upper triangular part of A */
/* > contains the upper triangular matrix R, and elements M+1 to */
/* > N of the first M rows of A, with the array TAU, represent the */
/* > orthogonal matrix Z as a product of M elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION array, dimension (M) */
/* > The scalar factors of the elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup doubleOTHERcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The factorization is obtained by Householder's method. The kth */
/* > transformation matrix, Z( k ), which is used to introduce zeros into */
/* > the ( m - k + 1 )th row of A, is given in the form */
/* > */
/* > Z( k ) = ( I 0 ), */
/* > ( 0 T( k ) ) */
/* > */
/* > where */
/* > */
/* > T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ), */
/* > ( 0 ) */
/* > ( z( k ) ) */
/* > */
/* > tau is a scalar and z( k ) is an ( n - m ) element vector. */
/* > tau and z( k ) are chosen to annihilate the elements of the kth row */
/* > of X. */
/* > */
/* > The scalar tau is returned in the kth element of TAU and the vector */
/* > u( k ) in the kth row of A, such that the elements of z( k ) are */
/* > in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
/* > the upper triangular part of A. */
/* > */
/* > Z is given by */
/* > */
/* > Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int dtzrqf_(integer *m, integer *n, doublereal *a, integer *
lda, doublereal *tau, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
doublereal d__1;

/* Local variables */
extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *);
integer i__, k;
extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *), dcopy_(integer *,
doublereal *, integer *, doublereal *, integer *), daxpy_(integer
*, doublereal *, doublereal *, integer *, doublereal *, integer *)
;
integer m1;
extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
integer *, doublereal *), xerbla_(char *, integer *);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < *m) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DTZRQF", &i__1);
return 0;
}

/* Perform the factorization. */

if (*m == 0) {
return 0;
}
if (*m == *n) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
tau[i__] = 0.;
/* L10: */
}
} else {
/* Computing MIN */
i__1 = *m + 1;
m1 = f2cmin(i__1,*n);
for (k = *m; k >= 1; --k) {

/* Use a Householder reflection to zero the kth row of A. */
/* First set up the reflection. */

i__1 = *n - *m + 1;
dlarfg_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[
k]);

if (tau[k] != 0. && k > 1) {

/* We now perform the operation A := A*P( k ). */

/* Use the first ( k - 1 ) elements of TAU to store a( k ), */
/* where a( k ) consists of the first ( k - 1 ) elements of */
/* the kth column of A. Also let B denote the first */
/* ( k - 1 ) rows of the last ( n - m ) columns of A. */

i__1 = k - 1;
dcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);

/* Form w = a( k ) + B*z( k ) in TAU. */

i__1 = k - 1;
i__2 = *n - *m;
dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 +
1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], &
c__1);

/* Now form a( k ) := a( k ) - tau*w */
/* and B := B - tau*w*z( k )**T. */

i__1 = k - 1;
d__1 = -tau[k];
daxpy_(&i__1, &d__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
c__1);
i__1 = k - 1;
i__2 = *n - *m;
d__1 = -tau[k];
dger_(&i__1, &i__2, &d__1, &tau[1], &c__1, &a[k + m1 * a_dim1]
, lda, &a[m1 * a_dim1 + 1], lda);
}
/* L20: */
}
}

return 0;

/* End of DTZRQF */

} /* dtzrqf_ */


+ 1026
- 0
lapack-netlib/SRC/DEPRECATED/sgegs.c
File diff suppressed because it is too large
View File


+ 1316
- 0
lapack-netlib/SRC/DEPRECATED/sgegv.c
File diff suppressed because it is too large
View File


+ 891
- 0
lapack-netlib/SRC/DEPRECATED/sgelsx.c View File

@@ -0,0 +1,891 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__0 = 0;
static real c_b13 = 0.f;
static integer c__2 = 2;
static integer c__1 = 1;
static real c_b36 = 1.f;

/* > \brief <b> SGELSX solves overdetermined or underdetermined systems for GE matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download SGELSX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsx.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsx.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsx.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
/* WORK, INFO ) */

/* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK */
/* REAL RCOND */
/* INTEGER JPVT( * ) */
/* REAL A( LDA, * ), B( LDB, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine SGELSY. */
/* > */
/* > SGELSX computes the minimum-norm solution to a real linear least */
/* > squares problem: */
/* > minimize || A * X - B || */
/* > using a complete orthogonal factorization of A. A is an M-by-N */
/* > matrix which may be rank-deficient. */
/* > */
/* > Several right hand side vectors b and solution vectors x can be */
/* > handled in a single call; they are stored as the columns of the */
/* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/* > matrix X. */
/* > */
/* > The routine first computes a QR factorization with column pivoting: */
/* > A * P = Q * [ R11 R12 ] */
/* > [ 0 R22 ] */
/* > with R11 defined as the largest leading submatrix whose estimated */
/* > condition number is less than 1/RCOND. The order of R11, RANK, */
/* > is the effective rank of A. */
/* > */
/* > Then, R22 is considered to be negligible, and R12 is annihilated */
/* > by orthogonal transformations from the right, arriving at the */
/* > complete orthogonal factorization: */
/* > A * P = Q * [ T11 0 ] * Z */
/* > [ 0 0 ] */
/* > The minimum-norm solution is then */
/* > X = P * Z**T [ inv(T11)*Q1**T*B ] */
/* > [ 0 ] */
/* > where Q1 consists of the first RANK columns of Q. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of */
/* > columns of matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is REAL array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A has been overwritten by details of its */
/* > complete orthogonal factorization. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is REAL array, dimension (LDB,NRHS) */
/* > On entry, the M-by-NRHS right hand side matrix B. */
/* > On exit, the N-by-NRHS solution matrix X. */
/* > If m >= n and RANK = n, the residual sum-of-squares for */
/* > the solution in the i-th column is given by the sum of */
/* > squares of elements N+1:M in that column. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(i) .ne. 0, the i-th column of A is an */
/* > initial column, otherwise it is a free column. Before */
/* > the QR factorization of A, all initial columns are */
/* > permuted to the leading positions; only the remaining */
/* > free columns are moved as a result of column pivoting */
/* > during the factorization. */
/* > On exit, if JPVT(i) = k, then the i-th column of A*P */
/* > was the k-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[in] RCOND */
/* > \verbatim */
/* > RCOND is REAL */
/* > RCOND is used to determine the effective rank of A, which */
/* > is defined as the order of the largest leading triangular */
/* > submatrix R11 in the QR factorization with pivoting of A, */
/* > whose estimated condition number < 1/RCOND. */
/* > \endverbatim */
/* > */
/* > \param[out] RANK */
/* > \verbatim */
/* > RANK is INTEGER */
/* > The effective rank of A, i.e., the order of the submatrix */
/* > R11. This is the same as the order of the submatrix T11 */
/* > in the complete orthogonal factorization of A. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension */
/* > (f2cmax( f2cmin(M,N)+3*N, 2*f2cmin(M,N)+NRHS )), */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup realGEsolve */

/* ===================================================================== */
/* Subroutine */ int sgelsx_(integer *m, integer *n, integer *nrhs, real *a,
integer *lda, real *b, integer *ldb, integer *jpvt, real *rcond,
integer *rank, real *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
real r__1;

/* Local variables */
real anrm, bnrm, smin, smax;
integer i__, j, k, iascl, ibscl, ismin, ismax;
real c1, c2, s1, s2, t1, t2;
extern /* Subroutine */ int strsm_(char *, char *, char *, char *,
integer *, integer *, real *, real *, integer *, real *, integer *
), slaic1_(integer *, integer *,
real *, real *, real *, real *, real *, real *, real *), sorm2r_(
char *, char *, integer *, integer *, integer *, real *, integer *
, real *, real *, integer *, real *, integer *),
slabad_(real *, real *);
integer mn;
extern real slamch_(char *), slange_(char *, integer *, integer *,
real *, integer *, real *);
extern /* Subroutine */ int xerbla_(char *, integer *);
real bignum;
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *), sgeqpf_(integer *, integer *, real *, integer *, integer
*, real *, real *, integer *), slaset_(char *, integer *, integer
*, real *, real *, real *, integer *);
real sminpr, smaxpr, smlnum;
extern /* Subroutine */ int slatzm_(char *, integer *, integer *, real *,
integer *, real *, real *, real *, integer *, real *),
stzrqf_(integer *, integer *, real *, integer *, real *, integer *
);


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--jpvt;
--work;

/* Function Body */
mn = f2cmin(*m,*n);
ismin = mn + 1;
ismax = (mn << 1) + 1;

/* Test the input arguments. */

*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < f2cmax(1,*m)) {
*info = -5;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = f2cmax(1,*m);
if (*ldb < f2cmax(i__1,*n)) {
*info = -7;
}
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("SGELSX", &i__1);
return 0;
}

/* Quick return if possible */

/* Computing MIN */
i__1 = f2cmin(*m,*n);
if (f2cmin(i__1,*nrhs) == 0) {
*rank = 0;
return 0;
}

/* Get machine parameters */

smlnum = slamch_("S") / slamch_("P");
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);

/* Scale A, B if f2cmax elements outside range [SMLNUM,BIGNUM] */

anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]);
iascl = 0;
if (anrm > 0.f && anrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info);
iascl = 1;
} else if (anrm > bignum) {

/* Scale matrix norm down to BIGNUM */

slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info);
iascl = 2;
} else if (anrm == 0.f) {

/* Matrix all zero. Return zero solution. */

i__1 = f2cmax(*m,*n);
slaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
*rank = 0;
goto L100;
}

bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
ibscl = 0;
if (bnrm > 0.f && bnrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 1;
} else if (bnrm > bignum) {

/* Scale matrix norm down to BIGNUM */

slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 2;
}

/* Compute QR factorization with column pivoting of A: */
/* A * P = Q * R */

sgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], info);

/* workspace 3*N. Details of Householder rotations stored */
/* in WORK(1:MN). */

/* Determine RANK using incremental condition estimation */

work[ismin] = 1.f;
work[ismax] = 1.f;
smax = (r__1 = a[a_dim1 + 1], abs(r__1));
smin = smax;
if ((r__1 = a[a_dim1 + 1], abs(r__1)) == 0.f) {
*rank = 0;
i__1 = f2cmax(*m,*n);
slaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
goto L100;
} else {
*rank = 1;
}

L10:
if (*rank < mn) {
i__ = *rank + 1;
slaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &sminpr, &s1, &c1);
slaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &smaxpr, &s2, &c2);

if (smaxpr * *rcond <= sminpr) {
i__1 = *rank;
for (i__ = 1; i__ <= i__1; ++i__) {
work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];
work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];
/* L20: */
}
work[ismin + *rank] = c1;
work[ismax + *rank] = c2;
smin = sminpr;
smax = smaxpr;
++(*rank);
goto L10;
}
}

/* Logically partition R = [ R11 R12 ] */
/* [ 0 R22 ] */
/* where R11 = R(1:RANK,1:RANK) */

/* [R11,R12] = [ T11, 0 ] * Y */

if (*rank < *n) {
stzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
}

/* Details of Householder rotations stored in WORK(MN+1:2*MN) */

/* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) */

sorm2r_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &
b[b_offset], ldb, &work[(mn << 1) + 1], info);

/* workspace NRHS */

/* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

strsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b36, &
a[a_offset], lda, &b[b_offset], ldb);

i__1 = *n;
for (i__ = *rank + 1; i__ <= i__1; ++i__) {
i__2 = *nrhs;
for (j = 1; j <= i__2; ++j) {
b[i__ + j * b_dim1] = 0.f;
/* L30: */
}
/* L40: */
}

/* B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS) */

if (*rank < *n) {
i__1 = *rank;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n - *rank + 1;
slatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda,
&work[mn + i__], &b[i__ + b_dim1], &b[*rank + 1 + b_dim1],
ldb, &work[(mn << 1) + 1]);
/* L50: */
}
}

/* workspace NRHS */

/* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
work[(mn << 1) + i__] = 1.f;
/* L60: */
}
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
if (work[(mn << 1) + i__] == 1.f) {
if (jpvt[i__] != i__) {
k = i__;
t1 = b[k + j * b_dim1];
t2 = b[jpvt[k] + j * b_dim1];
L70:
b[jpvt[k] + j * b_dim1] = t1;
work[(mn << 1) + k] = 0.f;
t1 = t2;
k = jpvt[k];
t2 = b[jpvt[k] + j * b_dim1];
if (jpvt[k] != i__) {
goto L70;
}
b[i__ + j * b_dim1] = t1;
work[(mn << 1) + k] = 0.f;
}
}
/* L80: */
}
/* L90: */
}

/* Undo scaling */

if (iascl == 1) {
slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
info);
slascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
lda, info);
} else if (iascl == 2) {
slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
info);
slascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
lda, info);
}
if (ibscl == 1) {
slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
} else if (ibscl == 2) {
slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
}

L100:

return 0;

/* End of SGELSX */

} /* sgelsx_ */


+ 750
- 0
lapack-netlib/SRC/DEPRECATED/sgeqpf.c View File

@@ -0,0 +1,750 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b SGEQPF */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download SGEQPF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqpf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqpf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqpf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE SGEQPF( M, N, A, LDA, JPVT, TAU, WORK, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* INTEGER JPVT( * ) */
/* REAL A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine SGEQP3. */
/* > */
/* > SGEQPF computes a QR factorization with column pivoting of a */
/* > real M-by-N matrix A: A*P = Q*R. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0 */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is REAL array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the upper triangle of the array contains the */
/* > f2cmin(M,N)-by-N upper triangular matrix R; the elements */
/* > below the diagonal, together with the array TAU, */
/* > represent the orthogonal matrix Q as a product of */
/* > f2cmin(m,n) elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/* > to the front of A*P (a leading column); if JPVT(i) = 0, */
/* > the i-th column of A is a free column. */
/* > On exit, if JPVT(i) = k, then the i-th column of A*P */
/* > was the k-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is REAL array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension (3*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup realGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(n) */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H = I - tau * v * v**T */
/* > */
/* > where tau is a real scalar, and v is a real vector with */
/* > v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */
/* > */
/* > The matrix P is represented in jpvt as follows: If */
/* > jpvt(j) = i */
/* > then the jth column of P is the ith canonical unit vector. */
/* > */
/* > Partial column norm updating strategy modified by */
/* > Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
/* > University of Zagreb, Croatia. */
/* > -- April 2011 -- */
/* > For more details see LAPACK Working Note 176. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int sgeqpf_(integer *m, integer *n, real *a, integer *lda,
integer *jpvt, real *tau, real *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
real r__1, r__2;

/* Local variables */
real temp, temp2;
extern real snrm2_(integer *, real *, integer *);
integer i__, j;
real tol3z;
extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *,
integer *, real *, real *, integer *, real *);
integer itemp;
extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
integer *), sgeqr2_(integer *, integer *, real *, integer *, real
*, real *, integer *);
integer ma;
extern /* Subroutine */ int sorm2r_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, real *, integer *, real *,
integer *);
integer mn;
extern real slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *), slarfg_(
integer *, real *, real *, integer *, real *);
extern integer isamax_(integer *, real *, integer *);
real aii;
integer pvt;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--jpvt;
--tau;
--work;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGEQPF", &i__1);
return 0;
}

mn = f2cmin(*m,*n);
tol3z = sqrt(slamch_("Epsilon"));

/* Move initial columns up front */

itemp = 1;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (jpvt[i__] != 0) {
if (i__ != itemp) {
sswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1],
&c__1);
jpvt[i__] = jpvt[itemp];
jpvt[itemp] = i__;
} else {
jpvt[i__] = i__;
}
++itemp;
} else {
jpvt[i__] = i__;
}
/* L10: */
}
--itemp;

/* Compute the QR factorization and update remaining columns */

if (itemp > 0) {
ma = f2cmin(itemp,*m);
sgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
if (ma < *n) {
i__1 = *n - ma;
sorm2r_("Left", "Transpose", m, &i__1, &ma, &a[a_offset], lda, &
tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], info);
}
}

if (itemp < mn) {

/* Initialize partial column norms. The first n elements of */
/* work store the exact column norms. */

i__1 = *n;
for (i__ = itemp + 1; i__ <= i__1; ++i__) {
i__2 = *m - itemp;
work[i__] = snrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
work[*n + i__] = work[i__];
/* L20: */
}

/* Compute factorization */

i__1 = mn;
for (i__ = itemp + 1; i__ <= i__1; ++i__) {

/* Determine ith pivot column and swap if necessary */

i__2 = *n - i__ + 1;
pvt = i__ - 1 + isamax_(&i__2, &work[i__], &c__1);

if (pvt != i__) {
sswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
c__1);
itemp = jpvt[pvt];
jpvt[pvt] = jpvt[i__];
jpvt[i__] = itemp;
work[pvt] = work[i__];
work[*n + pvt] = work[*n + i__];
}

/* Generate elementary reflector H(i) */

if (i__ < *m) {
i__2 = *m - i__ + 1;
slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + 1 + i__ *
a_dim1], &c__1, &tau[i__]);
} else {
slarfg_(&c__1, &a[*m + *m * a_dim1], &a[*m + *m * a_dim1], &
c__1, &tau[*m]);
}

if (i__ < *n) {

/* Apply H(i) to A(i:m,i+1:n) from the left */

aii = a[i__ + i__ * a_dim1];
a[i__ + i__ * a_dim1] = 1.f;
i__2 = *m - i__ + 1;
i__3 = *n - i__;
slarf_("LEFT", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
tau[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[(*
n << 1) + 1]);
a[i__ + i__ * a_dim1] = aii;
}

/* Update partial column norms */

i__2 = *n;
for (j = i__ + 1; j <= i__2; ++j) {
if (work[j] != 0.f) {

/* NOTE: The following 4 lines follow from the analysis in */
/* Lapack Working Note 176. */

temp = (r__1 = a[i__ + j * a_dim1], abs(r__1)) / work[j];
/* Computing MAX */
r__1 = 0.f, r__2 = (temp + 1.f) * (1.f - temp);
temp = f2cmax(r__1,r__2);
/* Computing 2nd power */
r__1 = work[j] / work[*n + j];
temp2 = temp * (r__1 * r__1);
if (temp2 <= tol3z) {
if (*m - i__ > 0) {
i__3 = *m - i__;
work[j] = snrm2_(&i__3, &a[i__ + 1 + j * a_dim1],
&c__1);
work[*n + j] = work[j];
} else {
work[j] = 0.f;
work[*n + j] = 0.f;
}
} else {
work[j] *= sqrt(temp);
}
}
/* L30: */
}

/* L40: */
}
}
return 0;

/* End of SGEQPF */

} /* sgeqpf_ */


+ 905
- 0
lapack-netlib/SRC/DEPRECATED/sggsvd.c View File

@@ -0,0 +1,905 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief <b> SGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download SGGSVD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE SGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, */
/* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, */
/* IWORK, INFO ) */

/* CHARACTER JOBQ, JOBU, JOBV */
/* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P */
/* INTEGER IWORK( * ) */
/* REAL A( LDA, * ), ALPHA( * ), B( LDB, * ), */
/* $ BETA( * ), Q( LDQ, * ), U( LDU, * ), */
/* $ V( LDV, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine SGGSVD3. */
/* > */
/* > SGGSVD computes the generalized singular value decomposition (GSVD) */
/* > of an M-by-N real matrix A and P-by-N real matrix B: */
/* > */
/* > U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R ) */
/* > */
/* > where U, V and Q are orthogonal matrices. */
/* > Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T, */
/* > then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and */
/* > D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the */
/* > following structures, respectively: */
/* > */
/* > If M-K-L >= 0, */
/* > */
/* > K L */
/* > D1 = K ( I 0 ) */
/* > L ( 0 C ) */
/* > M-K-L ( 0 0 ) */
/* > */
/* > K L */
/* > D2 = L ( 0 S ) */
/* > P-L ( 0 0 ) */
/* > */
/* > N-K-L K L */
/* > ( 0 R ) = K ( 0 R11 R12 ) */
/* > L ( 0 0 R22 ) */
/* > */
/* > where */
/* > */
/* > C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
/* > S = diag( BETA(K+1), ... , BETA(K+L) ), */
/* > C**2 + S**2 = I. */
/* > */
/* > R is stored in A(1:K+L,N-K-L+1:N) on exit. */
/* > */
/* > If M-K-L < 0, */
/* > */
/* > K M-K K+L-M */
/* > D1 = K ( I 0 0 ) */
/* > M-K ( 0 C 0 ) */
/* > */
/* > K M-K K+L-M */
/* > D2 = M-K ( 0 S 0 ) */
/* > K+L-M ( 0 0 I ) */
/* > P-L ( 0 0 0 ) */
/* > */
/* > N-K-L K M-K K+L-M */
/* > ( 0 R ) = K ( 0 R11 R12 R13 ) */
/* > M-K ( 0 0 R22 R23 ) */
/* > K+L-M ( 0 0 0 R33 ) */
/* > */
/* > where */
/* > */
/* > C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
/* > S = diag( BETA(K+1), ... , BETA(M) ), */
/* > C**2 + S**2 = I. */
/* > */
/* > (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored */
/* > ( 0 R22 R23 ) */
/* > in B(M-K+1:L,N+M-K-L+1:N) on exit. */
/* > */
/* > The routine computes C, S, R, and optionally the orthogonal */
/* > transformation matrices U, V and Q. */
/* > */
/* > In particular, if B is an N-by-N nonsingular matrix, then the GSVD of */
/* > A and B implicitly gives the SVD of A*inv(B): */
/* > A*inv(B) = U*(D1*inv(D2))*V**T. */
/* > If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is */
/* > also equal to the CS decomposition of A and B. Furthermore, the GSVD */
/* > can be used to derive the solution of the eigenvalue problem: */
/* > A**T*A x = lambda* B**T*B x. */
/* > In some literature, the GSVD of A and B is presented in the form */
/* > U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 ) */
/* > where U and V are orthogonal and X is nonsingular, D1 and D2 are */
/* > ``diagonal''. The former GSVD form can be converted to the latter */
/* > form by taking the nonsingular matrix X as */
/* > */
/* > X = Q*( I 0 ) */
/* > ( 0 inv(R) ). */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] JOBU */
/* > \verbatim */
/* > JOBU is CHARACTER*1 */
/* > = 'U': Orthogonal matrix U is computed; */
/* > = 'N': U is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBV */
/* > \verbatim */
/* > JOBV is CHARACTER*1 */
/* > = 'V': Orthogonal matrix V is computed; */
/* > = 'N': V is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBQ */
/* > \verbatim */
/* > JOBQ is CHARACTER*1 */
/* > = 'Q': Orthogonal matrix Q is computed; */
/* > = 'N': Q is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrices A and B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] P */
/* > \verbatim */
/* > P is INTEGER */
/* > The number of rows of the matrix B. P >= 0. */
/* > \endverbatim */
/* > */
/* > \param[out] K */
/* > \verbatim */
/* > K is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[out] L */
/* > \verbatim */
/* > L is INTEGER */
/* > */
/* > On exit, K and L specify the dimension of the subblocks */
/* > described in Purpose. */
/* > K + L = effective numerical rank of (A**T,B**T)**T. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is REAL array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A contains the triangular matrix R, or part of R. */
/* > See Purpose for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is REAL array, dimension (LDB,N) */
/* > On entry, the P-by-N matrix B. */
/* > On exit, B contains the triangular matrix R if M-K-L < 0. */
/* > See Purpose for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHA */
/* > \verbatim */
/* > ALPHA is REAL array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] BETA */
/* > \verbatim */
/* > BETA is REAL array, dimension (N) */
/* > */
/* > On exit, ALPHA and BETA contain the generalized singular */
/* > value pairs of A and B; */
/* > ALPHA(1:K) = 1, */
/* > BETA(1:K) = 0, */
/* > and if M-K-L >= 0, */
/* > ALPHA(K+1:K+L) = C, */
/* > BETA(K+1:K+L) = S, */
/* > or if M-K-L < 0, */
/* > ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 */
/* > BETA(K+1:M) =S, BETA(M+1:K+L) =1 */
/* > and */
/* > ALPHA(K+L+1:N) = 0 */
/* > BETA(K+L+1:N) = 0 */
/* > \endverbatim */
/* > */
/* > \param[out] U */
/* > \verbatim */
/* > U is REAL array, dimension (LDU,M) */
/* > If JOBU = 'U', U contains the M-by-M orthogonal matrix U. */
/* > If JOBU = 'N', U is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU */
/* > \verbatim */
/* > LDU is INTEGER */
/* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
/* > JOBU = 'U'; LDU >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] V */
/* > \verbatim */
/* > V is REAL array, dimension (LDV,P) */
/* > If JOBV = 'V', V contains the P-by-P orthogonal matrix V. */
/* > If JOBV = 'N', V is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV */
/* > \verbatim */
/* > LDV is INTEGER */
/* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
/* > JOBV = 'V'; LDV >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] Q */
/* > \verbatim */
/* > Q is REAL array, dimension (LDQ,N) */
/* > If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. */
/* > If JOBQ = 'N', Q is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDQ */
/* > \verbatim */
/* > LDQ is INTEGER */
/* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
/* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, */
/* > dimension (f2cmax(3*N,M,P)+N) */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (N) */
/* > On exit, IWORK stores the sorting information. More */
/* > precisely, the following loop will sort ALPHA */
/* > for I = K+1, f2cmin(M,K+L) */
/* > swap ALPHA(I) and ALPHA(IWORK(I)) */
/* > endfor */
/* > such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = 1, the Jacobi-type procedure failed to */
/* > converge. For further details, see subroutine STGSJA. */
/* > \endverbatim */

/* > \par Internal Parameters: */
/* ========================= */
/* > */
/* > \verbatim */
/* > TOLA REAL */
/* > TOLB REAL */
/* > TOLA and TOLB are the thresholds to determine the effective */
/* > rank of (A**T,B**T)**T. Generally, they are set to */
/* > TOLA = MAX(M,N)*norm(A)*MACHEPS, */
/* > TOLB = MAX(P,N)*norm(B)*MACHEPS. */
/* > The size of TOLA and TOLB may affect the size of backward */
/* > errors of the decomposition. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup realOTHERsing */

/* > \par Contributors: */
/* ================== */
/* > */
/* > Ming Gu and Huan Ren, Computer Science Division, University of */
/* > California at Berkeley, USA */
/* > */
/* ===================================================================== */
/* Subroutine */ int sggsvd_(char *jobu, char *jobv, char *jobq, integer *m,
integer *n, integer *p, integer *k, integer *l, real *a, integer *lda,
real *b, integer *ldb, real *alpha, real *beta, real *u, integer *
ldu, real *v, integer *ldv, real *q, integer *ldq, real *work,
integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
u_offset, v_dim1, v_offset, i__1, i__2;

/* Local variables */
integer ibnd;
real tola;
integer isub;
real tolb, unfl, temp, smax;
integer ncallmycycle, i__, j;
extern logical lsame_(char *, char *);
real anorm, bnorm;
logical wantq;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
logical wantu, wantv;
extern real slamch_(char *), slange_(char *, integer *, integer *,
real *, integer *, real *);
extern /* Subroutine */ int xerbla_(char *, integer *), stgsja_(
char *, char *, char *, integer *, integer *, integer *, integer *
, integer *, real *, integer *, real *, integer *, real *, real *,
real *, real *, real *, integer *, real *, integer *, real *,
integer *, real *, integer *, integer *),
sggsvp_(char *, char *, char *, integer *, integer *, integer *,
real *, integer *, real *, integer *, real *, real *, integer *,
integer *, real *, integer *, real *, integer *, real *, integer *
, integer *, real *, real *, integer *);
real ulp;


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--alpha;
--beta;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
--work;
--iwork;

/* Function Body */
wantu = lsame_(jobu, "U");
wantv = lsame_(jobv, "V");
wantq = lsame_(jobq, "Q");

*info = 0;
if (! (wantu || lsame_(jobu, "N"))) {
*info = -1;
} else if (! (wantv || lsame_(jobv, "N"))) {
*info = -2;
} else if (! (wantq || lsame_(jobq, "N"))) {
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*p < 0) {
*info = -6;
} else if (*lda < f2cmax(1,*m)) {
*info = -10;
} else if (*ldb < f2cmax(1,*p)) {
*info = -12;
} else if (*ldu < 1 || wantu && *ldu < *m) {
*info = -16;
} else if (*ldv < 1 || wantv && *ldv < *p) {
*info = -18;
} else if (*ldq < 1 || wantq && *ldq < *n) {
*info = -20;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGGSVD", &i__1);
return 0;
}

/* Compute the Frobenius norm of matrices A and B */

anorm = slange_("1", m, n, &a[a_offset], lda, &work[1]);
bnorm = slange_("1", p, n, &b[b_offset], ldb, &work[1]);

/* Get machine precision and set up threshold for determining */
/* the effective numerical rank of the matrices A and B. */

ulp = slamch_("Precision");
unfl = slamch_("Safe Minimum");
tola = f2cmax(*m,*n) * f2cmax(anorm,unfl) * ulp;
tolb = f2cmax(*p,*n) * f2cmax(bnorm,unfl) * ulp;

/* Preprocessing */

sggsvp_(jobu, jobv, jobq, m, p, n, &a[a_offset], lda, &b[b_offset], ldb, &
tola, &tolb, k, l, &u[u_offset], ldu, &v[v_offset], ldv, &q[
q_offset], ldq, &iwork[1], &work[1], &work[*n + 1], info);

/* Compute the GSVD of two upper "triangular" matrices */

stgsja_(jobu, jobv, jobq, m, p, n, k, l, &a[a_offset], lda, &b[b_offset],
ldb, &tola, &tolb, &alpha[1], &beta[1], &u[u_offset], ldu, &v[
v_offset], ldv, &q[q_offset], ldq, &work[1], &ncallmycycle, info);

/* Sort the singular values and store the pivot indices in IWORK */
/* Copy ALPHA to WORK, then sort ALPHA in WORK */

scopy_(n, &alpha[1], &c__1, &work[1], &c__1);
/* Computing MIN */
i__1 = *l, i__2 = *m - *k;
ibnd = f2cmin(i__1,i__2);
i__1 = ibnd;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Scan for largest ALPHA(K+I) */

isub = i__;
smax = work[*k + i__];
i__2 = ibnd;
for (j = i__ + 1; j <= i__2; ++j) {
temp = work[*k + j];
if (temp > smax) {
isub = j;
smax = temp;
}
/* L10: */
}
if (isub != i__) {
work[*k + isub] = work[*k + i__];
work[*k + i__] = smax;
iwork[*k + i__] = *k + isub;
} else {
iwork[*k + i__] = *k + i__;
}
/* L20: */
}

return 0;

/* End of SGGSVD */

} /* sggsvd_ */


+ 1010
- 0
lapack-netlib/SRC/DEPRECATED/sggsvp.c
File diff suppressed because it is too large
View File


+ 739
- 0
lapack-netlib/SRC/DEPRECATED/slahrd.c View File

@@ -0,0 +1,739 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static real c_b4 = -1.f;
static real c_b5 = 1.f;
static integer c__1 = 1;
static real c_b38 = 0.f;

/* > \brief \b SLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below th
e k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformati
on to the unreduced part of A. */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download SLAHRD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slahrd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slahrd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slahrd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE SLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) */

/* INTEGER K, LDA, LDT, LDY, N, NB */
/* REAL A( LDA, * ), T( LDT, NB ), TAU( NB ), */
/* $ Y( LDY, NB ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine SLAHR2. */
/* > */
/* > SLAHRD reduces the first NB columns of a real general n-by-(n-k+1) */
/* > matrix A so that elements below the k-th subdiagonal are zero. The */
/* > reduction is performed by an orthogonal similarity transformation */
/* > Q**T * A * Q. The routine returns the matrices V and T which determine */
/* > Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The offset for the reduction. Elements below the k-th */
/* > subdiagonal in the first NB columns are reduced to zero. */
/* > \endverbatim */
/* > */
/* > \param[in] NB */
/* > \verbatim */
/* > NB is INTEGER */
/* > The number of columns to be reduced. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is REAL array, dimension (LDA,N-K+1) */
/* > On entry, the n-by-(n-k+1) general matrix A. */
/* > On exit, the elements on and above the k-th subdiagonal in */
/* > the first NB columns are overwritten with the corresponding */
/* > elements of the reduced matrix; the elements below the k-th */
/* > subdiagonal, with the array TAU, represent the matrix Q as a */
/* > product of elementary reflectors. The other columns of A are */
/* > unchanged. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is REAL array, dimension (NB) */
/* > The scalar factors of the elementary reflectors. See Further */
/* > Details. */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is REAL array, dimension (LDT,NB) */
/* > The upper triangular matrix T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= NB. */
/* > \endverbatim */
/* > */
/* > \param[out] Y */
/* > \verbatim */
/* > Y is REAL array, dimension (LDY,NB) */
/* > The n-by-nb matrix Y. */
/* > \endverbatim */
/* > */
/* > \param[in] LDY */
/* > \verbatim */
/* > LDY is INTEGER */
/* > The leading dimension of the array Y. LDY >= N. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup realOTHERauxiliary */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of nb elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(nb). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**T */
/* > */
/* > where tau is a real scalar, and v is a real vector with */
/* > v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
/* > A(i+k+1:n,i), and tau in TAU(i). */
/* > */
/* > The elements of the vectors v together form the (n-k+1)-by-nb matrix */
/* > V which is needed, with T and Y, to apply the transformation to the */
/* > unreduced part of the matrix, using an update of the form: */
/* > A := (I - V*T*V**T) * (A - Y*V**T). */
/* > */
/* > The contents of A on exit are illustrated by the following example */
/* > with n = 7, k = 3 and nb = 2: */
/* > */
/* > ( a h a a a ) */
/* > ( a h a a a ) */
/* > ( a h a a a ) */
/* > ( h h a a a ) */
/* > ( v1 h a a a ) */
/* > ( v1 v2 a a a ) */
/* > ( v1 v2 a a a ) */
/* > */
/* > where a denotes an element of the original matrix A, h denotes a */
/* > modified element of the upper Hessenberg matrix H, and vi denotes an */
/* > element of the vector defining H(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int slahrd_(integer *n, integer *k, integer *nb, real *a,
integer *lda, real *tau, real *t, integer *ldt, real *y, integer *ldy)
{
/* System generated locals */
integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
i__3;
real r__1;

/* Local variables */
integer i__;
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
sgemv_(char *, integer *, integer *, real *, real *, integer *,
real *, integer *, real *, real *, integer *), scopy_(
integer *, real *, integer *, real *, integer *), saxpy_(integer *
, real *, real *, integer *, real *, integer *), strmv_(char *,
char *, char *, integer *, real *, integer *, real *, integer *);
real ei;
extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *,
real *);


/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Quick return if possible */

/* Parameter adjustments */
--tau;
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
y_dim1 = *ldy;
y_offset = 1 + y_dim1 * 1;
y -= y_offset;

/* Function Body */
if (*n <= 1) {
return 0;
}

i__1 = *nb;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ > 1) {

/* Update A(1:n,i) */

/* Compute i-th column of A - Y * V**T */

i__2 = i__ - 1;
sgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &a[*k
+ i__ - 1 + a_dim1], lda, &c_b5, &a[i__ * a_dim1 + 1], &
c__1);

/* Apply I - V * T**T * V**T to this column (call it b) from the */
/* left, using the last column of T as workspace */

/* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */
/* ( V2 ) ( b2 ) */

/* where V1 is unit lower triangular */

/* w := V1**T * b1 */

i__2 = i__ - 1;
scopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
1], &c__1);
i__2 = i__ - 1;
strmv_("Lower", "Transpose", "Unit", &i__2, &a[*k + 1 + a_dim1],
lda, &t[*nb * t_dim1 + 1], &c__1);

/* w := w + V2**T *b2 */

i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1],
lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb *
t_dim1 + 1], &c__1);

/* w := T**T *w */

i__2 = i__ - 1;
strmv_("Upper", "Transpose", "Non-unit", &i__2, &t[t_offset], ldt,
&t[*nb * t_dim1 + 1], &c__1);

/* b2 := b2 - V2*w */

i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1],
lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ +
i__ * a_dim1], &c__1);

/* b1 := b1 - V1*w */

i__2 = i__ - 1;
strmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
, lda, &t[*nb * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
saxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
* a_dim1], &c__1);

a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
}

/* Generate the elementary reflector H(i) to annihilate */
/* A(k+i+1:n,i) */

i__2 = *n - *k - i__ + 1;
/* Computing MIN */
i__3 = *k + i__ + 1;
slarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[f2cmin(i__3,*n) + i__ *
a_dim1], &c__1, &tau[i__]);
ei = a[*k + i__ + i__ * a_dim1];
a[*k + i__ + i__ * a_dim1] = 1.f;

/* Compute Y(1:n,i) */

i__2 = *n - *k - i__ + 1;
sgemv_("No transpose", n, &i__2, &c_b5, &a[(i__ + 1) * a_dim1 + 1],
lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[i__ *
y_dim1 + 1], &c__1);
i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, &
a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 +
1], &c__1);
i__2 = i__ - 1;
sgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &t[i__ *
t_dim1 + 1], &c__1, &c_b5, &y[i__ * y_dim1 + 1], &c__1);
sscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);

/* Compute T(1:i,i) */

i__2 = i__ - 1;
r__1 = -tau[i__];
sscal_(&i__2, &r__1, &t[i__ * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
strmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
&t[i__ * t_dim1 + 1], &c__1)
;
t[i__ + i__ * t_dim1] = tau[i__];

/* L10: */
}
a[*k + *nb + *nb * a_dim1] = ei;

return 0;

/* End of SLAHRD */

} /* slahrd_ */


+ 643
- 0
lapack-netlib/SRC/DEPRECATED/slatzm.c View File

@@ -0,0 +1,643 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static real c_b5 = 1.f;

/* > \brief \b SLATZM */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download SLATZM + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slatzm.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slatzm.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slatzm.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE SLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK ) */

/* CHARACTER SIDE */
/* INTEGER INCV, LDC, M, N */
/* REAL TAU */
/* REAL C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine SORMRZ. */
/* > */
/* > SLATZM applies a Householder matrix generated by STZRQF to a matrix. */
/* > */
/* > Let P = I - tau*u*u**T, u = ( 1 ), */
/* > ( v ) */
/* > where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if */
/* > SIDE = 'R'. */
/* > */
/* > If SIDE equals 'L', let */
/* > C = [ C1 ] 1 */
/* > [ C2 ] m-1 */
/* > n */
/* > Then C is overwritten by P*C. */
/* > */
/* > If SIDE equals 'R', let */
/* > C = [ C1, C2 ] m */
/* > 1 n-1 */
/* > Then C is overwritten by C*P. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': form P * C */
/* > = 'R': form C * P */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] V */
/* > \verbatim */
/* > V is REAL array, dimension */
/* > (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
/* > (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
/* > The vector v in the representation of P. V is not used */
/* > if TAU = 0. */
/* > \endverbatim */
/* > */
/* > \param[in] INCV */
/* > \verbatim */
/* > INCV is INTEGER */
/* > The increment between elements of v. INCV <> 0 */
/* > \endverbatim */
/* > */
/* > \param[in] TAU */
/* > \verbatim */
/* > TAU is REAL */
/* > The value tau in the representation of P. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C1 */
/* > \verbatim */
/* > C1 is REAL array, dimension */
/* > (LDC,N) if SIDE = 'L' */
/* > (M,1) if SIDE = 'R' */
/* > On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 */
/* > if SIDE = 'R'. */
/* > */
/* > On exit, the first row of P*C if SIDE = 'L', or the first */
/* > column of C*P if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C2 */
/* > \verbatim */
/* > C2 is REAL array, dimension */
/* > (LDC, N) if SIDE = 'L' */
/* > (LDC, N-1) if SIDE = 'R' */
/* > On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the */
/* > m x (n - 1) matrix C2 if SIDE = 'R'. */
/* > */
/* > On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P */
/* > if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the arrays C1 and C2. LDC >= (1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension */
/* > (N) if SIDE = 'L' */
/* > (M) if SIDE = 'R' */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup realOTHERcomputational */

/* ===================================================================== */
/* Subroutine */ int slatzm_(char *side, integer *m, integer *n, real *v,
integer *incv, real *tau, real *c1, real *c2, integer *ldc, real *
work)
{
/* System generated locals */
integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1;
real r__1;

/* Local variables */
extern /* Subroutine */ int sger_(integer *, integer *, real *, real *,
integer *, real *, integer *, real *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *),
saxpy_(integer *, real *, real *, integer *, real *, integer *);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Parameter adjustments */
--v;
c2_dim1 = *ldc;
c2_offset = 1 + c2_dim1 * 1;
c2 -= c2_offset;
c1_dim1 = *ldc;
c1_offset = 1 + c1_dim1 * 1;
c1 -= c1_offset;
--work;

/* Function Body */
if (f2cmin(*m,*n) == 0 || *tau == 0.f) {
return 0;
}

if (lsame_(side, "L")) {

/* w := (C1 + v**T * C2)**T */

scopy_(n, &c1[c1_offset], ldc, &work[1], &c__1);
i__1 = *m - 1;
sgemv_("Transpose", &i__1, n, &c_b5, &c2[c2_offset], ldc, &v[1], incv,
&c_b5, &work[1], &c__1);

/* [ C1 ] := [ C1 ] - tau* [ 1 ] * w**T */
/* [ C2 ] [ C2 ] [ v ] */

r__1 = -(*tau);
saxpy_(n, &r__1, &work[1], &c__1, &c1[c1_offset], ldc);
i__1 = *m - 1;
r__1 = -(*tau);
sger_(&i__1, n, &r__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset],
ldc);

} else if (lsame_(side, "R")) {

/* w := C1 + C2 * v */

scopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1);
i__1 = *n - 1;
sgemv_("No transpose", m, &i__1, &c_b5, &c2[c2_offset], ldc, &v[1],
incv, &c_b5, &work[1], &c__1);

/* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**T] */

r__1 = -(*tau);
saxpy_(m, &r__1, &work[1], &c__1, &c1[c1_offset], &c__1);
i__1 = *n - 1;
r__1 = -(*tau);
sger_(m, &i__1, &r__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset],
ldc);
}

return 0;

/* End of SLATZM */

} /* slatzm_ */


+ 663
- 0
lapack-netlib/SRC/DEPRECATED/stzrqf.c View File

@@ -0,0 +1,663 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static real c_b8 = 1.f;

/* > \brief \b STZRQF */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download STZRQF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stzrqf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stzrqf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stzrqf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE STZRQF( M, N, A, LDA, TAU, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* REAL A( LDA, * ), TAU( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine STZRZF. */
/* > */
/* > STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */
/* > to upper triangular form by means of orthogonal transformations. */
/* > */
/* > The upper trapezoidal matrix A is factored as */
/* > */
/* > A = ( R 0 ) * Z, */
/* > */
/* > where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */
/* > triangular matrix. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= M. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is REAL array, dimension (LDA,N) */
/* > On entry, the leading M-by-N upper trapezoidal part of the */
/* > array A must contain the matrix to be factorized. */
/* > On exit, the leading M-by-M upper triangular part of A */
/* > contains the upper triangular matrix R, and elements M+1 to */
/* > N of the first M rows of A, with the array TAU, represent the */
/* > orthogonal matrix Z as a product of M elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is REAL array, dimension (M) */
/* > The scalar factors of the elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup realOTHERcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The factorization is obtained by Householder's method. The kth */
/* > transformation matrix, Z( k ), which is used to introduce zeros into */
/* > the ( m - k + 1 )th row of A, is given in the form */
/* > */
/* > Z( k ) = ( I 0 ), */
/* > ( 0 T( k ) ) */
/* > */
/* > where */
/* > */
/* > T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ), */
/* > ( 0 ) */
/* > ( z( k ) ) */
/* > */
/* > tau is a scalar and z( k ) is an ( n - m ) element vector. */
/* > tau and z( k ) are chosen to annihilate the elements of the kth row */
/* > of X. */
/* > */
/* > The scalar tau is returned in the kth element of TAU and the vector */
/* > u( k ) in the kth row of A, such that the elements of z( k ) are */
/* > in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
/* > the upper triangular part of A. */
/* > */
/* > Z is given by */
/* > */
/* > Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int stzrqf_(integer *m, integer *n, real *a, integer *lda,
real *tau, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
real r__1;

/* Local variables */
extern /* Subroutine */ int sger_(integer *, integer *, real *, real *,
integer *, real *, integer *, real *, integer *);
integer i__, k;
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *);
integer m1;
extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
real *, integer *), xerbla_(char *, integer *), slarfg_(
integer *, real *, real *, integer *, real *);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < *m) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("STZRQF", &i__1);
return 0;
}

/* Perform the factorization. */

if (*m == 0) {
return 0;
}
if (*m == *n) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
tau[i__] = 0.f;
/* L10: */
}
} else {
/* Computing MIN */
i__1 = *m + 1;
m1 = f2cmin(i__1,*n);
for (k = *m; k >= 1; --k) {

/* Use a Householder reflection to zero the kth row of A. */
/* First set up the reflection. */

i__1 = *n - *m + 1;
slarfg_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[
k]);

if (tau[k] != 0.f && k > 1) {

/* We now perform the operation A := A*P( k ). */

/* Use the first ( k - 1 ) elements of TAU to store a( k ), */
/* where a( k ) consists of the first ( k - 1 ) elements of */
/* the kth column of A. Also let B denote the first */
/* ( k - 1 ) rows of the last ( n - m ) columns of A. */

i__1 = k - 1;
scopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);

/* Form w = a( k ) + B*z( k ) in TAU. */

i__1 = k - 1;
i__2 = *n - *m;
sgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 +
1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], &
c__1);

/* Now form a( k ) := a( k ) - tau*w */
/* and B := B - tau*w*z( k )**T. */

i__1 = k - 1;
r__1 = -tau[k];
saxpy_(&i__1, &r__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
c__1);
i__1 = k - 1;
i__2 = *n - *m;
r__1 = -tau[k];
sger_(&i__1, &i__2, &r__1, &tau[1], &c__1, &a[k + m1 * a_dim1]
, lda, &a[m1 * a_dim1 + 1], lda);
}
/* L20: */
}
}

return 0;

/* End of STZRQF */

} /* stzrqf_ */


+ 1024
- 0
lapack-netlib/SRC/DEPRECATED/zgegs.c
File diff suppressed because it is too large
View File


+ 1255
- 0
lapack-netlib/SRC/DEPRECATED/zgegv.c
File diff suppressed because it is too large
View File


+ 929
- 0
lapack-netlib/SRC/DEPRECATED/zgelsx.c View File

@@ -0,0 +1,929 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__0 = 0;
static integer c__2 = 2;
static integer c__1 = 1;

/* > \brief <b> ZGELSX solves overdetermined or underdetermined systems for GE matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download ZGELSX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsx.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsx.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsx.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
/* WORK, RWORK, INFO ) */

/* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK */
/* DOUBLE PRECISION RCOND */
/* INTEGER JPVT( * ) */
/* DOUBLE PRECISION RWORK( * ) */
/* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine ZGELSY. */
/* > */
/* > ZGELSX computes the minimum-norm solution to a complex linear least */
/* > squares problem: */
/* > minimize || A * X - B || */
/* > using a complete orthogonal factorization of A. A is an M-by-N */
/* > matrix which may be rank-deficient. */
/* > */
/* > Several right hand side vectors b and solution vectors x can be */
/* > handled in a single call; they are stored as the columns of the */
/* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/* > matrix X. */
/* > */
/* > The routine first computes a QR factorization with column pivoting: */
/* > A * P = Q * [ R11 R12 ] */
/* > [ 0 R22 ] */
/* > with R11 defined as the largest leading submatrix whose estimated */
/* > condition number is less than 1/RCOND. The order of R11, RANK, */
/* > is the effective rank of A. */
/* > */
/* > Then, R22 is considered to be negligible, and R12 is annihilated */
/* > by unitary transformations from the right, arriving at the */
/* > complete orthogonal factorization: */
/* > A * P = Q * [ T11 0 ] * Z */
/* > [ 0 0 ] */
/* > The minimum-norm solution is then */
/* > X = P * Z**H [ inv(T11)*Q1**H*B ] */
/* > [ 0 ] */
/* > where Q1 consists of the first RANK columns of Q. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of */
/* > columns of matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A has been overwritten by details of its */
/* > complete orthogonal factorization. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
/* > On entry, the M-by-NRHS right hand side matrix B. */
/* > On exit, the N-by-NRHS solution matrix X. */
/* > If m >= n and RANK = n, the residual sum-of-squares for */
/* > the solution in the i-th column is given by the sum of */
/* > squares of elements N+1:M in that column. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(i) .ne. 0, the i-th column of A is an */
/* > initial column, otherwise it is a free column. Before */
/* > the QR factorization of A, all initial columns are */
/* > permuted to the leading positions; only the remaining */
/* > free columns are moved as a result of column pivoting */
/* > during the factorization. */
/* > On exit, if JPVT(i) = k, then the i-th column of A*P */
/* > was the k-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[in] RCOND */
/* > \verbatim */
/* > RCOND is DOUBLE PRECISION */
/* > RCOND is used to determine the effective rank of A, which */
/* > is defined as the order of the largest leading triangular */
/* > submatrix R11 in the QR factorization with pivoting of A, */
/* > whose estimated condition number < 1/RCOND. */
/* > \endverbatim */
/* > */
/* > \param[out] RANK */
/* > \verbatim */
/* > RANK is INTEGER */
/* > The effective rank of A, i.e., the order of the submatrix */
/* > R11. This is the same as the order of the submatrix T11 */
/* > in the complete orthogonal factorization of A. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension */
/* > (f2cmin(M,N) + f2cmax( N, 2*f2cmin(M,N)+NRHS )), */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is DOUBLE PRECISION array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complex16GEsolve */

/* ===================================================================== */
/* Subroutine */ int zgelsx_(integer *m, integer *n, integer *nrhs,
doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
integer *jpvt, doublereal *rcond, integer *rank, doublecomplex *work,
doublereal *rwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
doublecomplex z__1;

/* Local variables */
doublereal anrm, bnrm, smin, smax;
integer i__, j, k, iascl, ibscl, ismin, ismax;
doublecomplex c1, c2, s1, s2, t1, t2;
extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *,
integer *, integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *),
zlaic1_(integer *, integer *, doublecomplex *, doublereal *,
doublecomplex *, doublecomplex *, doublereal *, doublecomplex *,
doublecomplex *), dlabad_(doublereal *, doublereal *);
extern doublereal dlamch_(char *);
integer mn;
extern /* Subroutine */ int zunm2r_(char *, char *, integer *, integer *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(char *, integer *);
extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
integer *, doublereal *);
doublereal bignum;
extern /* Subroutine */ int zlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublecomplex *,
integer *, integer *), zgeqpf_(integer *, integer *,
doublecomplex *, integer *, integer *, doublecomplex *,
doublecomplex *, doublereal *, integer *), zlaset_(char *,
integer *, integer *, doublecomplex *, doublecomplex *,
doublecomplex *, integer *);
doublereal sminpr, smaxpr, smlnum;
extern /* Subroutine */ int zlatzm_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *), ztzrqf_(
integer *, integer *, doublecomplex *, integer *, doublecomplex *,
integer *);


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--jpvt;
--work;
--rwork;

/* Function Body */
mn = f2cmin(*m,*n);
ismin = mn + 1;
ismax = (mn << 1) + 1;

/* Test the input arguments. */

*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < f2cmax(1,*m)) {
*info = -5;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = f2cmax(1,*m);
if (*ldb < f2cmax(i__1,*n)) {
*info = -7;
}
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("ZGELSX", &i__1);
return 0;
}

/* Quick return if possible */

/* Computing MIN */
i__1 = f2cmin(*m,*n);
if (f2cmin(i__1,*nrhs) == 0) {
*rank = 0;
return 0;
}

/* Get machine parameters */

smlnum = dlamch_("S") / dlamch_("P");
bignum = 1. / smlnum;
dlabad_(&smlnum, &bignum);

/* Scale A, B if f2cmax elements outside range [SMLNUM,BIGNUM] */

anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1]);
iascl = 0;
if (anrm > 0. && anrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info);
iascl = 1;
} else if (anrm > bignum) {

/* Scale matrix norm down to BIGNUM */

zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info);
iascl = 2;
} else if (anrm == 0.) {

/* Matrix all zero. Return zero solution. */

i__1 = f2cmax(*m,*n);
zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
*rank = 0;
goto L100;
}

bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
ibscl = 0;
if (bnrm > 0. && bnrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 1;
} else if (bnrm > bignum) {

/* Scale matrix norm down to BIGNUM */

zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 2;
}

/* Compute QR factorization with column pivoting of A: */
/* A * P = Q * R */

zgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &
rwork[1], info);

/* complex workspace MN+N. Real workspace 2*N. Details of Householder */
/* rotations stored in WORK(1:MN). */

/* Determine RANK using incremental condition estimation */

i__1 = ismin;
work[i__1].r = 1., work[i__1].i = 0.;
i__1 = ismax;
work[i__1].r = 1., work[i__1].i = 0.;
smax = z_abs(&a[a_dim1 + 1]);
smin = smax;
if (z_abs(&a[a_dim1 + 1]) == 0.) {
*rank = 0;
i__1 = f2cmax(*m,*n);
zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
goto L100;
} else {
*rank = 1;
}

L10:
if (*rank < mn) {
i__ = *rank + 1;
zlaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &sminpr, &s1, &c1);
zlaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &smaxpr, &s2, &c2);

if (smaxpr * *rcond <= sminpr) {
i__1 = *rank;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = ismin + i__ - 1;
i__3 = ismin + i__ - 1;
z__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, z__1.i =
s1.r * work[i__3].i + s1.i * work[i__3].r;
work[i__2].r = z__1.r, work[i__2].i = z__1.i;
i__2 = ismax + i__ - 1;
i__3 = ismax + i__ - 1;
z__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, z__1.i =
s2.r * work[i__3].i + s2.i * work[i__3].r;
work[i__2].r = z__1.r, work[i__2].i = z__1.i;
/* L20: */
}
i__1 = ismin + *rank;
work[i__1].r = c1.r, work[i__1].i = c1.i;
i__1 = ismax + *rank;
work[i__1].r = c2.r, work[i__1].i = c2.i;
smin = sminpr;
smax = smaxpr;
++(*rank);
goto L10;
}
}

/* Logically partition R = [ R11 R12 ] */
/* [ 0 R22 ] */
/* where R11 = R(1:RANK,1:RANK) */

/* [R11,R12] = [ T11, 0 ] * Y */

if (*rank < *n) {
ztzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
}

/* Details of Householder rotations stored in WORK(MN+1:2*MN) */

/* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS) */

zunm2r_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, &
work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], info);

/* workspace NRHS */

/* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

ztrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[
a_offset], lda, &b[b_offset], ldb);

i__1 = *n;
for (i__ = *rank + 1; i__ <= i__1; ++i__) {
i__2 = *nrhs;
for (j = 1; j <= i__2; ++j) {
i__3 = i__ + j * b_dim1;
b[i__3].r = 0., b[i__3].i = 0.;
/* L30: */
}
/* L40: */
}

/* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS) */

if (*rank < *n) {
i__1 = *rank;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n - *rank + 1;
d_cnjg(&z__1, &work[mn + i__]);
zlatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda,
&z__1, &b[i__ + b_dim1], &b[*rank + 1 + b_dim1], ldb, &
work[(mn << 1) + 1]);
/* L50: */
}
}

/* workspace NRHS */

/* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = (mn << 1) + i__;
work[i__3].r = 1., work[i__3].i = 0.;
/* L60: */
}
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = (mn << 1) + i__;
if (work[i__3].r == 1. && work[i__3].i == 0.) {
if (jpvt[i__] != i__) {
k = i__;
i__3 = k + j * b_dim1;
t1.r = b[i__3].r, t1.i = b[i__3].i;
i__3 = jpvt[k] + j * b_dim1;
t2.r = b[i__3].r, t2.i = b[i__3].i;
L70:
i__3 = jpvt[k] + j * b_dim1;
b[i__3].r = t1.r, b[i__3].i = t1.i;
i__3 = (mn << 1) + k;
work[i__3].r = 0., work[i__3].i = 0.;
t1.r = t2.r, t1.i = t2.i;
k = jpvt[k];
i__3 = jpvt[k] + j * b_dim1;
t2.r = b[i__3].r, t2.i = b[i__3].i;
if (jpvt[k] != i__) {
goto L70;
}
i__3 = i__ + j * b_dim1;
b[i__3].r = t1.r, b[i__3].i = t1.i;
i__3 = (mn << 1) + k;
work[i__3].r = 0., work[i__3].i = 0.;
}
}
/* L80: */
}
/* L90: */
}

/* Undo scaling */

if (iascl == 1) {
zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
info);
zlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
lda, info);
} else if (iascl == 2) {
zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
info);
zlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
lda, info);
}
if (ibscl == 1) {
zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
} else if (ibscl == 2) {
zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
}

L100:

return 0;

/* End of ZGELSX */

} /* zgelsx_ */


+ 766
- 0
lapack-netlib/SRC/DEPRECATED/zgeqpf.c View File

@@ -0,0 +1,766 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b ZGEQPF */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download ZGEQPF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqpf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqpf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqpf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE ZGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* INTEGER JPVT( * ) */
/* DOUBLE PRECISION RWORK( * ) */
/* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine ZGEQP3. */
/* > */
/* > ZGEQPF computes a QR factorization with column pivoting of a */
/* > complex M-by-N matrix A: A*P = Q*R. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0 */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the upper triangle of the array contains the */
/* > f2cmin(M,N)-by-N upper triangular matrix R; the elements */
/* > below the diagonal, together with the array TAU, */
/* > represent the unitary matrix Q as a product of */
/* > f2cmin(m,n) elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/* > to the front of A*P (a leading column); if JPVT(i) = 0, */
/* > the i-th column of A is a free column. */
/* > On exit, if JPVT(i) = k, then the i-th column of A*P */
/* > was the k-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX*16 array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is DOUBLE PRECISION array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complex16GEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(n) */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */
/* > */
/* > The matrix P is represented in jpvt as follows: If */
/* > jpvt(j) = i */
/* > then the jth column of P is the ith canonical unit vector. */
/* > */
/* > Partial column norm updating strategy modified by */
/* > Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
/* > University of Zagreb, Croatia. */
/* > -- April 2011 -- */
/* > For more details see LAPACK Working Note 176. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int zgeqpf_(integer *m, integer *n, doublecomplex *a,
integer *lda, integer *jpvt, doublecomplex *tau, doublecomplex *work,
doublereal *rwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1, d__2;
doublecomplex z__1;

/* Local variables */
doublereal temp, temp2;
integer i__, j;
doublereal tol3z;
integer itemp;
extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *), zswap_(integer *,
doublecomplex *, integer *, doublecomplex *, integer *), zgeqr2_(
integer *, integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *);
extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
integer ma;
extern doublereal dlamch_(char *);
integer mn;
extern /* Subroutine */ int zunm2r_(char *, char *, integer *, integer *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *), zlarfg_(
integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *);
doublecomplex aii;
integer pvt;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--jpvt;
--tau;
--work;
--rwork;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZGEQPF", &i__1);
return 0;
}

mn = f2cmin(*m,*n);
tol3z = sqrt(dlamch_("Epsilon"));

/* Move initial columns up front */

itemp = 1;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (jpvt[i__] != 0) {
if (i__ != itemp) {
zswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1],
&c__1);
jpvt[i__] = jpvt[itemp];
jpvt[itemp] = i__;
} else {
jpvt[i__] = i__;
}
++itemp;
} else {
jpvt[i__] = i__;
}
/* L10: */
}
--itemp;

/* Compute the QR factorization and update remaining columns */

if (itemp > 0) {
ma = f2cmin(itemp,*m);
zgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
if (ma < *n) {
i__1 = *n - ma;
zunm2r_("Left", "Conjugate transpose", m, &i__1, &ma, &a[a_offset]
, lda, &tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1],
info);
}
}

if (itemp < mn) {

/* Initialize partial column norms. The first n elements of */
/* work store the exact column norms. */

i__1 = *n;
for (i__ = itemp + 1; i__ <= i__1; ++i__) {
i__2 = *m - itemp;
rwork[i__] = dznrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
rwork[*n + i__] = rwork[i__];
/* L20: */
}

/* Compute factorization */

i__1 = mn;
for (i__ = itemp + 1; i__ <= i__1; ++i__) {

/* Determine ith pivot column and swap if necessary */

i__2 = *n - i__ + 1;
pvt = i__ - 1 + idamax_(&i__2, &rwork[i__], &c__1);

if (pvt != i__) {
zswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
c__1);
itemp = jpvt[pvt];
jpvt[pvt] = jpvt[i__];
jpvt[i__] = itemp;
rwork[pvt] = rwork[i__];
rwork[*n + pvt] = rwork[*n + i__];
}

/* Generate elementary reflector H(i) */

i__2 = i__ + i__ * a_dim1;
aii.r = a[i__2].r, aii.i = a[i__2].i;
i__2 = *m - i__ + 1;
/* Computing MIN */
i__3 = i__ + 1;
zlarfg_(&i__2, &aii, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1, &tau[
i__]);
i__2 = i__ + i__ * a_dim1;
a[i__2].r = aii.r, a[i__2].i = aii.i;

if (i__ < *n) {

/* Apply H(i) to A(i:m,i+1:n) from the left */

i__2 = i__ + i__ * a_dim1;
aii.r = a[i__2].r, aii.i = a[i__2].i;
i__2 = i__ + i__ * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
i__2 = *m - i__ + 1;
i__3 = *n - i__;
d_cnjg(&z__1, &tau[i__]);
zlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
z__1, &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
i__2 = i__ + i__ * a_dim1;
a[i__2].r = aii.r, a[i__2].i = aii.i;
}

/* Update partial column norms */

i__2 = *n;
for (j = i__ + 1; j <= i__2; ++j) {
if (rwork[j] != 0.) {

/* NOTE: The following 4 lines follow from the analysis in */
/* Lapack Working Note 176. */

temp = z_abs(&a[i__ + j * a_dim1]) / rwork[j];
/* Computing MAX */
d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
temp = f2cmax(d__1,d__2);
/* Computing 2nd power */
d__1 = rwork[j] / rwork[*n + j];
temp2 = temp * (d__1 * d__1);
if (temp2 <= tol3z) {
if (*m - i__ > 0) {
i__3 = *m - i__;
rwork[j] = dznrm2_(&i__3, &a[i__ + 1 + j * a_dim1]
, &c__1);
rwork[*n + j] = rwork[j];
} else {
rwork[j] = 0.;
rwork[*n + j] = 0.;
}
} else {
rwork[j] *= sqrt(temp);
}
}
/* L30: */
}

/* L40: */
}
}
return 0;

/* End of ZGEQPF */

} /* zgeqpf_ */


+ 913
- 0
lapack-netlib/SRC/DEPRECATED/zggsvd.c View File

@@ -0,0 +1,913 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief <b> ZGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download ZGGSVD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, */
/* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, */
/* RWORK, IWORK, INFO ) */

/* CHARACTER JOBQ, JOBU, JOBV */
/* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P */
/* INTEGER IWORK( * ) */
/* DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * ) */
/* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
/* $ U( LDU, * ), V( LDV, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine ZGGSVD3. */
/* > */
/* > ZGGSVD computes the generalized singular value decomposition (GSVD) */
/* > of an M-by-N complex matrix A and P-by-N complex matrix B: */
/* > */
/* > U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R ) */
/* > */
/* > where U, V and Q are unitary matrices. */
/* > Let K+L = the effective numerical rank of the */
/* > matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper */
/* > triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal" */
/* > matrices and of the following structures, respectively: */
/* > */
/* > If M-K-L >= 0, */
/* > */
/* > K L */
/* > D1 = K ( I 0 ) */
/* > L ( 0 C ) */
/* > M-K-L ( 0 0 ) */
/* > */
/* > K L */
/* > D2 = L ( 0 S ) */
/* > P-L ( 0 0 ) */
/* > */
/* > N-K-L K L */
/* > ( 0 R ) = K ( 0 R11 R12 ) */
/* > L ( 0 0 R22 ) */
/* > where */
/* > */
/* > C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
/* > S = diag( BETA(K+1), ... , BETA(K+L) ), */
/* > C**2 + S**2 = I. */
/* > */
/* > R is stored in A(1:K+L,N-K-L+1:N) on exit. */
/* > */
/* > If M-K-L < 0, */
/* > */
/* > K M-K K+L-M */
/* > D1 = K ( I 0 0 ) */
/* > M-K ( 0 C 0 ) */
/* > */
/* > K M-K K+L-M */
/* > D2 = M-K ( 0 S 0 ) */
/* > K+L-M ( 0 0 I ) */
/* > P-L ( 0 0 0 ) */
/* > */
/* > N-K-L K M-K K+L-M */
/* > ( 0 R ) = K ( 0 R11 R12 R13 ) */
/* > M-K ( 0 0 R22 R23 ) */
/* > K+L-M ( 0 0 0 R33 ) */
/* > */
/* > where */
/* > */
/* > C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
/* > S = diag( BETA(K+1), ... , BETA(M) ), */
/* > C**2 + S**2 = I. */
/* > */
/* > (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored */
/* > ( 0 R22 R23 ) */
/* > in B(M-K+1:L,N+M-K-L+1:N) on exit. */
/* > */
/* > The routine computes C, S, R, and optionally the unitary */
/* > transformation matrices U, V and Q. */
/* > */
/* > In particular, if B is an N-by-N nonsingular matrix, then the GSVD of */
/* > A and B implicitly gives the SVD of A*inv(B): */
/* > A*inv(B) = U*(D1*inv(D2))*V**H. */
/* > If ( A**H,B**H)**H has orthnormal columns, then the GSVD of A and B is also */
/* > equal to the CS decomposition of A and B. Furthermore, the GSVD can */
/* > be used to derive the solution of the eigenvalue problem: */
/* > A**H*A x = lambda* B**H*B x. */
/* > In some literature, the GSVD of A and B is presented in the form */
/* > U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 ) */
/* > where U and V are orthogonal and X is nonsingular, and D1 and D2 are */
/* > ``diagonal''. The former GSVD form can be converted to the latter */
/* > form by taking the nonsingular matrix X as */
/* > */
/* > X = Q*( I 0 ) */
/* > ( 0 inv(R) ) */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] JOBU */
/* > \verbatim */
/* > JOBU is CHARACTER*1 */
/* > = 'U': Unitary matrix U is computed; */
/* > = 'N': U is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBV */
/* > \verbatim */
/* > JOBV is CHARACTER*1 */
/* > = 'V': Unitary matrix V is computed; */
/* > = 'N': V is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBQ */
/* > \verbatim */
/* > JOBQ is CHARACTER*1 */
/* > = 'Q': Unitary matrix Q is computed; */
/* > = 'N': Q is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrices A and B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] P */
/* > \verbatim */
/* > P is INTEGER */
/* > The number of rows of the matrix B. P >= 0. */
/* > \endverbatim */
/* > */
/* > \param[out] K */
/* > \verbatim */
/* > K is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[out] L */
/* > \verbatim */
/* > L is INTEGER */
/* > */
/* > On exit, K and L specify the dimension of the subblocks */
/* > described in Purpose. */
/* > K + L = effective numerical rank of (A**H,B**H)**H. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A contains the triangular matrix R, or part of R. */
/* > See Purpose for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX*16 array, dimension (LDB,N) */
/* > On entry, the P-by-N matrix B. */
/* > On exit, B contains part of the triangular matrix R if */
/* > M-K-L < 0. See Purpose for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHA */
/* > \verbatim */
/* > ALPHA is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] BETA */
/* > \verbatim */
/* > BETA is DOUBLE PRECISION array, dimension (N) */
/* > */
/* > On exit, ALPHA and BETA contain the generalized singular */
/* > value pairs of A and B; */
/* > ALPHA(1:K) = 1, */
/* > BETA(1:K) = 0, */
/* > and if M-K-L >= 0, */
/* > ALPHA(K+1:K+L) = C, */
/* > BETA(K+1:K+L) = S, */
/* > or if M-K-L < 0, */
/* > ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 */
/* > BETA(K+1:M) =S, BETA(M+1:K+L) =1 */
/* > and */
/* > ALPHA(K+L+1:N) = 0 */
/* > BETA(K+L+1:N) = 0 */
/* > \endverbatim */
/* > */
/* > \param[out] U */
/* > \verbatim */
/* > U is COMPLEX*16 array, dimension (LDU,M) */
/* > If JOBU = 'U', U contains the M-by-M unitary matrix U. */
/* > If JOBU = 'N', U is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU */
/* > \verbatim */
/* > LDU is INTEGER */
/* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
/* > JOBU = 'U'; LDU >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] V */
/* > \verbatim */
/* > V is COMPLEX*16 array, dimension (LDV,P) */
/* > If JOBV = 'V', V contains the P-by-P unitary matrix V. */
/* > If JOBV = 'N', V is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV */
/* > \verbatim */
/* > LDV is INTEGER */
/* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
/* > JOBV = 'V'; LDV >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] Q */
/* > \verbatim */
/* > Q is COMPLEX*16 array, dimension (LDQ,N) */
/* > If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q. */
/* > If JOBQ = 'N', Q is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDQ */
/* > \verbatim */
/* > LDQ is INTEGER */
/* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
/* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (f2cmax(3*N,M,P)+N) */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is DOUBLE PRECISION array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (N) */
/* > On exit, IWORK stores the sorting information. More */
/* > precisely, the following loop will sort ALPHA */
/* > for I = K+1, f2cmin(M,K+L) */
/* > swap ALPHA(I) and ALPHA(IWORK(I)) */
/* > endfor */
/* > such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = 1, the Jacobi-type procedure failed to */
/* > converge. For further details, see subroutine ZTGSJA. */
/* > \endverbatim */

/* > \par Internal Parameters: */
/* ========================= */
/* > */
/* > \verbatim */
/* > TOLA DOUBLE PRECISION */
/* > TOLB DOUBLE PRECISION */
/* > TOLA and TOLB are the thresholds to determine the effective */
/* > rank of (A**H,B**H)**H. Generally, they are set to */
/* > TOLA = MAX(M,N)*norm(A)*MAZHEPS, */
/* > TOLB = MAX(P,N)*norm(B)*MAZHEPS. */
/* > The size of TOLA and TOLB may affect the size of backward */
/* > errors of the decomposition. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complex16OTHERsing */

/* > \par Contributors: */
/* ================== */
/* > */
/* > Ming Gu and Huan Ren, Computer Science Division, University of */
/* > California at Berkeley, USA */
/* > */
/* ===================================================================== */
/* Subroutine */ int zggsvd_(char *jobu, char *jobv, char *jobq, integer *m,
integer *n, integer *p, integer *k, integer *l, doublecomplex *a,
integer *lda, doublecomplex *b, integer *ldb, doublereal *alpha,
doublereal *beta, doublecomplex *u, integer *ldu, doublecomplex *v,
integer *ldv, doublecomplex *q, integer *ldq, doublecomplex *work,
doublereal *rwork, integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
u_offset, v_dim1, v_offset, i__1, i__2;

/* Local variables */
integer ibnd;
doublereal tola;
integer isub;
doublereal tolb, unfl, temp, smax;
integer ncallmycycle, i__, j;
extern logical lsame_(char *, char *);
doublereal anorm, bnorm;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
logical wantq, wantu, wantv;
extern doublereal dlamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
integer *, doublereal *);
extern /* Subroutine */ int ztgsja_(char *, char *, char *, integer *,
integer *, integer *, integer *, integer *, doublecomplex *,
integer *, doublecomplex *, integer *, doublereal *, doublereal *,
doublereal *, doublereal *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, integer *),
zggsvp_(char *, char *, char *, integer *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublereal *, doublereal *, integer *, integer *, doublecomplex *,
integer *, doublecomplex *, integer *, doublecomplex *, integer *
, integer *, doublereal *, doublecomplex *, doublecomplex *,
integer *);
doublereal ulp;


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Decode and test the input parameters */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--alpha;
--beta;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
--work;
--rwork;
--iwork;

/* Function Body */
wantu = lsame_(jobu, "U");
wantv = lsame_(jobv, "V");
wantq = lsame_(jobq, "Q");

*info = 0;
if (! (wantu || lsame_(jobu, "N"))) {
*info = -1;
} else if (! (wantv || lsame_(jobv, "N"))) {
*info = -2;
} else if (! (wantq || lsame_(jobq, "N"))) {
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*p < 0) {
*info = -6;
} else if (*lda < f2cmax(1,*m)) {
*info = -10;
} else if (*ldb < f2cmax(1,*p)) {
*info = -12;
} else if (*ldu < 1 || wantu && *ldu < *m) {
*info = -16;
} else if (*ldv < 1 || wantv && *ldv < *p) {
*info = -18;
} else if (*ldq < 1 || wantq && *ldq < *n) {
*info = -20;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZGGSVD", &i__1);
return 0;
}

/* Compute the Frobenius norm of matrices A and B */

anorm = zlange_("1", m, n, &a[a_offset], lda, &rwork[1]);
bnorm = zlange_("1", p, n, &b[b_offset], ldb, &rwork[1]);

/* Get machine precision and set up threshold for determining */
/* the effective numerical rank of the matrices A and B. */

ulp = dlamch_("Precision");
unfl = dlamch_("Safe Minimum");
tola = f2cmax(*m,*n) * f2cmax(anorm,unfl) * ulp;
tolb = f2cmax(*p,*n) * f2cmax(bnorm,unfl) * ulp;

zggsvp_(jobu, jobv, jobq, m, p, n, &a[a_offset], lda, &b[b_offset], ldb, &
tola, &tolb, k, l, &u[u_offset], ldu, &v[v_offset], ldv, &q[
q_offset], ldq, &iwork[1], &rwork[1], &work[1], &work[*n + 1],
info);

/* Compute the GSVD of two upper "triangular" matrices */

ztgsja_(jobu, jobv, jobq, m, p, n, k, l, &a[a_offset], lda, &b[b_offset],
ldb, &tola, &tolb, &alpha[1], &beta[1], &u[u_offset], ldu, &v[
v_offset], ldv, &q[q_offset], ldq, &work[1], &ncallmycycle, info);

/* Sort the singular values and store the pivot indices in IWORK */
/* Copy ALPHA to RWORK, then sort ALPHA in RWORK */

dcopy_(n, &alpha[1], &c__1, &rwork[1], &c__1);
/* Computing MIN */
i__1 = *l, i__2 = *m - *k;
ibnd = f2cmin(i__1,i__2);
i__1 = ibnd;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Scan for largest ALPHA(K+I) */

isub = i__;
smax = rwork[*k + i__];
i__2 = ibnd;
for (j = i__ + 1; j <= i__2; ++j) {
temp = rwork[*k + j];
if (temp > smax) {
isub = j;
smax = temp;
}
/* L10: */
}
if (isub != i__) {
rwork[*k + isub] = rwork[*k + i__];
rwork[*k + i__] = smax;
iwork[*k + i__] = *k + isub;
} else {
iwork[*k + i__] = *k + i__;
}
/* L20: */
}

return 0;

/* End of ZGGSVD */

} /* zggsvd_ */


+ 1036
- 0
lapack-netlib/SRC/DEPRECATED/zggsvp.c
File diff suppressed because it is too large
View File


+ 758
- 0
lapack-netlib/SRC/DEPRECATED/zlahrd.c View File

@@ -0,0 +1,758 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;

/* > \brief \b ZLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below th
e k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformati
on to the unreduced part of A. */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download ZLAHRD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahrd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahrd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahrd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE ZLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) */

/* INTEGER K, LDA, LDT, LDY, N, NB */
/* COMPLEX*16 A( LDA, * ), T( LDT, NB ), TAU( NB ), */
/* $ Y( LDY, NB ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine ZLAHR2. */
/* > */
/* > ZLAHRD reduces the first NB columns of a complex general n-by-(n-k+1) */
/* > matrix A so that elements below the k-th subdiagonal are zero. The */
/* > reduction is performed by a unitary similarity transformation */
/* > Q**H * A * Q. The routine returns the matrices V and T which determine */
/* > Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The offset for the reduction. Elements below the k-th */
/* > subdiagonal in the first NB columns are reduced to zero. */
/* > \endverbatim */
/* > */
/* > \param[in] NB */
/* > \verbatim */
/* > NB is INTEGER */
/* > The number of columns to be reduced. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA,N-K+1) */
/* > On entry, the n-by-(n-k+1) general matrix A. */
/* > On exit, the elements on and above the k-th subdiagonal in */
/* > the first NB columns are overwritten with the corresponding */
/* > elements of the reduced matrix; the elements below the k-th */
/* > subdiagonal, with the array TAU, represent the matrix Q as a */
/* > product of elementary reflectors. The other columns of A are */
/* > unchanged. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX*16 array, dimension (NB) */
/* > The scalar factors of the elementary reflectors. See Further */
/* > Details. */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is COMPLEX*16 array, dimension (LDT,NB) */
/* > The upper triangular matrix T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= NB. */
/* > \endverbatim */
/* > */
/* > \param[out] Y */
/* > \verbatim */
/* > Y is COMPLEX*16 array, dimension (LDY,NB) */
/* > The n-by-nb matrix Y. */
/* > \endverbatim */
/* > */
/* > \param[in] LDY */
/* > \verbatim */
/* > LDY is INTEGER */
/* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complex16OTHERauxiliary */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of nb elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(nb). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
/* > A(i+k+1:n,i), and tau in TAU(i). */
/* > */
/* > The elements of the vectors v together form the (n-k+1)-by-nb matrix */
/* > V which is needed, with T and Y, to apply the transformation to the */
/* > unreduced part of the matrix, using an update of the form: */
/* > A := (I - V*T*V**H) * (A - Y*V**H). */
/* > */
/* > The contents of A on exit are illustrated by the following example */
/* > with n = 7, k = 3 and nb = 2: */
/* > */
/* > ( a h a a a ) */
/* > ( a h a a a ) */
/* > ( a h a a a ) */
/* > ( h h a a a ) */
/* > ( v1 h a a a ) */
/* > ( v1 v2 a a a ) */
/* > ( v1 v2 a a a ) */
/* > */
/* > where a denotes an element of the original matrix A, h denotes a */
/* > modified element of the upper Hessenberg matrix H, and vi denotes an */
/* > element of the vector defining H(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int zlahrd_(integer *n, integer *k, integer *nb,
doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *t,
integer *ldt, doublecomplex *y, integer *ldy)
{
/* System generated locals */
integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
i__3;
doublecomplex z__1;

/* Local variables */
integer i__;
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *),
zcopy_(integer *, doublecomplex *, integer *, doublecomplex *,
integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *, integer *), ztrmv_(char *, char *,
char *, integer *, doublecomplex *, integer *, doublecomplex *,
integer *);
doublecomplex ei;
extern /* Subroutine */ int zlarfg_(integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *), zlacgv_(integer *,
doublecomplex *, integer *);


/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Quick return if possible */

/* Parameter adjustments */
--tau;
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
y_dim1 = *ldy;
y_offset = 1 + y_dim1 * 1;
y -= y_offset;

/* Function Body */
if (*n <= 1) {
return 0;
}

i__1 = *nb;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ > 1) {

/* Update A(1:n,i) */

/* Compute i-th column of A - Y * V**H */

i__2 = i__ - 1;
zlacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda);
i__2 = i__ - 1;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", n, &i__2, &z__1, &y[y_offset], ldy, &a[*k
+ i__ - 1 + a_dim1], lda, &c_b2, &a[i__ * a_dim1 + 1], &
c__1);
i__2 = i__ - 1;
zlacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda);

/* Apply I - V * T**H * V**H to this column (call it b) from the */
/* left, using the last column of T as workspace */

/* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */
/* ( V2 ) ( b2 ) */

/* where V1 is unit lower triangular */

/* w := V1**H * b1 */

i__2 = i__ - 1;
zcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
1], &c__1);
i__2 = i__ - 1;
ztrmv_("Lower", "Conjugate transpose", "Unit", &i__2, &a[*k + 1 +
a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1);

/* w := w + V2**H *b2 */

i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ +
a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b2, &
t[*nb * t_dim1 + 1], &c__1);

/* w := T**H *w */

i__2 = i__ - 1;
ztrmv_("Upper", "Conjugate transpose", "Non-unit", &i__2, &t[
t_offset], ldt, &t[*nb * t_dim1 + 1], &c__1);

/* b2 := b2 - V2*w */

i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", &i__2, &i__3, &z__1, &a[*k + i__ + a_dim1],
lda, &t[*nb * t_dim1 + 1], &c__1, &c_b2, &a[*k + i__ +
i__ * a_dim1], &c__1);

/* b1 := b1 - V1*w */

i__2 = i__ - 1;
ztrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
, lda, &t[*nb * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
z__1.r = -1., z__1.i = 0.;
zaxpy_(&i__2, &z__1, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
* a_dim1], &c__1);

i__2 = *k + i__ - 1 + (i__ - 1) * a_dim1;
a[i__2].r = ei.r, a[i__2].i = ei.i;
}

/* Generate the elementary reflector H(i) to annihilate */
/* A(k+i+1:n,i) */

i__2 = *k + i__ + i__ * a_dim1;
ei.r = a[i__2].r, ei.i = a[i__2].i;
i__2 = *n - *k - i__ + 1;
/* Computing MIN */
i__3 = *k + i__ + 1;
zlarfg_(&i__2, &ei, &a[f2cmin(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__])
;
i__2 = *k + i__ + i__ * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;

/* Compute Y(1:n,i) */

i__2 = *n - *k - i__ + 1;
zgemv_("No transpose", n, &i__2, &c_b2, &a[(i__ + 1) * a_dim1 + 1],
lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &y[i__ *
y_dim1 + 1], &c__1);
i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ +
a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &t[
i__ * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
z__1.r = -1., z__1.i = 0.;
zgemv_("No transpose", n, &i__2, &z__1, &y[y_offset], ldy, &t[i__ *
t_dim1 + 1], &c__1, &c_b2, &y[i__ * y_dim1 + 1], &c__1);
zscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);

/* Compute T(1:i,i) */

i__2 = i__ - 1;
i__3 = i__;
z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i;
zscal_(&i__2, &z__1, &t[i__ * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
ztrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
&t[i__ * t_dim1 + 1], &c__1)
;
i__2 = i__ + i__ * t_dim1;
i__3 = i__;
t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i;

/* L10: */
}
i__1 = *k + *nb + *nb * a_dim1;
a[i__1].r = ei.r, a[i__1].i = ei.i;

return 0;

/* End of ZLAHRD */

} /* zlahrd_ */


+ 652
- 0
lapack-netlib/SRC/DEPRECATED/zlatzm.c View File

@@ -0,0 +1,652 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;

/* > \brief \b ZLATZM */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download ZLATZM + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatzm.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatzm.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatzm.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE ZLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK ) */

/* CHARACTER SIDE */
/* INTEGER INCV, LDC, M, N */
/* COMPLEX*16 TAU */
/* COMPLEX*16 C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine ZUNMRZ. */
/* > */
/* > ZLATZM applies a Householder matrix generated by ZTZRQF to a matrix. */
/* > */
/* > Let P = I - tau*u*u**H, u = ( 1 ), */
/* > ( v ) */
/* > where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if */
/* > SIDE = 'R'. */
/* > */
/* > If SIDE equals 'L', let */
/* > C = [ C1 ] 1 */
/* > [ C2 ] m-1 */
/* > n */
/* > Then C is overwritten by P*C. */
/* > */
/* > If SIDE equals 'R', let */
/* > C = [ C1, C2 ] m */
/* > 1 n-1 */
/* > Then C is overwritten by C*P. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': form P * C */
/* > = 'R': form C * P */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] V */
/* > \verbatim */
/* > V is COMPLEX*16 array, dimension */
/* > (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
/* > (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
/* > The vector v in the representation of P. V is not used */
/* > if TAU = 0. */
/* > \endverbatim */
/* > */
/* > \param[in] INCV */
/* > \verbatim */
/* > INCV is INTEGER */
/* > The increment between elements of v. INCV <> 0 */
/* > \endverbatim */
/* > */
/* > \param[in] TAU */
/* > \verbatim */
/* > TAU is COMPLEX*16 */
/* > The value tau in the representation of P. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C1 */
/* > \verbatim */
/* > C1 is COMPLEX*16 array, dimension */
/* > (LDC,N) if SIDE = 'L' */
/* > (M,1) if SIDE = 'R' */
/* > On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 */
/* > if SIDE = 'R'. */
/* > */
/* > On exit, the first row of P*C if SIDE = 'L', or the first */
/* > column of C*P if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C2 */
/* > \verbatim */
/* > C2 is COMPLEX*16 array, dimension */
/* > (LDC, N) if SIDE = 'L' */
/* > (LDC, N-1) if SIDE = 'R' */
/* > On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the */
/* > m x (n - 1) matrix C2 if SIDE = 'R'. */
/* > */
/* > On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P */
/* > if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the arrays C1 and C2. */
/* > LDC >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension */
/* > (N) if SIDE = 'L' */
/* > (M) if SIDE = 'R' */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complex16OTHERcomputational */

/* ===================================================================== */
/* Subroutine */ int zlatzm_(char *side, integer *m, integer *n,
doublecomplex *v, integer *incv, doublecomplex *tau, doublecomplex *
c1, doublecomplex *c2, integer *ldc, doublecomplex *work)
{
/* System generated locals */
integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1;
doublecomplex z__1;

/* Local variables */
extern logical lsame_(char *, char *);
extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *),
zgeru_(integer *, integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *, integer *, doublecomplex *, integer *)
, zcopy_(integer *, doublecomplex *, integer *, doublecomplex *,
integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *, integer *), zlacgv_(integer *,
doublecomplex *, integer *);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Parameter adjustments */
--v;
c2_dim1 = *ldc;
c2_offset = 1 + c2_dim1 * 1;
c2 -= c2_offset;
c1_dim1 = *ldc;
c1_offset = 1 + c1_dim1 * 1;
c1 -= c1_offset;
--work;

/* Function Body */
if (f2cmin(*m,*n) == 0 || tau->r == 0. && tau->i == 0.) {
return 0;
}

if (lsame_(side, "L")) {

/* w := ( C1 + v**H * C2 )**H */

zcopy_(n, &c1[c1_offset], ldc, &work[1], &c__1);
zlacgv_(n, &work[1], &c__1);
i__1 = *m - 1;
zgemv_("Conjugate transpose", &i__1, n, &c_b1, &c2[c2_offset], ldc, &
v[1], incv, &c_b1, &work[1], &c__1);

/* [ C1 ] := [ C1 ] - tau* [ 1 ] * w**H */
/* [ C2 ] [ C2 ] [ v ] */

zlacgv_(n, &work[1], &c__1);
z__1.r = -tau->r, z__1.i = -tau->i;
zaxpy_(n, &z__1, &work[1], &c__1, &c1[c1_offset], ldc);
i__1 = *m - 1;
z__1.r = -tau->r, z__1.i = -tau->i;
zgeru_(&i__1, n, &z__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset],
ldc);

} else if (lsame_(side, "R")) {

/* w := C1 + C2 * v */

zcopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1);
i__1 = *n - 1;
zgemv_("No transpose", m, &i__1, &c_b1, &c2[c2_offset], ldc, &v[1],
incv, &c_b1, &work[1], &c__1);

/* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**H] */

z__1.r = -tau->r, z__1.i = -tau->i;
zaxpy_(m, &z__1, &work[1], &c__1, &c1[c1_offset], &c__1);
i__1 = *n - 1;
z__1.r = -tau->r, z__1.i = -tau->i;
zgerc_(m, &i__1, &z__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset],
ldc);
}

return 0;

/* End of ZLATZM */

} /* zlatzm_ */


+ 683
- 0
lapack-netlib/SRC/DEPRECATED/ztzrqf.c View File

@@ -0,0 +1,683 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;

/* > \brief \b ZTZRQF */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download ZTZRQF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztzrqf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztzrqf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztzrqf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* COMPLEX*16 A( LDA, * ), TAU( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine ZTZRZF. */
/* > */
/* > ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A */
/* > to upper triangular form by means of unitary transformations. */
/* > */
/* > The upper trapezoidal matrix A is factored as */
/* > */
/* > A = ( R 0 ) * Z, */
/* > */
/* > where Z is an N-by-N unitary matrix and R is an M-by-M upper */
/* > triangular matrix. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= M. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA,N) */
/* > On entry, the leading M-by-N upper trapezoidal part of the */
/* > array A must contain the matrix to be factorized. */
/* > On exit, the leading M-by-M upper triangular part of A */
/* > contains the upper triangular matrix R, and elements M+1 to */
/* > N of the first M rows of A, with the array TAU, represent the */
/* > unitary matrix Z as a product of M elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX*16 array, dimension (M) */
/* > The scalar factors of the elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complex16OTHERcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The factorization is obtained by Householder's method. The kth */
/* > transformation matrix, Z( k ), whose conjugate transpose is used to */
/* > introduce zeros into the (m - k + 1)th row of A, is given in the form */
/* > */
/* > Z( k ) = ( I 0 ), */
/* > ( 0 T( k ) ) */
/* > */
/* > where */
/* > */
/* > T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ), */
/* > ( 0 ) */
/* > ( z( k ) ) */
/* > */
/* > tau is a scalar and z( k ) is an ( n - m ) element vector. */
/* > tau and z( k ) are chosen to annihilate the elements of the kth row */
/* > of X. */
/* > */
/* > The scalar tau is returned in the kth element of TAU and the vector */
/* > u( k ) in the kth row of A, such that the elements of z( k ) are */
/* > in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
/* > the upper triangular part of A. */
/* > */
/* > Z is given by */
/* > */
/* > Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int ztzrqf_(integer *m, integer *n, doublecomplex *a,
integer *lda, doublecomplex *tau, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
doublecomplex z__1, z__2;

/* Local variables */
integer i__, k;
doublecomplex alpha;
extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *);
integer m1;
extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(
char *, integer *), zlarfg_(integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *), zlacgv_(integer *,
doublecomplex *, integer *);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < *m) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZTZRQF", &i__1);
return 0;
}

/* Perform the factorization. */

if (*m == 0) {
return 0;
}
if (*m == *n) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
tau[i__2].r = 0., tau[i__2].i = 0.;
/* L10: */
}
} else {
/* Computing MIN */
i__1 = *m + 1;
m1 = f2cmin(i__1,*n);
for (k = *m; k >= 1; --k) {

/* Use a Householder reflection to zero the kth row of A. */
/* First set up the reflection. */

i__1 = k + k * a_dim1;
d_cnjg(&z__1, &a[k + k * a_dim1]);
a[i__1].r = z__1.r, a[i__1].i = z__1.i;
i__1 = *n - *m;
zlacgv_(&i__1, &a[k + m1 * a_dim1], lda);
i__1 = k + k * a_dim1;
alpha.r = a[i__1].r, alpha.i = a[i__1].i;
i__1 = *n - *m + 1;
zlarfg_(&i__1, &alpha, &a[k + m1 * a_dim1], lda, &tau[k]);
i__1 = k + k * a_dim1;
a[i__1].r = alpha.r, a[i__1].i = alpha.i;
i__1 = k;
d_cnjg(&z__1, &tau[k]);
tau[i__1].r = z__1.r, tau[i__1].i = z__1.i;

i__1 = k;
if ((tau[i__1].r != 0. || tau[i__1].i != 0.) && k > 1) {

/* We now perform the operation A := A*P( k )**H. */

/* Use the first ( k - 1 ) elements of TAU to store a( k ), */
/* where a( k ) consists of the first ( k - 1 ) elements of */
/* the kth column of A. Also let B denote the first */
/* ( k - 1 ) rows of the last ( n - m ) columns of A. */

i__1 = k - 1;
zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);

/* Form w = a( k ) + B*z( k ) in TAU. */

i__1 = k - 1;
i__2 = *n - *m;
zgemv_("No transpose", &i__1, &i__2, &c_b1, &a[m1 * a_dim1 +
1], lda, &a[k + m1 * a_dim1], lda, &c_b1, &tau[1], &
c__1);

/* Now form a( k ) := a( k ) - conjg(tau)*w */
/* and B := B - conjg(tau)*w*z( k )**H. */

i__1 = k - 1;
d_cnjg(&z__2, &tau[k]);
z__1.r = -z__2.r, z__1.i = -z__2.i;
zaxpy_(&i__1, &z__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
c__1);
i__1 = k - 1;
i__2 = *n - *m;
d_cnjg(&z__2, &tau[k]);
z__1.r = -z__2.r, z__1.i = -z__2.i;
zgerc_(&i__1, &i__2, &z__1, &tau[1], &c__1, &a[k + m1 *
a_dim1], lda, &a[m1 * a_dim1 + 1], lda);
}
/* L20: */
}
}

return 0;

/* End of ZTZRQF */

} /* ztzrqf_ */


+ 23
- 2
lapack-netlib/SRC/Makefile View File

@@ -57,9 +57,21 @@
TOPSRCDIR = ..
include $(TOPSRCDIR)/make.inc

ifneq ($(C_LAPACK), 1)
$(info fortran... C_LAPACK ist $(C_LAPACK))
.SUFFIXES:
.SUFFIXES: .f .o
.f.o:
$(FC) $(FFLAGS) -c -o $@ $<
.SUFFIXES: .F .o
.F.o:
$(FC) $(FFLAGS) -c -o $@ $<
else
$(info C_LAPACK ist $(C_LAPACK))
.SUFFIXES: .c .o
.c.o:
$(CC) $(CFLAGS) -c -o $@ $<
endif

ALLAUX_O = ilaenv.o ilaenv2stage.o ieeeck.o lsamen.o xerbla.o xerbla_array.o \
iparmq.o iparam2stage.o \
@@ -560,14 +572,13 @@ DLAPACKOBJS = \
CLAPACKOBJS = \
cgetrf.o cgetrs.o cpotrf.o cgetf2.o \
cpotf2.o claswp.o cgesv.o clauu2.o \
clauum.o ctrti2.o ctrtri.o ctrtrs.o
clauum.o ctrti2.o ctrtri.o ctrtrs.o

ZLAPACKOBJS = \
zgetrf.o zgetrs.o zpotrf.o zgetf2.o \
zpotf2.o zlaswp.o zgesv.o zlauu2.o \
zlauum.o ztrti2.o ztrtri.o ztrtrs.o


ALLAUX = $(filter-out $(ALL_AUX_OBJS),$(ALLAUX_O))
SLASRC = $(filter-out $(SLAPACKOBJS),$(SLASRC_O))
DLASRC = $(filter-out $(DLAPACKOBJS),$(DLASRC_O))
@@ -643,9 +654,19 @@ cleanobj:
cleanlib:
rm -f $(LAPACKLIB)

ifneq ($(C_LAPACK), 1)
slaruv.o: slaruv.f ; $(FC) $(FFLAGS_NOOPT) -c -o $@ $<
dlaruv.o: dlaruv.f ; $(FC) $(FFLAGS_NOOPT) -c -o $@ $<
sla_wwaddw.o: sla_wwaddw.f ; $(FC) $(FFLAGS_NOOPT) -c -o $@ $<
dla_wwaddw.o: dla_wwaddw.f ; $(FC) $(FFLAGS_NOOPT) -c -o $@ $<
cla_wwaddw.o: cla_wwaddw.f ; $(FC) $(FFLAGS_NOOPT) -c -o $@ $<
zla_wwaddw.o: zla_wwaddw.f ; $(FC) $(FFLAGS_NOOPT) -c -o $@ $<
else
slaruv.o: slaruv.c ; $(CC) $(CFLAGS) -c -o $@ $<
dlaruv.o: dlaruv.c ; $(CC) $(CFLAGS) -c -o $@ $<
sla_wwaddw.o: sla_wwaddw.c ; $(CC) $(CFLAGS) -c -o $@ $<
dla_wwaddw.o: dla_wwaddw.c ; $(CC) $(CFLAGS) -c -o $@ $<
cla_wwaddw.o: cla_wwaddw.c ; $(CC) $(CFLAGS) -c -o $@ $<
zla_wwaddw.o: zla_wwaddw.c ; $(CC) $(CFLAGS) -c -o $@ $<
endif


+ 1700
- 0
lapack-netlib/SRC/cbbcsd.c
File diff suppressed because it is too large
View File


+ 1392
- 0
lapack-netlib/SRC/cbdsqr.c
File diff suppressed because it is too large
View File


+ 1137
- 0
lapack-netlib/SRC/cgbbrd.c
File diff suppressed because it is too large
View File


+ 808
- 0
lapack-netlib/SRC/cgbcon.c View File

@@ -0,0 +1,808 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifndef _MSC_VER
#ifdef I
#undef I
#endif
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {return z->r + z->i*I;}
static inline _Dcomplex Cd(doublecomplex *z) {return z->r + z->i*I;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x->r = 1/x->r;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return _Fcomplex(pow->r,pow->i);
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow=1.0, unsigned long int u;
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
#endif
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = 0.0;
#else
_Complex float zdotc = 0.0;
#endif
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = 0.0;
#else
_Complex double zdotc = 0.0;
#endif
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = 0.0;
#else
_Complex float zdotc = 0.0;
#endif
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = 0.0;
#else
_Complex double zdotc = 0.0;
#endif
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b CGBCON */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGBCON + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbcon.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbcon.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbcon.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, */
/* WORK, RWORK, INFO ) */

/* CHARACTER NORM */
/* INTEGER INFO, KL, KU, LDAB, N */
/* REAL ANORM, RCOND */
/* INTEGER IPIV( * ) */
/* REAL RWORK( * ) */
/* COMPLEX AB( LDAB, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGBCON estimates the reciprocal of the condition number of a complex */
/* > general band matrix A, in either the 1-norm or the infinity-norm, */
/* > using the LU factorization computed by CGBTRF. */
/* > */
/* > An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/* > condition number is computed as */
/* > RCOND = 1 / ( norm(A) * norm(inv(A)) ). */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] NORM */
/* > \verbatim */
/* > NORM is CHARACTER*1 */
/* > Specifies whether the 1-norm condition number or the */
/* > infinity-norm condition number is required: */
/* > = '1' or 'O': 1-norm; */
/* > = 'I': Infinity-norm. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The number of subdiagonals within the band of A. KL >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The number of superdiagonals within the band of A. KU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] AB */
/* > \verbatim */
/* > AB is COMPLEX array, dimension (LDAB,N) */
/* > Details of the LU factorization of the band matrix A, as */
/* > computed by CGBTRF. U is stored as an upper triangular band */
/* > matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
/* > the multipliers used during the factorization are stored in */
/* > rows KL+KU+2 to 2*KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[in] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > The pivot indices; for 1 <= i <= N, row i of the matrix was */
/* > interchanged with row IPIV(i). */
/* > \endverbatim */
/* > */
/* > \param[in] ANORM */
/* > \verbatim */
/* > ANORM is REAL */
/* > If NORM = '1' or 'O', the 1-norm of the original matrix A. */
/* > If NORM = 'I', the infinity-norm of the original matrix A. */
/* > \endverbatim */
/* > */
/* > \param[out] RCOND */
/* > \verbatim */
/* > RCOND is REAL */
/* > The reciprocal of the condition number of the matrix A, */
/* > computed as RCOND = 1/(norm(A) * norm(inv(A))). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGBcomputational */

/* ===================================================================== */
/* Subroutine */ int cgbcon_(char *norm, integer *n, integer *kl, integer *ku,
complex *ab, integer *ldab, integer *ipiv, real *anorm, real *rcond,
complex *work, real *rwork, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, i__1, i__2, i__3;
real r__1, r__2;
complex q__1, q__2;

/* Local variables */
integer kase, kase1, j;
complex t;
real scale;
extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
*, complex *, integer *);
extern logical lsame_(char *, char *);
integer isave[3];
extern /* Subroutine */ int caxpy_(integer *, complex *, complex *,
integer *, complex *, integer *);
logical lnoti;
extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real
*, integer *, integer *);
integer kd, lm, jp, ix;
extern integer icamax_(integer *, complex *, integer *);
extern real slamch_(char *);
extern /* Subroutine */ int clatbs_(char *, char *, char *, char *,
integer *, integer *, complex *, integer *, complex *, real *,
real *, integer *), xerbla_(char *
, integer *, ftnlen);
real ainvnm;
extern /* Subroutine */ int csrscl_(integer *, real *, complex *, integer
*);
logical onenrm;
char normin[1];
real smlnum;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1 * 1;
ab -= ab_offset;
--ipiv;
--work;
--rwork;

/* Function Body */
*info = 0;
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
if (! onenrm && ! lsame_(norm, "I")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*kl < 0) {
*info = -3;
} else if (*ku < 0) {
*info = -4;
} else if (*ldab < (*kl << 1) + *ku + 1) {
*info = -6;
} else if (*anorm < 0.f) {
*info = -8;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGBCON", &i__1, (ftnlen)6);
return 0;
}

/* Quick return if possible */

*rcond = 0.f;
if (*n == 0) {
*rcond = 1.f;
return 0;
} else if (*anorm == 0.f) {
return 0;
}

smlnum = slamch_("Safe minimum");

/* Estimate the norm of inv(A). */

ainvnm = 0.f;
*(unsigned char *)normin = 'N';
if (onenrm) {
kase1 = 1;
} else {
kase1 = 2;
}
kd = *kl + *ku + 1;
lnoti = *kl > 0;
kase = 0;
L10:
clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
if (kase != 0) {
if (kase == kase1) {

/* Multiply by inv(L). */

if (lnoti) {
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__2 = *kl, i__3 = *n - j;
lm = f2cmin(i__2,i__3);
jp = ipiv[j];
i__2 = jp;
t.r = work[i__2].r, t.i = work[i__2].i;
if (jp != j) {
i__2 = jp;
i__3 = j;
work[i__2].r = work[i__3].r, work[i__2].i = work[i__3]
.i;
i__2 = j;
work[i__2].r = t.r, work[i__2].i = t.i;
}
q__1.r = -t.r, q__1.i = -t.i;
caxpy_(&lm, &q__1, &ab[kd + 1 + j * ab_dim1], &c__1, &
work[j + 1], &c__1);
/* L20: */
}
}

/* Multiply by inv(U). */

i__1 = *kl + *ku;
clatbs_("Upper", "No transpose", "Non-unit", normin, n, &i__1, &
ab[ab_offset], ldab, &work[1], &scale, &rwork[1], info);
} else {

/* Multiply by inv(U**H). */

i__1 = *kl + *ku;
clatbs_("Upper", "Conjugate transpose", "Non-unit", normin, n, &
i__1, &ab[ab_offset], ldab, &work[1], &scale, &rwork[1],
info);

/* Multiply by inv(L**H). */

if (lnoti) {
for (j = *n - 1; j >= 1; --j) {
/* Computing MIN */
i__1 = *kl, i__2 = *n - j;
lm = f2cmin(i__1,i__2);
i__1 = j;
i__2 = j;
cdotc_(&q__2, &lm, &ab[kd + 1 + j * ab_dim1], &c__1, &
work[j + 1], &c__1);
q__1.r = work[i__2].r - q__2.r, q__1.i = work[i__2].i -
q__2.i;
work[i__1].r = q__1.r, work[i__1].i = q__1.i;
jp = ipiv[j];
if (jp != j) {
i__1 = jp;
t.r = work[i__1].r, t.i = work[i__1].i;
i__1 = jp;
i__2 = j;
work[i__1].r = work[i__2].r, work[i__1].i = work[i__2]
.i;
i__1 = j;
work[i__1].r = t.r, work[i__1].i = t.i;
}
/* L30: */
}
}
}

/* Divide X by 1/SCALE if doing so will not cause overflow. */

*(unsigned char *)normin = 'Y';
if (scale != 1.f) {
ix = icamax_(n, &work[1], &c__1);
i__1 = ix;
if (scale < ((r__1 = work[i__1].r, abs(r__1)) + (r__2 = r_imag(&
work[ix]), abs(r__2))) * smlnum || scale == 0.f) {
goto L40;
}
csrscl_(n, &scale, &work[1], &c__1);
}
goto L10;
}

/* Compute the estimate of the reciprocal condition number. */

if (ainvnm != 0.f) {
*rcond = 1.f / ainvnm / *anorm;
}

L40:
return 0;

/* End of CGBCON */

} /* cgbcon_ */


+ 788
- 0
lapack-netlib/SRC/cgbequ.c View File

@@ -0,0 +1,788 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGBEQU */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGBEQU + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbequ.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbequ.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbequ.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGBEQU( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, */
/* AMAX, INFO ) */

/* INTEGER INFO, KL, KU, LDAB, M, N */
/* REAL AMAX, COLCND, ROWCND */
/* REAL C( * ), R( * ) */
/* COMPLEX AB( LDAB, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGBEQU computes row and column scalings intended to equilibrate an */
/* > M-by-N band matrix A and reduce its condition number. R returns the */
/* > row scale factors and C the column scale factors, chosen to try to */
/* > make the largest element in each row and column of the matrix B with */
/* > elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
/* > */
/* > R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
/* > number and BIGNUM = largest safe number. Use of these scaling */
/* > factors is not guaranteed to reduce the condition number of A but */
/* > works well in practice. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The number of subdiagonals within the band of A. KL >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The number of superdiagonals within the band of A. KU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] AB */
/* > \verbatim */
/* > AB is COMPLEX array, dimension (LDAB,N) */
/* > The band matrix A, stored in rows 1 to KL+KU+1. The j-th */
/* > column of A is stored in the j-th column of the array AB as */
/* > follows: */
/* > AB(ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl). */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[out] R */
/* > \verbatim */
/* > R is REAL array, dimension (M) */
/* > If INFO = 0, or INFO > M, R contains the row scale factors */
/* > for A. */
/* > \endverbatim */
/* > */
/* > \param[out] C */
/* > \verbatim */
/* > C is REAL array, dimension (N) */
/* > If INFO = 0, C contains the column scale factors for A. */
/* > \endverbatim */
/* > */
/* > \param[out] ROWCND */
/* > \verbatim */
/* > ROWCND is REAL */
/* > If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
/* > smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
/* > AMAX is neither too large nor too small, it is not worth */
/* > scaling by R. */
/* > \endverbatim */
/* > */
/* > \param[out] COLCND */
/* > \verbatim */
/* > COLCND is REAL */
/* > If INFO = 0, COLCND contains the ratio of the smallest */
/* > C(i) to the largest C(i). If COLCND >= 0.1, it is not */
/* > worth scaling by C. */
/* > \endverbatim */
/* > */
/* > \param[out] AMAX */
/* > \verbatim */
/* > AMAX is REAL */
/* > Absolute value of largest matrix element. If AMAX is very */
/* > close to overflow or very close to underflow, the matrix */
/* > should be scaled. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, and i is */
/* > <= M: the i-th row of A is exactly zero */
/* > > M: the (i-M)-th column of A is exactly zero */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGBcomputational */

/* ===================================================================== */
/* Subroutine */ int cgbequ_(integer *m, integer *n, integer *kl, integer *ku,
complex *ab, integer *ldab, real *r__, real *c__, real *rowcnd, real
*colcnd, real *amax, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
real r__1, r__2, r__3, r__4;

/* Local variables */
integer i__, j;
real rcmin, rcmax;
integer kd;
extern real slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
real bignum, smlnum;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters */

/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1 * 1;
ab -= ab_offset;
--r__;
--c__;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*kl < 0) {
*info = -3;
} else if (*ku < 0) {
*info = -4;
} else if (*ldab < *kl + *ku + 1) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGBEQU", &i__1, (ftnlen)6);
return 0;
}

/* Quick return if possible */

if (*m == 0 || *n == 0) {
*rowcnd = 1.f;
*colcnd = 1.f;
*amax = 0.f;
return 0;
}

/* Get machine constants. */

smlnum = slamch_("S");
bignum = 1.f / smlnum;

/* Compute row scale factors. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
r__[i__] = 0.f;
/* L10: */
}

/* Find the maximum element in each row. */

kd = *ku + 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__2 = j - *ku;
/* Computing MIN */
i__4 = j + *kl;
i__3 = f2cmin(i__4,*m);
for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
i__2 = kd + i__ - j + j * ab_dim1;
r__3 = r__[i__], r__4 = (r__1 = ab[i__2].r, abs(r__1)) + (r__2 =
r_imag(&ab[kd + i__ - j + j * ab_dim1]), abs(r__2));
r__[i__] = f2cmax(r__3,r__4);
/* L20: */
}
/* L30: */
}

/* Find the maximum and minimum scale factors. */

rcmin = bignum;
rcmax = 0.f;
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
r__1 = rcmax, r__2 = r__[i__];
rcmax = f2cmax(r__1,r__2);
/* Computing MIN */
r__1 = rcmin, r__2 = r__[i__];
rcmin = f2cmin(r__1,r__2);
/* L40: */
}
*amax = rcmax;

if (rcmin == 0.f) {

/* Find the first zero scale factor and return an error code. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (r__[i__] == 0.f) {
*info = i__;
return 0;
}
/* L50: */
}
} else {

/* Invert the scale factors. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MIN */
/* Computing MAX */
r__2 = r__[i__];
r__1 = f2cmax(r__2,smlnum);
r__[i__] = 1.f / f2cmin(r__1,bignum);
/* L60: */
}

/* Compute ROWCND = f2cmin(R(I)) / f2cmax(R(I)) */

*rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
}

/* Compute column scale factors */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
c__[j] = 0.f;
/* L70: */
}

/* Find the maximum element in each column, */
/* assuming the row scaling computed above. */

kd = *ku + 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__3 = j - *ku;
/* Computing MIN */
i__4 = j + *kl;
i__2 = f2cmin(i__4,*m);
for (i__ = f2cmax(i__3,1); i__ <= i__2; ++i__) {
/* Computing MAX */
i__3 = kd + i__ - j + j * ab_dim1;
r__3 = c__[j], r__4 = ((r__1 = ab[i__3].r, abs(r__1)) + (r__2 =
r_imag(&ab[kd + i__ - j + j * ab_dim1]), abs(r__2))) *
r__[i__];
c__[j] = f2cmax(r__3,r__4);
/* L80: */
}
/* L90: */
}

/* Find the maximum and minimum scale factors. */

rcmin = bignum;
rcmax = 0.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
r__1 = rcmin, r__2 = c__[j];
rcmin = f2cmin(r__1,r__2);
/* Computing MAX */
r__1 = rcmax, r__2 = c__[j];
rcmax = f2cmax(r__1,r__2);
/* L100: */
}

if (rcmin == 0.f) {

/* Find the first zero scale factor and return an error code. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (c__[j] == 0.f) {
*info = *m + j;
return 0;
}
/* L110: */
}
} else {

/* Invert the scale factors. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
/* Computing MAX */
r__2 = c__[j];
r__1 = f2cmax(r__2,smlnum);
c__[j] = 1.f / f2cmin(r__1,bignum);
/* L120: */
}

/* Compute COLCND = f2cmin(C(J)) / f2cmax(C(J)) */

*colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
}

return 0;

/* End of CGBEQU */

} /* cgbequ_ */


+ 807
- 0
lapack-netlib/SRC/cgbequb.c View File

@@ -0,0 +1,807 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGBEQUB */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGBEQUB + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbequb
.f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbequb
.f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbequb
.f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, */
/* AMAX, INFO ) */

/* INTEGER INFO, KL, KU, LDAB, M, N */
/* REAL AMAX, COLCND, ROWCND */
/* REAL C( * ), R( * ) */
/* COMPLEX AB( LDAB, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGBEQUB computes row and column scalings intended to equilibrate an */
/* > M-by-N matrix A and reduce its condition number. R returns the row */
/* > scale factors and C the column scale factors, chosen to try to make */
/* > the largest element in each row and column of the matrix B with */
/* > elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most */
/* > the radix. */
/* > */
/* > R(i) and C(j) are restricted to be a power of the radix between */
/* > SMLNUM = smallest safe number and BIGNUM = largest safe number. Use */
/* > of these scaling factors is not guaranteed to reduce the condition */
/* > number of A but works well in practice. */
/* > */
/* > This routine differs from CGEEQU by restricting the scaling factors */
/* > to a power of the radix. Barring over- and underflow, scaling by */
/* > these factors introduces no additional rounding errors. However, the */
/* > scaled entries' magnitudes are no longer approximately 1 but lie */
/* > between sqrt(radix) and 1/sqrt(radix). */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The number of subdiagonals within the band of A. KL >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The number of superdiagonals within the band of A. KU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] AB */
/* > \verbatim */
/* > AB is COMPLEX array, dimension (LDAB,N) */
/* > On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
/* > The j-th column of A is stored in the j-th column of the */
/* > array AB as follows: */
/* > AB(KU+1+i-j,j) = A(i,j) for f2cmax(1,j-KU)<=i<=f2cmin(N,j+kl) */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array A. LDAB >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] R */
/* > \verbatim */
/* > R is REAL array, dimension (M) */
/* > If INFO = 0 or INFO > M, R contains the row scale factors */
/* > for A. */
/* > \endverbatim */
/* > */
/* > \param[out] C */
/* > \verbatim */
/* > C is REAL array, dimension (N) */
/* > If INFO = 0, C contains the column scale factors for A. */
/* > \endverbatim */
/* > */
/* > \param[out] ROWCND */
/* > \verbatim */
/* > ROWCND is REAL */
/* > If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
/* > smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
/* > AMAX is neither too large nor too small, it is not worth */
/* > scaling by R. */
/* > \endverbatim */
/* > */
/* > \param[out] COLCND */
/* > \verbatim */
/* > COLCND is REAL */
/* > If INFO = 0, COLCND contains the ratio of the smallest */
/* > C(i) to the largest C(i). If COLCND >= 0.1, it is not */
/* > worth scaling by C. */
/* > \endverbatim */
/* > */
/* > \param[out] AMAX */
/* > \verbatim */
/* > AMAX is REAL */
/* > Absolute value of largest matrix element. If AMAX is very */
/* > close to overflow or very close to underflow, the matrix */
/* > should be scaled. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, and i is */
/* > <= M: the i-th row of A is exactly zero */
/* > > M: the (i-M)-th column of A is exactly zero */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date June 2016 */

/* > \ingroup complexGBcomputational */

/* ===================================================================== */
/* Subroutine */ int cgbequb_(integer *m, integer *n, integer *kl, integer *
ku, complex *ab, integer *ldab, real *r__, real *c__, real *rowcnd,
real *colcnd, real *amax, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
real r__1, r__2, r__3, r__4;

/* Local variables */
integer i__, j;
real radix, rcmin, rcmax;
integer kd;
extern real slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
real bignum, logrdx, smlnum;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1 * 1;
ab -= ab_offset;
--r__;
--c__;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*kl < 0) {
*info = -3;
} else if (*ku < 0) {
*info = -4;
} else if (*ldab < *kl + *ku + 1) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGBEQUB", &i__1, (ftnlen)7);
return 0;
}

/* Quick return if possible. */

if (*m == 0 || *n == 0) {
*rowcnd = 1.f;
*colcnd = 1.f;
*amax = 0.f;
return 0;
}

/* Get machine constants. Assume SMLNUM is a power of the radix. */

smlnum = slamch_("S");
bignum = 1.f / smlnum;
radix = slamch_("B");
logrdx = log(radix);

/* Compute row scale factors. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
r__[i__] = 0.f;
/* L10: */
}

/* Find the maximum element in each row. */

kd = *ku + 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__2 = j - *ku;
/* Computing MIN */
i__4 = j + *kl;
i__3 = f2cmin(i__4,*m);
for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
i__2 = kd + i__ - j + j * ab_dim1;
r__3 = r__[i__], r__4 = (r__1 = ab[i__2].r, abs(r__1)) + (r__2 =
r_imag(&ab[kd + i__ - j + j * ab_dim1]), abs(r__2));
r__[i__] = f2cmax(r__3,r__4);
/* L20: */
}
/* L30: */
}
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (r__[i__] > 0.f) {
i__3 = (integer) (log(r__[i__]) / logrdx);
r__[i__] = pow_ri(&radix, &i__3);
}
}

/* Find the maximum and minimum scale factors. */

rcmin = bignum;
rcmax = 0.f;
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
r__1 = rcmax, r__2 = r__[i__];
rcmax = f2cmax(r__1,r__2);
/* Computing MIN */
r__1 = rcmin, r__2 = r__[i__];
rcmin = f2cmin(r__1,r__2);
/* L40: */
}
*amax = rcmax;

if (rcmin == 0.f) {

/* Find the first zero scale factor and return an error code. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (r__[i__] == 0.f) {
*info = i__;
return 0;
}
/* L50: */
}
} else {

/* Invert the scale factors. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MIN */
/* Computing MAX */
r__2 = r__[i__];
r__1 = f2cmax(r__2,smlnum);
r__[i__] = 1.f / f2cmin(r__1,bignum);
/* L60: */
}

/* Compute ROWCND = f2cmin(R(I)) / f2cmax(R(I)). */

*rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
}

/* Compute column scale factors. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
c__[j] = 0.f;
/* L70: */
}

/* Find the maximum element in each column, */
/* assuming the row scaling computed above. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__3 = j - *ku;
/* Computing MIN */
i__4 = j + *kl;
i__2 = f2cmin(i__4,*m);
for (i__ = f2cmax(i__3,1); i__ <= i__2; ++i__) {
/* Computing MAX */
i__3 = kd + i__ - j + j * ab_dim1;
r__3 = c__[j], r__4 = ((r__1 = ab[i__3].r, abs(r__1)) + (r__2 =
r_imag(&ab[kd + i__ - j + j * ab_dim1]), abs(r__2))) *
r__[i__];
c__[j] = f2cmax(r__3,r__4);
/* L80: */
}
if (c__[j] > 0.f) {
i__2 = (integer) (log(c__[j]) / logrdx);
c__[j] = pow_ri(&radix, &i__2);
}
/* L90: */
}

/* Find the maximum and minimum scale factors. */

rcmin = bignum;
rcmax = 0.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
r__1 = rcmin, r__2 = c__[j];
rcmin = f2cmin(r__1,r__2);
/* Computing MAX */
r__1 = rcmax, r__2 = c__[j];
rcmax = f2cmax(r__1,r__2);
/* L100: */
}

if (rcmin == 0.f) {

/* Find the first zero scale factor and return an error code. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (c__[j] == 0.f) {
*info = *m + j;
return 0;
}
/* L110: */
}
} else {

/* Invert the scale factors. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
/* Computing MAX */
r__2 = c__[j];
r__1 = f2cmax(r__2,smlnum);
c__[j] = 1.f / f2cmin(r__1,bignum);
/* L120: */
}

/* Compute COLCND = f2cmin(C(J)) / f2cmax(C(J)). */

*colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
}

return 0;

/* End of CGBEQUB */

} /* cgbequb_ */


+ 971
- 0
lapack-netlib/SRC/cgbrfs.c View File

@@ -0,0 +1,971 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;

/* > \brief \b CGBRFS */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGBRFS + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbrfs.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbrfs.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbrfs.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, */
/* IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, */
/* INFO ) */

/* CHARACTER TRANS */
/* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS */
/* INTEGER IPIV( * ) */
/* REAL BERR( * ), FERR( * ), RWORK( * ) */
/* COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), */
/* $ WORK( * ), X( LDX, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGBRFS improves the computed solution to a system of linear */
/* > equations when the coefficient matrix is banded, and provides */
/* > error bounds and backward error estimates for the solution. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > Specifies the form of the system of equations: */
/* > = 'N': A * X = B (No transpose) */
/* > = 'T': A**T * X = B (Transpose) */
/* > = 'C': A**H * X = B (Conjugate transpose) */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The number of subdiagonals within the band of A. KL >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The number of superdiagonals within the band of A. KU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] AB */
/* > \verbatim */
/* > AB is COMPLEX array, dimension (LDAB,N) */
/* > The original band matrix A, stored in rows 1 to KL+KU+1. */
/* > The j-th column of A is stored in the j-th column of the */
/* > array AB as follows: */
/* > AB(ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(n,j+kl). */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[in] AFB */
/* > \verbatim */
/* > AFB is COMPLEX array, dimension (LDAFB,N) */
/* > Details of the LU factorization of the band matrix A, as */
/* > computed by CGBTRF. U is stored as an upper triangular band */
/* > matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
/* > the multipliers used during the factorization are stored in */
/* > rows KL+KU+2 to 2*KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[in] LDAFB */
/* > \verbatim */
/* > LDAFB is INTEGER */
/* > The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. */
/* > \endverbatim */
/* > */
/* > \param[in] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > The pivot indices from CGBTRF; for 1<=i<=N, row i of the */
/* > matrix was interchanged with row IPIV(i). */
/* > \endverbatim */
/* > */
/* > \param[in] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,NRHS) */
/* > The right hand side matrix B. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] X */
/* > \verbatim */
/* > X is COMPLEX array, dimension (LDX,NRHS) */
/* > On entry, the solution matrix X, as computed by CGBTRS. */
/* > On exit, the improved solution matrix X. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX */
/* > \verbatim */
/* > LDX is INTEGER */
/* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] FERR */
/* > \verbatim */
/* > FERR is REAL array, dimension (NRHS) */
/* > The estimated forward error bound for each solution vector */
/* > X(j) (the j-th column of the solution matrix X). */
/* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
/* > is an estimated upper bound for the magnitude of the largest */
/* > element in (X(j) - XTRUE) divided by the magnitude of the */
/* > largest element in X(j). The estimate is as reliable as */
/* > the estimate for RCOND, and is almost always a slight */
/* > overestimate of the true error. */
/* > \endverbatim */
/* > */
/* > \param[out] BERR */
/* > \verbatim */
/* > BERR is REAL array, dimension (NRHS) */
/* > The componentwise relative backward error of each solution */
/* > vector X(j) (i.e., the smallest relative change in */
/* > any element of A or B that makes X(j) an exact solution). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* > \par Internal Parameters: */
/* ========================= */
/* > */
/* > \verbatim */
/* > ITMAX is the maximum number of steps of iterative refinement. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGBcomputational */

/* ===================================================================== */
/* Subroutine */ int cgbrfs_(char *trans, integer *n, integer *kl, integer *
ku, integer *nrhs, complex *ab, integer *ldab, complex *afb, integer *
ldafb, integer *ipiv, complex *b, integer *ldb, complex *x, integer *
ldx, real *ferr, real *berr, complex *work, real *rwork, integer *
info)
{
/* System generated locals */
integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
real r__1, r__2, r__3, r__4;
complex q__1;

/* Local variables */
integer kase;
real safe1, safe2;
integer i__, j, k;
real s;
extern /* Subroutine */ int cgbmv_(char *, integer *, integer *, integer *
, integer *, complex *, complex *, integer *, complex *, integer *
, complex *, complex *, integer *);
extern logical lsame_(char *, char *);
integer isave[3];
extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
complex *, integer *), caxpy_(integer *, complex *, complex *,
integer *, complex *, integer *);
integer count;
extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real
*, integer *, integer *);
integer kk;
real xk;
extern real slamch_(char *);
integer nz;
real safmin;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), cgbtrs_(
char *, integer *, integer *, integer *, integer *, complex *,
integer *, integer *, complex *, integer *, integer *);
logical notran;
char transn[1], transt[1];
real lstres, eps;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1 * 1;
ab -= ab_offset;
afb_dim1 = *ldafb;
afb_offset = 1 + afb_dim1 * 1;
afb -= afb_offset;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1 * 1;
x -= x_offset;
--ferr;
--berr;
--work;
--rwork;

/* Function Body */
*info = 0;
notran = lsame_(trans, "N");
if (! notran && ! lsame_(trans, "T") && ! lsame_(
trans, "C")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*kl < 0) {
*info = -3;
} else if (*ku < 0) {
*info = -4;
} else if (*nrhs < 0) {
*info = -5;
} else if (*ldab < *kl + *ku + 1) {
*info = -7;
} else if (*ldafb < (*kl << 1) + *ku + 1) {
*info = -9;
} else if (*ldb < f2cmax(1,*n)) {
*info = -12;
} else if (*ldx < f2cmax(1,*n)) {
*info = -14;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGBRFS", &i__1, (ftnlen)6);
return 0;
}

/* Quick return if possible */

if (*n == 0 || *nrhs == 0) {
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
ferr[j] = 0.f;
berr[j] = 0.f;
/* L10: */
}
return 0;
}

if (notran) {
*(unsigned char *)transn = 'N';
*(unsigned char *)transt = 'C';
} else {
*(unsigned char *)transn = 'C';
*(unsigned char *)transt = 'N';
}

/* NZ = maximum number of nonzero elements in each row of A, plus 1 */

/* Computing MIN */
i__1 = *kl + *ku + 2, i__2 = *n + 1;
nz = f2cmin(i__1,i__2);
eps = slamch_("Epsilon");
safmin = slamch_("Safe minimum");
safe1 = nz * safmin;
safe2 = safe1 / eps;

/* Do for each right hand side */

i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {

count = 1;
lstres = 3.f;
L20:

/* Loop until stopping criterion is satisfied. */

/* Compute residual R = B - op(A) * X, */
/* where op(A) = A, A**T, or A**H, depending on TRANS. */

ccopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
q__1.r = -1.f, q__1.i = 0.f;
cgbmv_(trans, n, n, kl, ku, &q__1, &ab[ab_offset], ldab, &x[j *
x_dim1 + 1], &c__1, &c_b1, &work[1], &c__1);

/* Compute componentwise relative backward error from formula */

/* f2cmax(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */

/* where abs(Z) is the componentwise absolute value of the matrix */
/* or vector Z. If the i-th component of the denominator is less */
/* than SAFE2, then SAFE1 is added to the i-th components of the */
/* numerator and denominator before dividing. */

i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * b_dim1;
rwork[i__] = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[
i__ + j * b_dim1]), abs(r__2));
/* L30: */
}

/* Compute abs(op(A))*abs(X) + abs(B). */

if (notran) {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
kk = *ku + 1 - k;
i__3 = k + j * x_dim1;
xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[k + j *
x_dim1]), abs(r__2));
/* Computing MAX */
i__3 = 1, i__4 = k - *ku;
/* Computing MIN */
i__6 = *n, i__7 = k + *kl;
i__5 = f2cmin(i__6,i__7);
for (i__ = f2cmax(i__3,i__4); i__ <= i__5; ++i__) {
i__3 = kk + i__ + k * ab_dim1;
rwork[i__] += ((r__1 = ab[i__3].r, abs(r__1)) + (r__2 =
r_imag(&ab[kk + i__ + k * ab_dim1]), abs(r__2))) *
xk;
/* L40: */
}
/* L50: */
}
} else {
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
s = 0.f;
kk = *ku + 1 - k;
/* Computing MAX */
i__5 = 1, i__3 = k - *ku;
/* Computing MIN */
i__6 = *n, i__7 = k + *kl;
i__4 = f2cmin(i__6,i__7);
for (i__ = f2cmax(i__5,i__3); i__ <= i__4; ++i__) {
i__5 = kk + i__ + k * ab_dim1;
i__3 = i__ + j * x_dim1;
s += ((r__1 = ab[i__5].r, abs(r__1)) + (r__2 = r_imag(&ab[
kk + i__ + k * ab_dim1]), abs(r__2))) * ((r__3 =
x[i__3].r, abs(r__3)) + (r__4 = r_imag(&x[i__ + j
* x_dim1]), abs(r__4)));
/* L60: */
}
rwork[k] += s;
/* L70: */
}
}
s = 0.f;
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
if (rwork[i__] > safe2) {
/* Computing MAX */
i__4 = i__;
r__3 = s, r__4 = ((r__1 = work[i__4].r, abs(r__1)) + (r__2 =
r_imag(&work[i__]), abs(r__2))) / rwork[i__];
s = f2cmax(r__3,r__4);
} else {
/* Computing MAX */
i__4 = i__;
r__3 = s, r__4 = ((r__1 = work[i__4].r, abs(r__1)) + (r__2 =
r_imag(&work[i__]), abs(r__2)) + safe1) / (rwork[i__]
+ safe1);
s = f2cmax(r__3,r__4);
}
/* L80: */
}
berr[j] = s;

/* Test stopping criterion. Continue iterating if */
/* 1) The residual BERR(J) is larger than machine epsilon, and */
/* 2) BERR(J) decreased by at least a factor of 2 during the */
/* last iteration, and */
/* 3) At most ITMAX iterations tried. */

if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) {

/* Update solution and try again. */

cgbtrs_(trans, n, kl, ku, &c__1, &afb[afb_offset], ldafb, &ipiv[1]
, &work[1], n, info);
caxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
lstres = berr[j];
++count;
goto L20;
}

/* Bound error from formula */

/* norm(X - XTRUE) / norm(X) .le. FERR = */
/* norm( abs(inv(op(A)))* */
/* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */

/* where */
/* norm(Z) is the magnitude of the largest component of Z */
/* inv(op(A)) is the inverse of op(A) */
/* abs(Z) is the componentwise absolute value of the matrix or */
/* vector Z */
/* NZ is the maximum number of nonzeros in any row of A, plus 1 */
/* EPS is machine epsilon */

/* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
/* is incremented by SAFE1 if the i-th component of */
/* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */

/* Use CLACN2 to estimate the infinity-norm of the matrix */
/* inv(op(A)) * diag(W), */
/* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */

i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
if (rwork[i__] > safe2) {
i__4 = i__;
rwork[i__] = (r__1 = work[i__4].r, abs(r__1)) + (r__2 =
r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
;
} else {
i__4 = i__;
rwork[i__] = (r__1 = work[i__4].r, abs(r__1)) + (r__2 =
r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
+ safe1;
}
/* L90: */
}

kase = 0;
L100:
clacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
if (kase != 0) {
if (kase == 1) {

/* Multiply by diag(W)*inv(op(A)**H). */

cgbtrs_(transt, n, kl, ku, &c__1, &afb[afb_offset], ldafb, &
ipiv[1], &work[1], n, info);
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__4 = i__;
i__5 = i__;
i__3 = i__;
q__1.r = rwork[i__5] * work[i__3].r, q__1.i = rwork[i__5]
* work[i__3].i;
work[i__4].r = q__1.r, work[i__4].i = q__1.i;
/* L110: */
}
} else {

/* Multiply by inv(op(A))*diag(W). */

i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__4 = i__;
i__5 = i__;
i__3 = i__;
q__1.r = rwork[i__5] * work[i__3].r, q__1.i = rwork[i__5]
* work[i__3].i;
work[i__4].r = q__1.r, work[i__4].i = q__1.i;
/* L120: */
}
cgbtrs_(transn, n, kl, ku, &c__1, &afb[afb_offset], ldafb, &
ipiv[1], &work[1], n, info);
}
goto L100;
}

/* Normalize error. */

lstres = 0.f;
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
i__4 = i__ + j * x_dim1;
r__3 = lstres, r__4 = (r__1 = x[i__4].r, abs(r__1)) + (r__2 =
r_imag(&x[i__ + j * x_dim1]), abs(r__2));
lstres = f2cmax(r__3,r__4);
/* L130: */
}
if (lstres != 0.f) {
ferr[j] /= lstres;
}

/* L140: */
}

return 0;

/* End of CGBRFS */

} /* cgbrfs_ */


+ 402
- 0
lapack-netlib/SRC/cgbrfsx.c View File

@@ -0,0 +1,402 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif

+ 643
- 0
lapack-netlib/SRC/cgbsv.c View File

@@ -0,0 +1,643 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief <b> CGBSV computes the solution to system of linear equations A * X = B for GB matrices</b> (simpl
e driver) */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGBSV + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbsv.f
"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbsv.f
"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbsv.f
"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO ) */

/* INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS */
/* INTEGER IPIV( * ) */
/* COMPLEX AB( LDAB, * ), B( LDB, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGBSV computes the solution to a complex system of linear equations */
/* > A * X = B, where A is a band matrix of order N with KL subdiagonals */
/* > and KU superdiagonals, and X and B are N-by-NRHS matrices. */
/* > */
/* > The LU decomposition with partial pivoting and row interchanges is */
/* > used to factor A as A = L * U, where L is a product of permutation */
/* > and unit lower triangular matrices with KL subdiagonals, and U is */
/* > upper triangular with KL+KU superdiagonals. The factored form of A */
/* > is then used to solve the system of equations A * X = B. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of linear equations, i.e., the order of the */
/* > matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The number of subdiagonals within the band of A. KL >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The number of superdiagonals within the band of A. KU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrix B. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] AB */
/* > \verbatim */
/* > AB is COMPLEX array, dimension (LDAB,N) */
/* > On entry, the matrix A in band storage, in rows KL+1 to */
/* > 2*KL+KU+1; rows 1 to KL of the array need not be set. */
/* > The j-th column of A is stored in the j-th column of the */
/* > array AB as follows: */
/* > AB(KL+KU+1+i-j,j) = A(i,j) for f2cmax(1,j-KU)<=i<=f2cmin(N,j+KL) */
/* > On exit, details of the factorization: U is stored as an */
/* > upper triangular band matrix with KL+KU superdiagonals in */
/* > rows 1 to KL+KU+1, and the multipliers used during the */
/* > factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
/* > See below for further details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[out] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > The pivot indices that define the permutation matrix P; */
/* > row i of the matrix was interchanged with row IPIV(i). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,NRHS) */
/* > On entry, the N-by-NRHS right hand side matrix B. */
/* > On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, U(i,i) is exactly zero. The factorization */
/* > has been completed, but the factor U is exactly */
/* > singular, and the solution has not been computed. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGBsolve */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The band storage scheme is illustrated by the following example, when */
/* > M = N = 6, KL = 2, KU = 1: */
/* > */
/* > On entry: On exit: */
/* > */
/* > * * * + + + * * * u14 u25 u36 */
/* > * * + + + + * * u13 u24 u35 u46 */
/* > * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
/* > a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
/* > a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */
/* > a31 a42 a53 a64 * * m31 m42 m53 m64 * * */
/* > */
/* > Array elements marked * are not used by the routine; elements marked */
/* > + need not be set on entry, but are required by the routine to store */
/* > elements of U because of fill-in resulting from the row interchanges. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgbsv_(integer *n, integer *kl, integer *ku, integer *
nrhs, complex *ab, integer *ldab, integer *ipiv, complex *b, integer *
ldb, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;

/* Local variables */
extern /* Subroutine */ int cgbtrf_(integer *, integer *, integer *,
integer *, complex *, integer *, integer *, integer *), xerbla_(
char *, integer *, ftnlen), cgbtrs_(char *, integer *, integer *,
integer *, integer *, complex *, integer *, integer *, complex *,
integer *, integer *);


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1 * 1;
ab -= ab_offset;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;

/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*kl < 0) {
*info = -2;
} else if (*ku < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*ldab < (*kl << 1) + *ku + 1) {
*info = -6;
} else if (*ldb < f2cmax(*n,1)) {
*info = -9;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGBSV ", &i__1, (ftnlen)6);
return 0;
}

/* Compute the LU factorization of the band matrix A. */

cgbtrf_(n, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);
if (*info == 0) {

/* Solve the system A*X = B, overwriting B with X. */

cgbtrs_("No transpose", n, kl, ku, nrhs, &ab[ab_offset], ldab, &ipiv[
1], &b[b_offset], ldb, info);
}
return 0;

/* End of CGBSV */

} /* cgbsv_ */


+ 1182
- 0
lapack-netlib/SRC/cgbsvx.c
File diff suppressed because it is too large
View File


+ 1272
- 0
lapack-netlib/SRC/cgbsvxx.c
File diff suppressed because it is too large
View File


+ 720
- 0
lapack-netlib/SRC/cgbtf2.c View File

@@ -0,0 +1,720 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;

/* > \brief \b CGBTF2 computes the LU factorization of a general band matrix using the unblocked version of th
e algorithm. */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGBTF2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbtf2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbtf2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbtf2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO ) */

/* INTEGER INFO, KL, KU, LDAB, M, N */
/* INTEGER IPIV( * ) */
/* COMPLEX AB( LDAB, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGBTF2 computes an LU factorization of a complex m-by-n band matrix */
/* > A using partial pivoting with row interchanges. */
/* > */
/* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The number of subdiagonals within the band of A. KL >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The number of superdiagonals within the band of A. KU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] AB */
/* > \verbatim */
/* > AB is COMPLEX array, dimension (LDAB,N) */
/* > On entry, the matrix A in band storage, in rows KL+1 to */
/* > 2*KL+KU+1; rows 1 to KL of the array need not be set. */
/* > The j-th column of A is stored in the j-th column of the */
/* > array AB as follows: */
/* > AB(kl+ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl) */
/* > */
/* > On exit, details of the factorization: U is stored as an */
/* > upper triangular band matrix with KL+KU superdiagonals in */
/* > rows 1 to KL+KU+1, and the multipliers used during the */
/* > factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
/* > See below for further details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[out] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (f2cmin(M,N)) */
/* > The pivot indices; for 1 <= i <= f2cmin(M,N), row i of the */
/* > matrix was interchanged with row IPIV(i). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */
/* > has been completed, but the factor U is exactly */
/* > singular, and division by zero will occur if it is used */
/* > to solve a system of equations. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGBcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The band storage scheme is illustrated by the following example, when */
/* > M = N = 6, KL = 2, KU = 1: */
/* > */
/* > On entry: On exit: */
/* > */
/* > * * * + + + * * * u14 u25 u36 */
/* > * * + + + + * * u13 u24 u35 u46 */
/* > * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
/* > a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
/* > a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */
/* > a31 a42 a53 a64 * * m31 m42 m53 m64 * * */
/* > */
/* > Array elements marked * are not used by the routine; elements marked */
/* > + need not be set on entry, but are required by the routine to store */
/* > elements of U, because of fill-in resulting from the row */
/* > interchanges. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgbtf2_(integer *m, integer *n, integer *kl, integer *ku,
complex *ab, integer *ldab, integer *ipiv, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
complex q__1;

/* Local variables */
integer i__, j;
extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
integer *), cgeru_(integer *, integer *, complex *, complex *,
integer *, complex *, integer *, complex *, integer *), cswap_(
integer *, complex *, integer *, complex *, integer *);
integer km, jp, ju, kv;
extern integer icamax_(integer *, complex *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* KV is the number of superdiagonals in the factor U, allowing for */
/* fill-in. */

/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1 * 1;
ab -= ab_offset;
--ipiv;

/* Function Body */
kv = *ku + *kl;

/* Test the input parameters. */

*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*kl < 0) {
*info = -3;
} else if (*ku < 0) {
*info = -4;
} else if (*ldab < *kl + kv + 1) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGBTF2", &i__1, (ftnlen)6);
return 0;
}

/* Quick return if possible */

if (*m == 0 || *n == 0) {
return 0;
}

/* Gaussian elimination with partial pivoting */

/* Set fill-in elements in columns KU+2 to KV to zero. */

i__1 = f2cmin(kv,*n);
for (j = *ku + 2; j <= i__1; ++j) {
i__2 = *kl;
for (i__ = kv - j + 2; i__ <= i__2; ++i__) {
i__3 = i__ + j * ab_dim1;
ab[i__3].r = 0.f, ab[i__3].i = 0.f;
/* L10: */
}
/* L20: */
}

/* JU is the index of the last column affected by the current stage */
/* of the factorization. */

ju = 1;

i__1 = f2cmin(*m,*n);
for (j = 1; j <= i__1; ++j) {

/* Set fill-in elements in column J+KV to zero. */

if (j + kv <= *n) {
i__2 = *kl;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + (j + kv) * ab_dim1;
ab[i__3].r = 0.f, ab[i__3].i = 0.f;
/* L30: */
}
}

/* Find pivot and test for singularity. KM is the number of */
/* subdiagonal elements in the current column. */

/* Computing MIN */
i__2 = *kl, i__3 = *m - j;
km = f2cmin(i__2,i__3);
i__2 = km + 1;
jp = icamax_(&i__2, &ab[kv + 1 + j * ab_dim1], &c__1);
ipiv[j] = jp + j - 1;
i__2 = kv + jp + j * ab_dim1;
if (ab[i__2].r != 0.f || ab[i__2].i != 0.f) {
/* Computing MAX */
/* Computing MIN */
i__4 = j + *ku + jp - 1;
i__2 = ju, i__3 = f2cmin(i__4,*n);
ju = f2cmax(i__2,i__3);

/* Apply interchange to columns J to JU. */

if (jp != 1) {
i__2 = ju - j + 1;
i__3 = *ldab - 1;
i__4 = *ldab - 1;
cswap_(&i__2, &ab[kv + jp + j * ab_dim1], &i__3, &ab[kv + 1 +
j * ab_dim1], &i__4);
}
if (km > 0) {

/* Compute multipliers. */

c_div(&q__1, &c_b1, &ab[kv + 1 + j * ab_dim1]);
cscal_(&km, &q__1, &ab[kv + 2 + j * ab_dim1], &c__1);

/* Update trailing submatrix within the band. */

if (ju > j) {
i__2 = ju - j;
q__1.r = -1.f, q__1.i = 0.f;
i__3 = *ldab - 1;
i__4 = *ldab - 1;
cgeru_(&km, &i__2, &q__1, &ab[kv + 2 + j * ab_dim1], &
c__1, &ab[kv + (j + 1) * ab_dim1], &i__3, &ab[kv
+ 1 + (j + 1) * ab_dim1], &i__4);
}
}
} else {

/* If pivot is zero, set INFO to the index of the pivot */
/* unless a zero pivot has already been found. */

if (*info == 0) {
*info = j;
}
}
/* L40: */
}
return 0;

/* End of CGBTF2 */

} /* cgbtf2_ */


+ 1055
- 0
lapack-netlib/SRC/cgbtrf.c
File diff suppressed because it is too large
View File


+ 744
- 0
lapack-netlib/SRC/cgbtrs.c View File

@@ -0,0 +1,744 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;

/* > \brief \b CGBTRS */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGBTRS + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbtrs.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbtrs.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbtrs.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, */
/* INFO ) */

/* CHARACTER TRANS */
/* INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS */
/* INTEGER IPIV( * ) */
/* COMPLEX AB( LDAB, * ), B( LDB, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGBTRS solves a system of linear equations */
/* > A * X = B, A**T * X = B, or A**H * X = B */
/* > with a general band matrix A using the LU factorization computed */
/* > by CGBTRF. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > Specifies the form of the system of equations. */
/* > = 'N': A * X = B (No transpose) */
/* > = 'T': A**T * X = B (Transpose) */
/* > = 'C': A**H * X = B (Conjugate transpose) */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The number of subdiagonals within the band of A. KL >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The number of superdiagonals within the band of A. KU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrix B. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] AB */
/* > \verbatim */
/* > AB is COMPLEX array, dimension (LDAB,N) */
/* > Details of the LU factorization of the band matrix A, as */
/* > computed by CGBTRF. U is stored as an upper triangular band */
/* > matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
/* > the multipliers used during the factorization are stored in */
/* > rows KL+KU+2 to 2*KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[in] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > The pivot indices; for 1 <= i <= N, row i of the matrix was */
/* > interchanged with row IPIV(i). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,NRHS) */
/* > On entry, the right hand side matrix B. */
/* > On exit, the solution matrix X. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGBcomputational */

/* ===================================================================== */
/* Subroutine */ int cgbtrs_(char *trans, integer *n, integer *kl, integer *
ku, integer *nrhs, complex *ab, integer *ldab, integer *ipiv, complex
*b, integer *ldb, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, b_dim1, b_offset, i__1, i__2, i__3;
complex q__1;

/* Local variables */
integer i__, j, l;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *), cgeru_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *),
cswap_(integer *, complex *, integer *, complex *, integer *),
ctbsv_(char *, char *, char *, integer *, integer *, complex *,
integer *, complex *, integer *);
logical lnoti;
integer kd, lm;
extern /* Subroutine */ int clacgv_(integer *, complex *, integer *),
xerbla_(char *, integer *, ftnlen);
logical notran;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1 * 1;
ab -= ab_offset;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;

/* Function Body */
*info = 0;
notran = lsame_(trans, "N");
if (! notran && ! lsame_(trans, "T") && ! lsame_(
trans, "C")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*kl < 0) {
*info = -3;
} else if (*ku < 0) {
*info = -4;
} else if (*nrhs < 0) {
*info = -5;
} else if (*ldab < (*kl << 1) + *ku + 1) {
*info = -7;
} else if (*ldb < f2cmax(1,*n)) {
*info = -10;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGBTRS", &i__1, (ftnlen)6);
return 0;
}

/* Quick return if possible */

if (*n == 0 || *nrhs == 0) {
return 0;
}

kd = *ku + *kl + 1;
lnoti = *kl > 0;

if (notran) {

/* Solve A*X = B. */

/* Solve L*X = B, overwriting B with X. */

/* L is represented as a product of permutations and unit lower */
/* triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1), */
/* where each transformation L(i) is a rank-one modification of */
/* the identity matrix. */

if (lnoti) {
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__2 = *kl, i__3 = *n - j;
lm = f2cmin(i__2,i__3);
l = ipiv[j];
if (l != j) {
cswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
}
q__1.r = -1.f, q__1.i = 0.f;
cgeru_(&lm, nrhs, &q__1, &ab[kd + 1 + j * ab_dim1], &c__1, &b[
j + b_dim1], ldb, &b[j + 1 + b_dim1], ldb);
/* L10: */
}
}

i__1 = *nrhs;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Solve U*X = B, overwriting B with X. */

i__2 = *kl + *ku;
ctbsv_("Upper", "No transpose", "Non-unit", n, &i__2, &ab[
ab_offset], ldab, &b[i__ * b_dim1 + 1], &c__1);
/* L20: */
}

} else if (lsame_(trans, "T")) {

/* Solve A**T * X = B. */

i__1 = *nrhs;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Solve U**T * X = B, overwriting B with X. */

i__2 = *kl + *ku;
ctbsv_("Upper", "Transpose", "Non-unit", n, &i__2, &ab[ab_offset],
ldab, &b[i__ * b_dim1 + 1], &c__1);
/* L30: */
}

/* Solve L**T * X = B, overwriting B with X. */

if (lnoti) {
for (j = *n - 1; j >= 1; --j) {
/* Computing MIN */
i__1 = *kl, i__2 = *n - j;
lm = f2cmin(i__1,i__2);
q__1.r = -1.f, q__1.i = 0.f;
cgemv_("Transpose", &lm, nrhs, &q__1, &b[j + 1 + b_dim1], ldb,
&ab[kd + 1 + j * ab_dim1], &c__1, &c_b1, &b[j +
b_dim1], ldb);
l = ipiv[j];
if (l != j) {
cswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
}
/* L40: */
}
}

} else {

/* Solve A**H * X = B. */

i__1 = *nrhs;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Solve U**H * X = B, overwriting B with X. */

i__2 = *kl + *ku;
ctbsv_("Upper", "Conjugate transpose", "Non-unit", n, &i__2, &ab[
ab_offset], ldab, &b[i__ * b_dim1 + 1], &c__1);
/* L50: */
}

/* Solve L**H * X = B, overwriting B with X. */

if (lnoti) {
for (j = *n - 1; j >= 1; --j) {
/* Computing MIN */
i__1 = *kl, i__2 = *n - j;
lm = f2cmin(i__1,i__2);
clacgv_(nrhs, &b[j + b_dim1], ldb);
q__1.r = -1.f, q__1.i = 0.f;
cgemv_("Conjugate transpose", &lm, nrhs, &q__1, &b[j + 1 +
b_dim1], ldb, &ab[kd + 1 + j * ab_dim1], &c__1, &c_b1,
&b[j + b_dim1], ldb);
clacgv_(nrhs, &b[j + b_dim1], ldb);
l = ipiv[j];
if (l != j) {
cswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
}
/* L60: */
}
}
}
return 0;

/* End of CGBTRS */

} /* cgbtrs_ */


+ 696
- 0
lapack-netlib/SRC/cgebak.c View File

@@ -0,0 +1,696 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGEBAK */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEBAK + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgebak.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgebak.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgebak.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEBAK( JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, */
/* INFO ) */

/* CHARACTER JOB, SIDE */
/* INTEGER IHI, ILO, INFO, LDV, M, N */
/* REAL SCALE( * ) */
/* COMPLEX V( LDV, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEBAK forms the right or left eigenvectors of a complex general */
/* > matrix by backward transformation on the computed eigenvectors of the */
/* > balanced matrix output by CGEBAL. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] JOB */
/* > \verbatim */
/* > JOB is CHARACTER*1 */
/* > Specifies the type of backward transformation required: */
/* > = 'N': do nothing, return immediately; */
/* > = 'P': do backward transformation for permutation only; */
/* > = 'S': do backward transformation for scaling only; */
/* > = 'B': do backward transformations for both permutation and */
/* > scaling. */
/* > JOB must be the same as the argument JOB supplied to CGEBAL. */
/* > \endverbatim */
/* > */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'R': V contains right eigenvectors; */
/* > = 'L': V contains left eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of rows of the matrix V. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] ILO */
/* > \verbatim */
/* > ILO is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[in] IHI */
/* > \verbatim */
/* > IHI is INTEGER */
/* > The integers ILO and IHI determined by CGEBAL. */
/* > 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* > \endverbatim */
/* > */
/* > \param[in] SCALE */
/* > \verbatim */
/* > SCALE is REAL array, dimension (N) */
/* > Details of the permutation and scaling factors, as returned */
/* > by CGEBAL. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of columns of the matrix V. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] V */
/* > \verbatim */
/* > V is COMPLEX array, dimension (LDV,M) */
/* > On entry, the matrix of right or left eigenvectors to be */
/* > transformed, as returned by CHSEIN or CTREVC. */
/* > On exit, V is overwritten by the transformed eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV */
/* > \verbatim */
/* > LDV is INTEGER */
/* > The leading dimension of the array V. LDV >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* ===================================================================== */
/* Subroutine */ int cgebak_(char *job, char *side, integer *n, integer *ilo,
integer *ihi, real *scale, integer *m, complex *v, integer *ldv,
integer *info)
{
/* System generated locals */
integer v_dim1, v_offset, i__1;

/* Local variables */
integer i__, k;
real s;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
complex *, integer *);
logical leftv;
integer ii;
extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
*), xerbla_(char *, integer *, ftnlen);
logical rightv;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Decode and Test the input parameters */

/* Parameter adjustments */
--scale;
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;

/* Function Body */
rightv = lsame_(side, "R");
leftv = lsame_(side, "L");

*info = 0;
if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
&& ! lsame_(job, "B")) {
*info = -1;
} else if (! rightv && ! leftv) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ilo < 1 || *ilo > f2cmax(1,*n)) {
*info = -4;
} else if (*ihi < f2cmin(*ilo,*n) || *ihi > *n) {
*info = -5;
} else if (*m < 0) {
*info = -7;
} else if (*ldv < f2cmax(1,*n)) {
*info = -9;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEBAK", &i__1, (ftnlen)6);
return 0;
}

/* Quick return if possible */

if (*n == 0) {
return 0;
}
if (*m == 0) {
return 0;
}
if (lsame_(job, "N")) {
return 0;
}

if (*ilo == *ihi) {
goto L30;
}

/* Backward balance */

if (lsame_(job, "S") || lsame_(job, "B")) {

if (rightv) {
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
s = scale[i__];
csscal_(m, &s, &v[i__ + v_dim1], ldv);
/* L10: */
}
}

if (leftv) {
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
s = 1.f / scale[i__];
csscal_(m, &s, &v[i__ + v_dim1], ldv);
/* L20: */
}
}

}

/* Backward permutation */

/* For I = ILO-1 step -1 until 1, */
/* IHI+1 step 1 until N do -- */

L30:
if (lsame_(job, "P") || lsame_(job, "B")) {
if (rightv) {
i__1 = *n;
for (ii = 1; ii <= i__1; ++ii) {
i__ = ii;
if (i__ >= *ilo && i__ <= *ihi) {
goto L40;
}
if (i__ < *ilo) {
i__ = *ilo - ii;
}
k = scale[i__];
if (k == i__) {
goto L40;
}
cswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
L40:
;
}
}

if (leftv) {
i__1 = *n;
for (ii = 1; ii <= i__1; ++ii) {
i__ = ii;
if (i__ >= *ilo && i__ <= *ihi) {
goto L50;
}
if (i__ < *ilo) {
i__ = *ilo - ii;
}
k = scale[i__];
if (k == i__) {
goto L50;
}
cswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
L50:
;
}
}
}

return 0;

/* End of CGEBAK */

} /* cgebak_ */


+ 864
- 0
lapack-netlib/SRC/cgebal.c View File

@@ -0,0 +1,864 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b CGEBAL */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEBAL + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgebal.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgebal.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgebal.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO ) */

/* CHARACTER JOB */
/* INTEGER IHI, ILO, INFO, LDA, N */
/* REAL SCALE( * ) */
/* COMPLEX A( LDA, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEBAL balances a general complex matrix A. This involves, first, */
/* > permuting A by a similarity transformation to isolate eigenvalues */
/* > in the first 1 to ILO-1 and last IHI+1 to N elements on the */
/* > diagonal; and second, applying a diagonal similarity transformation */
/* > to rows and columns ILO to IHI to make the rows and columns as */
/* > close in norm as possible. Both steps are optional. */
/* > */
/* > Balancing may reduce the 1-norm of the matrix, and improve the */
/* > accuracy of the computed eigenvalues and/or eigenvectors. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] JOB */
/* > \verbatim */
/* > JOB is CHARACTER*1 */
/* > Specifies the operations to be performed on A: */
/* > = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0 */
/* > for i = 1,...,N; */
/* > = 'P': permute only; */
/* > = 'S': scale only; */
/* > = 'B': both permute and scale. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the input matrix A. */
/* > On exit, A is overwritten by the balanced matrix. */
/* > If JOB = 'N', A is not referenced. */
/* > See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] ILO */
/* > \verbatim */
/* > ILO is INTEGER */
/* > \endverbatim */
/* > \param[out] IHI */
/* > \verbatim */
/* > IHI is INTEGER */
/* > ILO and IHI are set to integers such that on exit */
/* > A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. */
/* > If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
/* > \endverbatim */
/* > */
/* > \param[out] SCALE */
/* > \verbatim */
/* > SCALE is REAL array, dimension (N) */
/* > Details of the permutations and scaling factors applied to */
/* > A. If P(j) is the index of the row and column interchanged */
/* > with row and column j and D(j) is the scaling factor */
/* > applied to row and column j, then */
/* > SCALE(j) = P(j) for j = 1,...,ILO-1 */
/* > = D(j) for j = ILO,...,IHI */
/* > = P(j) for j = IHI+1,...,N. */
/* > The order in which the interchanges are made is N to IHI+1, */
/* > then 1 to ILO-1. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The permutations consist of row and column interchanges which put */
/* > the matrix in the form */
/* > */
/* > ( T1 X Y ) */
/* > P A P = ( 0 B Z ) */
/* > ( 0 0 T2 ) */
/* > */
/* > where T1 and T2 are upper triangular matrices whose eigenvalues lie */
/* > along the diagonal. The column indices ILO and IHI mark the starting */
/* > and ending columns of the submatrix B. Balancing consists of applying */
/* > a diagonal similarity transformation inv(D) * B * D to make the */
/* > 1-norms of each row of B and its corresponding column nearly equal. */
/* > The output matrix is */
/* > */
/* > ( T1 X*D Y ) */
/* > ( 0 inv(D)*B*D inv(D)*Z ). */
/* > ( 0 0 T2 ) */
/* > */
/* > Information about the permutations P and the diagonal matrix D is */
/* > returned in the vector SCALE. */
/* > */
/* > This subroutine is based on the EISPACK routine CBAL. */
/* > */
/* > Modified by Tzu-Yi Chen, Computer Science Division, University of */
/* > California at Berkeley, USA */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgebal_(char *job, integer *n, complex *a, integer *lda,
integer *ilo, integer *ihi, real *scale, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
real r__1, r__2;

/* Local variables */
integer iexc;
real c__, f, g;
integer i__, j, k, l, m;
real r__, s;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
complex *, integer *);
real sfmin1, sfmin2, sfmax1, sfmax2, ca;
extern real scnrm2_(integer *, complex *, integer *);
real ra;
extern integer icamax_(integer *, complex *, integer *);
extern real slamch_(char *);
extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
*), xerbla_(char *, integer *, ftnlen);
extern logical sisnan_(real *);
logical noconv;
integer ica, ira;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--scale;

/* Function Body */
*info = 0;
if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
&& ! lsame_(job, "B")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*n)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEBAL", &i__1, (ftnlen)6);
return 0;
}

k = 1;
l = *n;

if (*n == 0) {
goto L210;
}

if (lsame_(job, "N")) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
scale[i__] = 1.f;
/* L10: */
}
goto L210;
}

if (lsame_(job, "S")) {
goto L120;
}

/* Permutation to isolate eigenvalues if possible */

goto L50;

/* Row and column exchange. */

L20:
scale[m] = (real) j;
if (j == m) {
goto L30;
}

cswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
i__1 = *n - k + 1;
cswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);

L30:
switch (iexc) {
case 1: goto L40;
case 2: goto L80;
}

/* Search for rows isolating an eigenvalue and push them down. */

L40:
if (l == 1) {
goto L210;
}
--l;

L50:
for (j = l; j >= 1; --j) {

i__1 = l;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ == j) {
goto L60;
}
i__2 = j + i__ * a_dim1;
if (a[i__2].r != 0.f || r_imag(&a[j + i__ * a_dim1]) != 0.f) {
goto L70;
}
L60:
;
}

m = l;
iexc = 1;
goto L20;
L70:
;
}

goto L90;

/* Search for columns isolating an eigenvalue and push them left. */

L80:
++k;

L90:
i__1 = l;
for (j = k; j <= i__1; ++j) {

i__2 = l;
for (i__ = k; i__ <= i__2; ++i__) {
if (i__ == j) {
goto L100;
}
i__3 = i__ + j * a_dim1;
if (a[i__3].r != 0.f || r_imag(&a[i__ + j * a_dim1]) != 0.f) {
goto L110;
}
L100:
;
}

m = k;
iexc = 2;
goto L20;
L110:
;
}

L120:
i__1 = l;
for (i__ = k; i__ <= i__1; ++i__) {
scale[i__] = 1.f;
/* L130: */
}

if (lsame_(job, "P")) {
goto L210;
}

/* Balance the submatrix in rows K to L. */

/* Iterative loop for norm reduction */

sfmin1 = slamch_("S") / slamch_("P");
sfmax1 = 1.f / sfmin1;
sfmin2 = sfmin1 * 2.f;
sfmax2 = 1.f / sfmin2;
L140:
noconv = FALSE_;

i__1 = l;
for (i__ = k; i__ <= i__1; ++i__) {

i__2 = l - k + 1;
c__ = scnrm2_(&i__2, &a[k + i__ * a_dim1], &c__1);
i__2 = l - k + 1;
r__ = scnrm2_(&i__2, &a[i__ + k * a_dim1], lda);
ica = icamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
ca = c_abs(&a[ica + i__ * a_dim1]);
i__2 = *n - k + 1;
ira = icamax_(&i__2, &a[i__ + k * a_dim1], lda);
ra = c_abs(&a[i__ + (ira + k - 1) * a_dim1]);

/* Guard against zero C or R due to underflow. */

if (c__ == 0.f || r__ == 0.f) {
goto L200;
}
g = r__ / 2.f;
f = 1.f;
s = c__ + r__;
L160:
/* Computing MAX */
r__1 = f2cmax(f,c__);
/* Computing MIN */
r__2 = f2cmin(r__,g);
if (c__ >= g || f2cmax(r__1,ca) >= sfmax2 || f2cmin(r__2,ra) <= sfmin2) {
goto L170;
}
r__1 = c__ + f + ca + r__ + g + ra;
if (sisnan_(&r__1)) {

/* Exit if NaN to avoid infinite loop */

*info = -3;
i__2 = -(*info);
xerbla_("CGEBAL", &i__2, (ftnlen)6);
return 0;
}
f *= 2.f;
c__ *= 2.f;
ca *= 2.f;
r__ /= 2.f;
g /= 2.f;
ra /= 2.f;
goto L160;

L170:
g = c__ / 2.f;
L180:
/* Computing MIN */
r__1 = f2cmin(f,c__), r__1 = f2cmin(r__1,g);
if (g < r__ || f2cmax(r__,ra) >= sfmax2 || f2cmin(r__1,ca) <= sfmin2) {
goto L190;
}
f /= 2.f;
c__ /= 2.f;
g /= 2.f;
ca /= 2.f;
r__ *= 2.f;
ra *= 2.f;
goto L180;

/* Now balance. */

L190:
if (c__ + r__ >= s * .95f) {
goto L200;
}
if (f < 1.f && scale[i__] < 1.f) {
if (f * scale[i__] <= sfmin1) {
goto L200;
}
}
if (f > 1.f && scale[i__] > 1.f) {
if (scale[i__] >= sfmax1 / f) {
goto L200;
}
}
g = 1.f / f;
scale[i__] *= f;
noconv = TRUE_;

i__2 = *n - k + 1;
csscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
csscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);

L200:
;
}

if (noconv) {
goto L140;
}

L210:
*ilo = k;
*ihi = l;

return 0;

/* End of CGEBAL */

} /* cgebal_ */


+ 805
- 0
lapack-netlib/SRC/cgebd2.c View File

@@ -0,0 +1,805 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b CGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm. */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEBD2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgebd2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgebd2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgebd2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* REAL D( * ), E( * ) */
/* COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEBD2 reduces a complex general m by n matrix A to upper or lower */
/* > real bidiagonal form B by a unitary transformation: Q**H * A * P = B. */
/* > */
/* > If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows in the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns in the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the m by n general matrix to be reduced. */
/* > On exit, */
/* > if m >= n, the diagonal and the first superdiagonal are */
/* > overwritten with the upper bidiagonal matrix B; the */
/* > elements below the diagonal, with the array TAUQ, represent */
/* > the unitary matrix Q as a product of elementary */
/* > reflectors, and the elements above the first superdiagonal, */
/* > with the array TAUP, represent the unitary matrix P as */
/* > a product of elementary reflectors; */
/* > if m < n, the diagonal and the first subdiagonal are */
/* > overwritten with the lower bidiagonal matrix B; the */
/* > elements below the first subdiagonal, with the array TAUQ, */
/* > represent the unitary matrix Q as a product of */
/* > elementary reflectors, and the elements above the diagonal, */
/* > with the array TAUP, represent the unitary matrix P as */
/* > a product of elementary reflectors. */
/* > See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] D */
/* > \verbatim */
/* > D is REAL array, dimension (f2cmin(M,N)) */
/* > The diagonal elements of the bidiagonal matrix B: */
/* > D(i) = A(i,i). */
/* > \endverbatim */
/* > */
/* > \param[out] E */
/* > \verbatim */
/* > E is REAL array, dimension (f2cmin(M,N)-1) */
/* > The off-diagonal elements of the bidiagonal matrix B: */
/* > if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */
/* > if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */
/* > \endverbatim */
/* > */
/* > \param[out] TAUQ */
/* > \verbatim */
/* > TAUQ is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors which */
/* > represent the unitary matrix Q. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[out] TAUP */
/* > \verbatim */
/* > TAUP is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors which */
/* > represent the unitary matrix P. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (f2cmax(M,N)) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date June 2017 */

/* > \ingroup complexGEcomputational */
/* @precisions normal c -> s d z */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrices Q and P are represented as products of elementary */
/* > reflectors: */
/* > */
/* > If m >= n, */
/* > */
/* > Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */
/* > */
/* > Each H(i) and G(i) has the form: */
/* > */
/* > H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H */
/* > */
/* > where tauq and taup are complex scalars, and v and u are complex */
/* > vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in */
/* > A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in */
/* > A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
/* > */
/* > If m < n, */
/* > */
/* > Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */
/* > */
/* > Each H(i) and G(i) has the form: */
/* > */
/* > H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H */
/* > */
/* > where tauq and taup are complex scalars, v and u are complex vectors; */
/* > v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */
/* > u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */
/* > tauq is stored in TAUQ(i) and taup in TAUP(i). */
/* > */
/* > The contents of A on exit are illustrated by the following examples: */
/* > */
/* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
/* > */
/* > ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */
/* > ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */
/* > ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */
/* > ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */
/* > ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */
/* > ( v1 v2 v3 v4 v5 ) */
/* > */
/* > where d and e denote diagonal and off-diagonal elements of B, vi */
/* > denotes an element of the vector defining H(i), and ui an element of */
/* > the vector defining G(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgebd2_(integer *m, integer *n, complex *a, integer *lda,
real *d__, real *e, complex *tauq, complex *taup, complex *work,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
complex q__1;

/* Local variables */
integer i__;
complex alpha;
extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
, integer *, complex *, complex *, integer *, complex *),
clarfg_(integer *, complex *, complex *, integer *, complex *),
clacgv_(integer *, complex *, integer *), xerbla_(char *, integer
*, ftnlen);


/* -- LAPACK computational routine (version 3.7.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2017 */


/* ===================================================================== */


/* Test the input parameters */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--d__;
--e;
--tauq;
--taup;
--work;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info < 0) {
i__1 = -(*info);
xerbla_("CGEBD2", &i__1, (ftnlen)6);
return 0;
}

if (*m >= *n) {

/* Reduce to upper bidiagonal form */

i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */

i__2 = i__ + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = *m - i__ + 1;
/* Computing MIN */
i__3 = i__ + 1;
clarfg_(&i__2, &alpha, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1, &
tauq[i__]);
i__2 = i__;
d__[i__2] = alpha.r;
i__2 = i__ + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;

/* Apply H(i)**H to A(i:m,i+1:n) from the left */

if (i__ < *n) {
i__2 = *m - i__ + 1;
i__3 = *n - i__;
r_cnjg(&q__1, &tauq[i__]);
clarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
q__1, &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
}
i__2 = i__ + i__ * a_dim1;
i__3 = i__;
a[i__2].r = d__[i__3], a[i__2].i = 0.f;

if (i__ < *n) {

/* Generate elementary reflector G(i) to annihilate */
/* A(i,i+2:n) */

i__2 = *n - i__;
clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
i__2 = i__ + (i__ + 1) * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = *n - i__;
/* Computing MIN */
i__3 = i__ + 2;
clarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &
taup[i__]);
i__2 = i__;
e[i__2] = alpha.r;
i__2 = i__ + (i__ + 1) * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;

/* Apply G(i) to A(i+1:m,i+1:n) from the right */

i__2 = *m - i__;
i__3 = *n - i__;
clarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1],
lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1],
lda, &work[1]);
i__2 = *n - i__;
clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
i__2 = i__ + (i__ + 1) * a_dim1;
i__3 = i__;
a[i__2].r = e[i__3], a[i__2].i = 0.f;
} else {
i__2 = i__;
taup[i__2].r = 0.f, taup[i__2].i = 0.f;
}
/* L10: */
}
} else {

/* Reduce to lower bidiagonal form */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Generate elementary reflector G(i) to annihilate A(i,i+1:n) */

i__2 = *n - i__ + 1;
clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
i__2 = i__ + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = *n - i__ + 1;
/* Computing MIN */
i__3 = i__ + 1;
clarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &
taup[i__]);
i__2 = i__;
d__[i__2] = alpha.r;
i__2 = i__ + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;

/* Apply G(i) to A(i+1:m,i:n) from the right */

if (i__ < *m) {
i__2 = *m - i__;
i__3 = *n - i__ + 1;
clarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &
taup[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
}
i__2 = *n - i__ + 1;
clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
i__2 = i__ + i__ * a_dim1;
i__3 = i__;
a[i__2].r = d__[i__3], a[i__2].i = 0.f;

if (i__ < *m) {

/* Generate elementary reflector H(i) to annihilate */
/* A(i+2:m,i) */

i__2 = i__ + 1 + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = *m - i__;
/* Computing MIN */
i__3 = i__ + 2;
clarfg_(&i__2, &alpha, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1,
&tauq[i__]);
i__2 = i__;
e[i__2] = alpha.r;
i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;

/* Apply H(i)**H to A(i+1:m,i+1:n) from the left */

i__2 = *m - i__;
i__3 = *n - i__;
r_cnjg(&q__1, &tauq[i__]);
clarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &
c__1, &q__1, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &
work[1]);
i__2 = i__ + 1 + i__ * a_dim1;
i__3 = i__;
a[i__2].r = e[i__3], a[i__2].i = 0.f;
} else {
i__2 = i__;
tauq[i__2].r = 0.f, tauq[i__2].i = 0.f;
}
/* L20: */
}
}
return 0;

/* End of CGEBD2 */

} /* cgebd2_ */


+ 819
- 0
lapack-netlib/SRC/cgebrd.c View File

@@ -0,0 +1,819 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;

/* > \brief \b CGEBRD */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEBRD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgebrd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgebrd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgebrd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, */
/* INFO ) */

/* INTEGER INFO, LDA, LWORK, M, N */
/* REAL D( * ), E( * ) */
/* COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), */
/* $ WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEBRD reduces a general complex M-by-N matrix A to upper or lower */
/* > bidiagonal form B by a unitary transformation: Q**H * A * P = B. */
/* > */
/* > If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows in the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns in the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N general matrix to be reduced. */
/* > On exit, */
/* > if m >= n, the diagonal and the first superdiagonal are */
/* > overwritten with the upper bidiagonal matrix B; the */
/* > elements below the diagonal, with the array TAUQ, represent */
/* > the unitary matrix Q as a product of elementary */
/* > reflectors, and the elements above the first superdiagonal, */
/* > with the array TAUP, represent the unitary matrix P as */
/* > a product of elementary reflectors; */
/* > if m < n, the diagonal and the first subdiagonal are */
/* > overwritten with the lower bidiagonal matrix B; the */
/* > elements below the first subdiagonal, with the array TAUQ, */
/* > represent the unitary matrix Q as a product of */
/* > elementary reflectors, and the elements above the diagonal, */
/* > with the array TAUP, represent the unitary matrix P as */
/* > a product of elementary reflectors. */
/* > See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] D */
/* > \verbatim */
/* > D is REAL array, dimension (f2cmin(M,N)) */
/* > The diagonal elements of the bidiagonal matrix B: */
/* > D(i) = A(i,i). */
/* > \endverbatim */
/* > */
/* > \param[out] E */
/* > \verbatim */
/* > E is REAL array, dimension (f2cmin(M,N)-1) */
/* > The off-diagonal elements of the bidiagonal matrix B: */
/* > if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */
/* > if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */
/* > \endverbatim */
/* > */
/* > \param[out] TAUQ */
/* > \verbatim */
/* > TAUQ is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors which */
/* > represent the unitary matrix Q. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[out] TAUP */
/* > \verbatim */
/* > TAUP is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors which */
/* > represent the unitary matrix P. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The length of the array WORK. LWORK >= f2cmax(1,M,N). */
/* > For optimum performance LWORK >= (M+N)*NB, where NB */
/* > is the optimal blocksize. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date November 2017 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrices Q and P are represented as products of elementary */
/* > reflectors: */
/* > */
/* > If m >= n, */
/* > */
/* > Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */
/* > */
/* > Each H(i) and G(i) has the form: */
/* > */
/* > H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H */
/* > */
/* > where tauq and taup are complex scalars, and v and u are complex */
/* > vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in */
/* > A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in */
/* > A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
/* > */
/* > If m < n, */
/* > */
/* > Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */
/* > */
/* > Each H(i) and G(i) has the form: */
/* > */
/* > H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H */
/* > */
/* > where tauq and taup are complex scalars, and v and u are complex */
/* > vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in */
/* > A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in */
/* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
/* > */
/* > The contents of A on exit are illustrated by the following examples: */
/* > */
/* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
/* > */
/* > ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */
/* > ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */
/* > ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */
/* > ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */
/* > ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */
/* > ( v1 v2 v3 v4 v5 ) */
/* > */
/* > where d and e denote diagonal and off-diagonal elements of B, vi */
/* > denotes an element of the vector defining H(i), and ui an element of */
/* > the vector defining G(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgebrd_(integer *m, integer *n, complex *a, integer *lda,
real *d__, real *e, complex *tauq, complex *taup, complex *work,
integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
real r__1;
complex q__1;

/* Local variables */
integer i__, j;
extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
integer *, complex *, complex *, integer *, complex *, integer *,
complex *, complex *, integer *);
integer nbmin, iinfo, minmn;
extern /* Subroutine */ int cgebd2_(integer *, integer *, complex *,
integer *, real *, real *, complex *, complex *, complex *,
integer *);
integer nb;
extern /* Subroutine */ int clabrd_(integer *, integer *, integer *,
complex *, integer *, real *, real *, complex *, complex *,
complex *, integer *, complex *, integer *);
integer nx, ws;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer ldwrkx, ldwrky, lwkopt;
logical lquery;


/* -- LAPACK computational routine (version 3.8.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2017 */


/* ===================================================================== */


/* Test the input parameters */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--d__;
--e;
--tauq;
--taup;
--work;

/* Function Body */
*info = 0;
/* Computing MAX */
i__1 = 1, i__2 = ilaenv_(&c__1, "CGEBRD", " ", m, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
nb = f2cmax(i__1,i__2);
lwkopt = (*m + *n) * nb;
r__1 = (real) lwkopt;
work[1].r = r__1, work[1].i = 0.f;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = f2cmax(1,*m);
if (*lwork < f2cmax(i__1,*n) && ! lquery) {
*info = -10;
}
}
if (*info < 0) {
i__1 = -(*info);
xerbla_("CGEBRD", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

minmn = f2cmin(*m,*n);
if (minmn == 0) {
work[1].r = 1.f, work[1].i = 0.f;
return 0;
}

ws = f2cmax(*m,*n);
ldwrkx = *m;
ldwrky = *n;

if (nb > 1 && nb < minmn) {

/* Set the crossover point NX. */

/* Computing MAX */
i__1 = nb, i__2 = ilaenv_(&c__3, "CGEBRD", " ", m, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
nx = f2cmax(i__1,i__2);

/* Determine when to switch from blocked to unblocked code. */

if (nx < minmn) {
ws = (*m + *n) * nb;
if (*lwork < ws) {

/* Not enough work space for the optimal NB, consider using */
/* a smaller block size. */

nbmin = ilaenv_(&c__2, "CGEBRD", " ", m, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
if (*lwork >= (*m + *n) * nbmin) {
nb = *lwork / (*m + *n);
} else {
nb = 1;
nx = minmn;
}
}
}
} else {
nx = minmn;
}

i__1 = minmn - nx;
i__2 = nb;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {

/* Reduce rows and columns i:i+ib-1 to bidiagonal form and return */
/* the matrices X and Y which are needed to update the unreduced */
/* part of the matrix */

i__3 = *m - i__ + 1;
i__4 = *n - i__ + 1;
clabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[
i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx
* nb + 1], &ldwrky);

/* Update the trailing submatrix A(i+ib:m,i+ib:n), using */
/* an update of the form A := A - V*Y**H - X*U**H */

i__3 = *m - i__ - nb + 1;
i__4 = *n - i__ - nb + 1;
q__1.r = -1.f, q__1.i = 0.f;
cgemm_("No transpose", "Conjugate transpose", &i__3, &i__4, &nb, &
q__1, &a[i__ + nb + i__ * a_dim1], lda, &work[ldwrkx * nb +
nb + 1], &ldwrky, &c_b1, &a[i__ + nb + (i__ + nb) * a_dim1],
lda);
i__3 = *m - i__ - nb + 1;
i__4 = *n - i__ - nb + 1;
q__1.r = -1.f, q__1.i = 0.f;
cgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &q__1, &
work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &
c_b1, &a[i__ + nb + (i__ + nb) * a_dim1], lda);

/* Copy diagonal and off-diagonal elements of B back into A */

if (*m >= *n) {
i__3 = i__ + nb - 1;
for (j = i__; j <= i__3; ++j) {
i__4 = j + j * a_dim1;
i__5 = j;
a[i__4].r = d__[i__5], a[i__4].i = 0.f;
i__4 = j + (j + 1) * a_dim1;
i__5 = j;
a[i__4].r = e[i__5], a[i__4].i = 0.f;
/* L10: */
}
} else {
i__3 = i__ + nb - 1;
for (j = i__; j <= i__3; ++j) {
i__4 = j + j * a_dim1;
i__5 = j;
a[i__4].r = d__[i__5], a[i__4].i = 0.f;
i__4 = j + 1 + j * a_dim1;
i__5 = j;
a[i__4].r = e[i__5], a[i__4].i = 0.f;
/* L20: */
}
}
/* L30: */
}

/* Use unblocked code to reduce the remainder of the matrix */

i__2 = *m - i__ + 1;
i__1 = *n - i__ + 1;
cgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &
tauq[i__], &taup[i__], &work[1], &iinfo);
work[1].r = (real) ws, work[1].i = 0.f;
return 0;

/* End of CGEBRD */

} /* cgebrd_ */


+ 679
- 0
lapack-netlib/SRC/cgecon.c View File

@@ -0,0 +1,679 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b CGECON */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGECON + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgecon.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgecon.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgecon.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK, */
/* INFO ) */

/* CHARACTER NORM */
/* INTEGER INFO, LDA, N */
/* REAL ANORM, RCOND */
/* REAL RWORK( * ) */
/* COMPLEX A( LDA, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGECON estimates the reciprocal of the condition number of a general */
/* > complex matrix A, in either the 1-norm or the infinity-norm, using */
/* > the LU factorization computed by CGETRF. */
/* > */
/* > An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/* > condition number is computed as */
/* > RCOND = 1 / ( norm(A) * norm(inv(A)) ). */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] NORM */
/* > \verbatim */
/* > NORM is CHARACTER*1 */
/* > Specifies whether the 1-norm condition number or the */
/* > infinity-norm condition number is required: */
/* > = '1' or 'O': 1-norm; */
/* > = 'I': Infinity-norm. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > The factors L and U from the factorization A = P*L*U */
/* > as computed by CGETRF. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] ANORM */
/* > \verbatim */
/* > ANORM is REAL */
/* > If NORM = '1' or 'O', the 1-norm of the original matrix A. */
/* > If NORM = 'I', the infinity-norm of the original matrix A. */
/* > \endverbatim */
/* > */
/* > \param[out] RCOND */
/* > \verbatim */
/* > RCOND is REAL */
/* > The reciprocal of the condition number of the matrix A, */
/* > computed as RCOND = 1/(norm(A) * norm(inv(A))). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* ===================================================================== */
/* Subroutine */ int cgecon_(char *norm, integer *n, complex *a, integer *lda,
real *anorm, real *rcond, complex *work, real *rwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1;
real r__1, r__2;

/* Local variables */
integer kase, kase1;
real scale;
extern logical lsame_(char *, char *);
integer isave[3];
extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real
*, integer *, integer *);
real sl;
integer ix;
extern integer icamax_(integer *, complex *, integer *);
extern real slamch_(char *);
real su;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
real ainvnm;
extern /* Subroutine */ int clatrs_(char *, char *, char *, char *,
integer *, complex *, integer *, complex *, real *, real *,
integer *), csrscl_(integer *,
real *, complex *, integer *);
logical onenrm;
char normin[1];
real smlnum;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--work;
--rwork;

/* Function Body */
*info = 0;
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
if (! onenrm && ! lsame_(norm, "I")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*n)) {
*info = -4;
} else if (*anorm < 0.f) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGECON", &i__1, (ftnlen)6);
return 0;
}

/* Quick return if possible */

*rcond = 0.f;
if (*n == 0) {
*rcond = 1.f;
return 0;
} else if (*anorm == 0.f) {
return 0;
}

smlnum = slamch_("Safe minimum");

/* Estimate the norm of inv(A). */

ainvnm = 0.f;
*(unsigned char *)normin = 'N';
if (onenrm) {
kase1 = 1;
} else {
kase1 = 2;
}
kase = 0;
L10:
clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
if (kase != 0) {
if (kase == kase1) {

/* Multiply by inv(L). */

clatrs_("Lower", "No transpose", "Unit", normin, n, &a[a_offset],
lda, &work[1], &sl, &rwork[1], info);

/* Multiply by inv(U). */

clatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[
a_offset], lda, &work[1], &su, &rwork[*n + 1], info);
} else {

/* Multiply by inv(U**H). */

clatrs_("Upper", "Conjugate transpose", "Non-unit", normin, n, &a[
a_offset], lda, &work[1], &su, &rwork[*n + 1], info);

/* Multiply by inv(L**H). */

clatrs_("Lower", "Conjugate transpose", "Unit", normin, n, &a[
a_offset], lda, &work[1], &sl, &rwork[1], info);
}

/* Divide X by 1/(SL*SU) if doing so will not cause overflow. */

scale = sl * su;
*(unsigned char *)normin = 'Y';
if (scale != 1.f) {
ix = icamax_(n, &work[1], &c__1);
i__1 = ix;
if (scale < ((r__1 = work[i__1].r, abs(r__1)) + (r__2 = r_imag(&
work[ix]), abs(r__2))) * smlnum || scale == 0.f) {
goto L20;
}
csrscl_(n, &scale, &work[1], &c__1);
}
goto L10;
}

/* Compute the estimate of the reciprocal condition number. */

if (ainvnm != 0.f) {
*rcond = 1.f / ainvnm / *anorm;
}

L20:
return 0;

/* End of CGECON */

} /* cgecon_ */


+ 758
- 0
lapack-netlib/SRC/cgeequ.c View File

@@ -0,0 +1,758 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGEEQU */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEEQU + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeequ.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeequ.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeequ.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEEQU( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, */
/* INFO ) */

/* INTEGER INFO, LDA, M, N */
/* REAL AMAX, COLCND, ROWCND */
/* REAL C( * ), R( * ) */
/* COMPLEX A( LDA, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEEQU computes row and column scalings intended to equilibrate an */
/* > M-by-N matrix A and reduce its condition number. R returns the row */
/* > scale factors and C the column scale factors, chosen to try to make */
/* > the largest element in each row and column of the matrix B with */
/* > elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
/* > */
/* > R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
/* > number and BIGNUM = largest safe number. Use of these scaling */
/* > factors is not guaranteed to reduce the condition number of A but */
/* > works well in practice. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > The M-by-N matrix whose equilibration factors are */
/* > to be computed. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] R */
/* > \verbatim */
/* > R is REAL array, dimension (M) */
/* > If INFO = 0 or INFO > M, R contains the row scale factors */
/* > for A. */
/* > \endverbatim */
/* > */
/* > \param[out] C */
/* > \verbatim */
/* > C is REAL array, dimension (N) */
/* > If INFO = 0, C contains the column scale factors for A. */
/* > \endverbatim */
/* > */
/* > \param[out] ROWCND */
/* > \verbatim */
/* > ROWCND is REAL */
/* > If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
/* > smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
/* > AMAX is neither too large nor too small, it is not worth */
/* > scaling by R. */
/* > \endverbatim */
/* > */
/* > \param[out] COLCND */
/* > \verbatim */
/* > COLCND is REAL */
/* > If INFO = 0, COLCND contains the ratio of the smallest */
/* > C(i) to the largest C(i). If COLCND >= 0.1, it is not */
/* > worth scaling by C. */
/* > \endverbatim */
/* > */
/* > \param[out] AMAX */
/* > \verbatim */
/* > AMAX is REAL */
/* > Absolute value of largest matrix element. If AMAX is very */
/* > close to overflow or very close to underflow, the matrix */
/* > should be scaled. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, and i is */
/* > <= M: the i-th row of A is exactly zero */
/* > > M: the (i-M)-th column of A is exactly zero */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* ===================================================================== */
/* Subroutine */ int cgeequ_(integer *m, integer *n, complex *a, integer *lda,
real *r__, real *c__, real *rowcnd, real *colcnd, real *amax,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
real r__1, r__2, r__3, r__4;

/* Local variables */
integer i__, j;
real rcmin, rcmax;
extern real slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
real bignum, smlnum;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--r__;
--c__;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEEQU", &i__1, (ftnlen)6);
return 0;
}

/* Quick return if possible */

if (*m == 0 || *n == 0) {
*rowcnd = 1.f;
*colcnd = 1.f;
*amax = 0.f;
return 0;
}

/* Get machine constants. */

smlnum = slamch_("S");
bignum = 1.f / smlnum;

/* Compute row scale factors. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
r__[i__] = 0.f;
/* L10: */
}

/* Find the maximum element in each row. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
i__3 = i__ + j * a_dim1;
r__3 = r__[i__], r__4 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 =
r_imag(&a[i__ + j * a_dim1]), abs(r__2));
r__[i__] = f2cmax(r__3,r__4);
/* L20: */
}
/* L30: */
}

/* Find the maximum and minimum scale factors. */

rcmin = bignum;
rcmax = 0.f;
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
r__1 = rcmax, r__2 = r__[i__];
rcmax = f2cmax(r__1,r__2);
/* Computing MIN */
r__1 = rcmin, r__2 = r__[i__];
rcmin = f2cmin(r__1,r__2);
/* L40: */
}
*amax = rcmax;

if (rcmin == 0.f) {

/* Find the first zero scale factor and return an error code. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (r__[i__] == 0.f) {
*info = i__;
return 0;
}
/* L50: */
}
} else {

/* Invert the scale factors. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MIN */
/* Computing MAX */
r__2 = r__[i__];
r__1 = f2cmax(r__2,smlnum);
r__[i__] = 1.f / f2cmin(r__1,bignum);
/* L60: */
}

/* Compute ROWCND = f2cmin(R(I)) / f2cmax(R(I)) */

*rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
}

/* Compute column scale factors */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
c__[j] = 0.f;
/* L70: */
}

/* Find the maximum element in each column, */
/* assuming the row scaling computed above. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
i__3 = i__ + j * a_dim1;
r__3 = c__[j], r__4 = ((r__1 = a[i__3].r, abs(r__1)) + (r__2 =
r_imag(&a[i__ + j * a_dim1]), abs(r__2))) * r__[i__];
c__[j] = f2cmax(r__3,r__4);
/* L80: */
}
/* L90: */
}

/* Find the maximum and minimum scale factors. */

rcmin = bignum;
rcmax = 0.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
r__1 = rcmin, r__2 = c__[j];
rcmin = f2cmin(r__1,r__2);
/* Computing MAX */
r__1 = rcmax, r__2 = c__[j];
rcmax = f2cmax(r__1,r__2);
/* L100: */
}

if (rcmin == 0.f) {

/* Find the first zero scale factor and return an error code. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (c__[j] == 0.f) {
*info = *m + j;
return 0;
}
/* L110: */
}
} else {

/* Invert the scale factors. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
/* Computing MAX */
r__2 = c__[j];
r__1 = f2cmax(r__2,smlnum);
c__[j] = 1.f / f2cmin(r__1,bignum);
/* L120: */
}

/* Compute COLCND = f2cmin(C(J)) / f2cmax(C(J)) */

*colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
}

return 0;

/* End of CGEEQU */

} /* cgeequ_ */


+ 778
- 0
lapack-netlib/SRC/cgeequb.c View File

@@ -0,0 +1,778 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGEEQUB */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEEQUB + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeequb
.f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeequb
.f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeequb
.f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEEQUB( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, */
/* INFO ) */

/* INTEGER INFO, LDA, M, N */
/* REAL AMAX, COLCND, ROWCND */
/* REAL C( * ), R( * ) */
/* COMPLEX A( LDA, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEEQUB computes row and column scalings intended to equilibrate an */
/* > M-by-N matrix A and reduce its condition number. R returns the row */
/* > scale factors and C the column scale factors, chosen to try to make */
/* > the largest element in each row and column of the matrix B with */
/* > elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most */
/* > the radix. */
/* > */
/* > R(i) and C(j) are restricted to be a power of the radix between */
/* > SMLNUM = smallest safe number and BIGNUM = largest safe number. Use */
/* > of these scaling factors is not guaranteed to reduce the condition */
/* > number of A but works well in practice. */
/* > */
/* > This routine differs from CGEEQU by restricting the scaling factors */
/* > to a power of the radix. Barring over- and underflow, scaling by */
/* > these factors introduces no additional rounding errors. However, the */
/* > scaled entries' magnitudes are no longer approximately 1 but lie */
/* > between sqrt(radix) and 1/sqrt(radix). */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > The M-by-N matrix whose equilibration factors are */
/* > to be computed. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] R */
/* > \verbatim */
/* > R is REAL array, dimension (M) */
/* > If INFO = 0 or INFO > M, R contains the row scale factors */
/* > for A. */
/* > \endverbatim */
/* > */
/* > \param[out] C */
/* > \verbatim */
/* > C is REAL array, dimension (N) */
/* > If INFO = 0, C contains the column scale factors for A. */
/* > \endverbatim */
/* > */
/* > \param[out] ROWCND */
/* > \verbatim */
/* > ROWCND is REAL */
/* > If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
/* > smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
/* > AMAX is neither too large nor too small, it is not worth */
/* > scaling by R. */
/* > \endverbatim */
/* > */
/* > \param[out] COLCND */
/* > \verbatim */
/* > COLCND is REAL */
/* > If INFO = 0, COLCND contains the ratio of the smallest */
/* > C(i) to the largest C(i). If COLCND >= 0.1, it is not */
/* > worth scaling by C. */
/* > \endverbatim */
/* > */
/* > \param[out] AMAX */
/* > \verbatim */
/* > AMAX is REAL */
/* > Absolute value of largest matrix element. If AMAX is very */
/* > close to overflow or very close to underflow, the matrix */
/* > should be scaled. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, and i is */
/* > <= M: the i-th row of A is exactly zero */
/* > > M: the (i-M)-th column of A is exactly zero */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* ===================================================================== */
/* Subroutine */ int cgeequb_(integer *m, integer *n, complex *a, integer *
lda, real *r__, real *c__, real *rowcnd, real *colcnd, real *amax,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
real r__1, r__2, r__3, r__4;

/* Local variables */
integer i__, j;
real radix, rcmin, rcmax;
extern real slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
real bignum, logrdx, smlnum;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters. */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--r__;
--c__;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEEQUB", &i__1, (ftnlen)7);
return 0;
}

/* Quick return if possible. */

if (*m == 0 || *n == 0) {
*rowcnd = 1.f;
*colcnd = 1.f;
*amax = 0.f;
return 0;
}

/* Get machine constants. Assume SMLNUM is a power of the radix. */

smlnum = slamch_("S");
bignum = 1.f / smlnum;
radix = slamch_("B");
logrdx = log(radix);

/* Compute row scale factors. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
r__[i__] = 0.f;
/* L10: */
}

/* Find the maximum element in each row. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
i__3 = i__ + j * a_dim1;
r__3 = r__[i__], r__4 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 =
r_imag(&a[i__ + j * a_dim1]), abs(r__2));
r__[i__] = f2cmax(r__3,r__4);
/* L20: */
}
/* L30: */
}
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (r__[i__] > 0.f) {
i__2 = (integer) (log(r__[i__]) / logrdx);
r__[i__] = pow_ri(&radix, &i__2);
}
}

/* Find the maximum and minimum scale factors. */

rcmin = bignum;
rcmax = 0.f;
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
r__1 = rcmax, r__2 = r__[i__];
rcmax = f2cmax(r__1,r__2);
/* Computing MIN */
r__1 = rcmin, r__2 = r__[i__];
rcmin = f2cmin(r__1,r__2);
/* L40: */
}
*amax = rcmax;

if (rcmin == 0.f) {

/* Find the first zero scale factor and return an error code. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (r__[i__] == 0.f) {
*info = i__;
return 0;
}
/* L50: */
}
} else {

/* Invert the scale factors. */

i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MIN */
/* Computing MAX */
r__2 = r__[i__];
r__1 = f2cmax(r__2,smlnum);
r__[i__] = 1.f / f2cmin(r__1,bignum);
/* L60: */
}

/* Compute ROWCND = f2cmin(R(I)) / f2cmax(R(I)). */

*rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
}

/* Compute column scale factors. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
c__[j] = 0.f;
/* L70: */
}

/* Find the maximum element in each column, */
/* assuming the row scaling computed above. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
i__3 = i__ + j * a_dim1;
r__3 = c__[j], r__4 = ((r__1 = a[i__3].r, abs(r__1)) + (r__2 =
r_imag(&a[i__ + j * a_dim1]), abs(r__2))) * r__[i__];
c__[j] = f2cmax(r__3,r__4);
/* L80: */
}
if (c__[j] > 0.f) {
i__2 = (integer) (log(c__[j]) / logrdx);
c__[j] = pow_ri(&radix, &i__2);
}
/* L90: */
}

/* Find the maximum and minimum scale factors. */

rcmin = bignum;
rcmax = 0.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
r__1 = rcmin, r__2 = c__[j];
rcmin = f2cmin(r__1,r__2);
/* Computing MAX */
r__1 = rcmax, r__2 = c__[j];
rcmax = f2cmax(r__1,r__2);
/* L100: */
}

if (rcmin == 0.f) {

/* Find the first zero scale factor and return an error code. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (c__[j] == 0.f) {
*info = *m + j;
return 0;
}
/* L110: */
}
} else {

/* Invert the scale factors. */

i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
/* Computing MAX */
r__2 = c__[j];
r__1 = f2cmax(r__2,smlnum);
c__[j] = 1.f / f2cmin(r__1,bignum);
/* L120: */
}

/* Compute COLCND = f2cmin(C(J)) / f2cmax(C(J)). */

*colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
}

return 0;

/* End of CGEEQUB */

} /* cgeequb_ */


+ 876
- 0
lapack-netlib/SRC/cgees.c View File

@@ -0,0 +1,876 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;

/* > \brief <b> CGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f
or GE matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEES + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgees.f
"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgees.f
"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgees.f
"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS, */
/* LDVS, WORK, LWORK, RWORK, BWORK, INFO ) */

/* CHARACTER JOBVS, SORT */
/* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM */
/* LOGICAL BWORK( * ) */
/* REAL RWORK( * ) */
/* COMPLEX A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * ) */
/* LOGICAL SELECT */
/* EXTERNAL SELECT */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEES computes for an N-by-N complex nonsymmetric matrix A, the */
/* > eigenvalues, the Schur form T, and, optionally, the matrix of Schur */
/* > vectors Z. This gives the Schur factorization A = Z*T*(Z**H). */
/* > */
/* > Optionally, it also orders the eigenvalues on the diagonal of the */
/* > Schur form so that selected eigenvalues are at the top left. */
/* > The leading columns of Z then form an orthonormal basis for the */
/* > invariant subspace corresponding to the selected eigenvalues. */
/* > */
/* > A complex matrix is in Schur form if it is upper triangular. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] JOBVS */
/* > \verbatim */
/* > JOBVS is CHARACTER*1 */
/* > = 'N': Schur vectors are not computed; */
/* > = 'V': Schur vectors are computed. */
/* > \endverbatim */
/* > */
/* > \param[in] SORT */
/* > \verbatim */
/* > SORT is CHARACTER*1 */
/* > Specifies whether or not to order the eigenvalues on the */
/* > diagonal of the Schur form. */
/* > = 'N': Eigenvalues are not ordered: */
/* > = 'S': Eigenvalues are ordered (see SELECT). */
/* > \endverbatim */
/* > */
/* > \param[in] SELECT */
/* > \verbatim */
/* > SELECT is a LOGICAL FUNCTION of one COMPLEX argument */
/* > SELECT must be declared EXTERNAL in the calling subroutine. */
/* > If SORT = 'S', SELECT is used to select eigenvalues to order */
/* > to the top left of the Schur form. */
/* > IF SORT = 'N', SELECT is not referenced. */
/* > The eigenvalue W(j) is selected if SELECT(W(j)) is true. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the N-by-N matrix A. */
/* > On exit, A has been overwritten by its Schur form T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] SDIM */
/* > \verbatim */
/* > SDIM is INTEGER */
/* > If SORT = 'N', SDIM = 0. */
/* > If SORT = 'S', SDIM = number of eigenvalues for which */
/* > SELECT is true. */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is COMPLEX array, dimension (N) */
/* > W contains the computed eigenvalues, in the same order that */
/* > they appear on the diagonal of the output Schur form T. */
/* > \endverbatim */
/* > */
/* > \param[out] VS */
/* > \verbatim */
/* > VS is COMPLEX array, dimension (LDVS,N) */
/* > If JOBVS = 'V', VS contains the unitary matrix Z of Schur */
/* > vectors. */
/* > If JOBVS = 'N', VS is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVS */
/* > \verbatim */
/* > LDVS is INTEGER */
/* > The leading dimension of the array VS. LDVS >= 1; if */
/* > JOBVS = 'V', LDVS >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
/* > For good performance, LWORK must generally be larger. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] BWORK */
/* > \verbatim */
/* > BWORK is LOGICAL array, dimension (N) */
/* > Not referenced if SORT = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = i, and i is */
/* > <= N: the QR algorithm failed to compute all the */
/* > eigenvalues; elements 1:ILO-1 and i+1:N of W */
/* > contain those eigenvalues which have converged; */
/* > if JOBVS = 'V', VS contains the matrix which */
/* > reduces A to its partially converged Schur form. */
/* > = N+1: the eigenvalues could not be reordered because */
/* > some eigenvalues were too close to separate (the */
/* > problem is very ill-conditioned); */
/* > = N+2: after reordering, roundoff changed values of */
/* > some complex eigenvalues so that leading */
/* > eigenvalues in the Schur form no longer satisfy */
/* > SELECT = .TRUE.. This could also be caused by */
/* > underflow due to scaling. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEeigen */

/* ===================================================================== */
/* Subroutine */ int cgees_(char *jobvs, char *sort, L_fp select, integer *n,
complex *a, integer *lda, integer *sdim, complex *w, complex *vs,
integer *ldvs, complex *work, integer *lwork, real *rwork, logical *
bwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2;

/* Local variables */
integer ibal;
real anrm;
integer ierr, itau, iwrk, i__;
real s;
integer icond, ieval;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
complex *, integer *), cgebak_(char *, char *, integer *, integer
*, integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *,
integer *, integer *, real *, integer *), slabad_(real *,
real *);
logical scalea;
extern real clange_(char *, integer *, integer *, complex *, integer *,
real *);
real cscale;
extern /* Subroutine */ int cgehrd_(integer *, integer *, integer *,
complex *, integer *, complex *, complex *, integer *, integer *),
clascl_(char *, integer *, integer *, real *, real *, integer *,
integer *, complex *, integer *, integer *);
extern real slamch_(char *);
extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
*, integer *, complex *, integer *), xerbla_(char *,
integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
real bignum;
extern /* Subroutine */ int chseqr_(char *, char *, integer *, integer *,
integer *, complex *, integer *, complex *, complex *, integer *,
complex *, integer *, integer *), cunghr_(integer
*, integer *, integer *, complex *, integer *, complex *, complex
*, integer *, integer *), ctrsen_(char *, char *, logical *,
integer *, complex *, integer *, complex *, integer *, complex *,
integer *, real *, real *, complex *, integer *, integer *);
integer minwrk, maxwrk;
real smlnum;
integer hswork;
logical wantst, lquery, wantvs;
integer ihi, ilo;
real dum[1], eps, sep;


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--w;
vs_dim1 = *ldvs;
vs_offset = 1 + vs_dim1 * 1;
vs -= vs_offset;
--work;
--rwork;
--bwork;

/* Function Body */
*info = 0;
lquery = *lwork == -1;
wantvs = lsame_(jobvs, "V");
wantst = lsame_(sort, "S");
if (! wantvs && ! lsame_(jobvs, "N")) {
*info = -1;
} else if (! wantst && ! lsame_(sort, "N")) {
*info = -2;
} else if (*n < 0) {
*info = -4;
} else if (*lda < f2cmax(1,*n)) {
*info = -6;
} else if (*ldvs < 1 || wantvs && *ldvs < *n) {
*info = -10;
}

/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* CWorkspace refers to complex workspace, and RWorkspace to real */
/* workspace. NB refers to the optimal block size for the */
/* immediately following subroutine, as returned by ILAENV. */
/* HSWORK refers to the workspace preferred by CHSEQR, as */
/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/* the worst case.) */

if (*info == 0) {
if (*n == 0) {
minwrk = 1;
maxwrk = 1;
} else {
maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
c__0, (ftnlen)6, (ftnlen)1);
minwrk = *n << 1;

chseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[
vs_offset], ldvs, &work[1], &c_n1, &ieval);
hswork = work[1].r;

if (! wantvs) {
maxwrk = f2cmax(maxwrk,hswork);
} else {
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
" ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
maxwrk = f2cmax(i__1,i__2);
maxwrk = f2cmax(maxwrk,hswork);
}
}
work[1].r = (real) maxwrk, work[1].i = 0.f;

if (*lwork < minwrk && ! lquery) {
*info = -12;
}
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEES ", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

if (*n == 0) {
*sdim = 0;
return 0;
}

/* Get machine constants */

eps = slamch_("P");
smlnum = slamch_("S");
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);
smlnum = sqrt(smlnum) / eps;
bignum = 1.f / smlnum;

/* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */

anrm = clange_("M", n, n, &a[a_offset], lda, dum);
scalea = FALSE_;
if (anrm > 0.f && anrm < smlnum) {
scalea = TRUE_;
cscale = smlnum;
} else if (anrm > bignum) {
scalea = TRUE_;
cscale = bignum;
}
if (scalea) {
clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
ierr);
}

/* Permute the matrix to make it more nearly triangular */
/* (CWorkspace: none) */
/* (RWorkspace: need N) */

ibal = 1;
cgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);

/* Reduce to upper Hessenberg form */
/* (CWorkspace: need 2*N, prefer N+N*NB) */
/* (RWorkspace: none) */

itau = 1;
iwrk = *n + itau;
i__1 = *lwork - iwrk + 1;
cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
&ierr);

if (wantvs) {

/* Copy Householder vectors to VS */

clacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
;

/* Generate unitary matrix in VS */
/* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/* (RWorkspace: none) */

i__1 = *lwork - iwrk + 1;
cunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
&i__1, &ierr);
}

*sdim = 0;

/* Perform QR iteration, accumulating Schur vectors in VS if desired */
/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/* (RWorkspace: none) */

iwrk = itau;
i__1 = *lwork - iwrk + 1;
chseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[
vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
if (ieval > 0) {
*info = ieval;
}

/* Sort eigenvalues if desired */

if (wantst && *info == 0) {
if (scalea) {
clascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, &
ierr);
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
bwork[i__] = (*select)(&w[i__]);
/* L10: */
}

/* Reorder eigenvalues and transform Schur vectors */
/* (CWorkspace: none) */
/* (RWorkspace: none) */

i__1 = *lwork - iwrk + 1;
ctrsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
ldvs, &w[1], sdim, &s, &sep, &work[iwrk], &i__1, &icond);
}

if (wantvs) {

/* Undo balancing */
/* (CWorkspace: none) */
/* (RWorkspace: need N) */

cgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset],
ldvs, &ierr);
}

if (scalea) {

/* Undo scaling for the Schur form of A */

clascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
ierr);
i__1 = *lda + 1;
ccopy_(n, &a[a_offset], &i__1, &w[1], &c__1);
}

work[1].r = (real) maxwrk, work[1].i = 0.f;
return 0;

/* End of CGEES */

} /* cgees_ */


+ 958
- 0
lapack-netlib/SRC/cgeesx.c View File

@@ -0,0 +1,958 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;

/* > \brief <b> CGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
for GE matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEESX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeesx.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeesx.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeesx.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W, */
/* VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK, */
/* BWORK, INFO ) */

/* CHARACTER JOBVS, SENSE, SORT */
/* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM */
/* REAL RCONDE, RCONDV */
/* LOGICAL BWORK( * ) */
/* REAL RWORK( * ) */
/* COMPLEX A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * ) */
/* LOGICAL SELECT */
/* EXTERNAL SELECT */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEESX computes for an N-by-N complex nonsymmetric matrix A, the */
/* > eigenvalues, the Schur form T, and, optionally, the matrix of Schur */
/* > vectors Z. This gives the Schur factorization A = Z*T*(Z**H). */
/* > */
/* > Optionally, it also orders the eigenvalues on the diagonal of the */
/* > Schur form so that selected eigenvalues are at the top left; */
/* > computes a reciprocal condition number for the average of the */
/* > selected eigenvalues (RCONDE); and computes a reciprocal condition */
/* > number for the right invariant subspace corresponding to the */
/* > selected eigenvalues (RCONDV). The leading columns of Z form an */
/* > orthonormal basis for this invariant subspace. */
/* > */
/* > For further explanation of the reciprocal condition numbers RCONDE */
/* > and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */
/* > these quantities are called s and sep respectively). */
/* > */
/* > A complex matrix is in Schur form if it is upper triangular. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] JOBVS */
/* > \verbatim */
/* > JOBVS is CHARACTER*1 */
/* > = 'N': Schur vectors are not computed; */
/* > = 'V': Schur vectors are computed. */
/* > \endverbatim */
/* > */
/* > \param[in] SORT */
/* > \verbatim */
/* > SORT is CHARACTER*1 */
/* > Specifies whether or not to order the eigenvalues on the */
/* > diagonal of the Schur form. */
/* > = 'N': Eigenvalues are not ordered; */
/* > = 'S': Eigenvalues are ordered (see SELECT). */
/* > \endverbatim */
/* > */
/* > \param[in] SELECT */
/* > \verbatim */
/* > SELECT is a LOGICAL FUNCTION of one COMPLEX argument */
/* > SELECT must be declared EXTERNAL in the calling subroutine. */
/* > If SORT = 'S', SELECT is used to select eigenvalues to order */
/* > to the top left of the Schur form. */
/* > If SORT = 'N', SELECT is not referenced. */
/* > An eigenvalue W(j) is selected if SELECT(W(j)) is true. */
/* > \endverbatim */
/* > */
/* > \param[in] SENSE */
/* > \verbatim */
/* > SENSE is CHARACTER*1 */
/* > Determines which reciprocal condition numbers are computed. */
/* > = 'N': None are computed; */
/* > = 'E': Computed for average of selected eigenvalues only; */
/* > = 'V': Computed for selected right invariant subspace only; */
/* > = 'B': Computed for both. */
/* > If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA, N) */
/* > On entry, the N-by-N matrix A. */
/* > On exit, A is overwritten by its Schur form T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] SDIM */
/* > \verbatim */
/* > SDIM is INTEGER */
/* > If SORT = 'N', SDIM = 0. */
/* > If SORT = 'S', SDIM = number of eigenvalues for which */
/* > SELECT is true. */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is COMPLEX array, dimension (N) */
/* > W contains the computed eigenvalues, in the same order */
/* > that they appear on the diagonal of the output Schur form T. */
/* > \endverbatim */
/* > */
/* > \param[out] VS */
/* > \verbatim */
/* > VS is COMPLEX array, dimension (LDVS,N) */
/* > If JOBVS = 'V', VS contains the unitary matrix Z of Schur */
/* > vectors. */
/* > If JOBVS = 'N', VS is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVS */
/* > \verbatim */
/* > LDVS is INTEGER */
/* > The leading dimension of the array VS. LDVS >= 1, and if */
/* > JOBVS = 'V', LDVS >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] RCONDE */
/* > \verbatim */
/* > RCONDE is REAL */
/* > If SENSE = 'E' or 'B', RCONDE contains the reciprocal */
/* > condition number for the average of the selected eigenvalues. */
/* > Not referenced if SENSE = 'N' or 'V'. */
/* > \endverbatim */
/* > */
/* > \param[out] RCONDV */
/* > \verbatim */
/* > RCONDV is REAL */
/* > If SENSE = 'V' or 'B', RCONDV contains the reciprocal */
/* > condition number for the selected right invariant subspace. */
/* > Not referenced if SENSE = 'N' or 'E'. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
/* > Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM), */
/* > where SDIM is the number of selected eigenvalues computed by */
/* > this routine. Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also */
/* > that an error is only returned if LWORK < f2cmax(1,2*N), but if */
/* > SENSE = 'E' or 'V' or 'B' this may not be large enough. */
/* > For good performance, LWORK must generally be larger. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates upper bound on the optimal size of the */
/* > array WORK, returns this value as the first entry of the WORK */
/* > array, and no error message related to LWORK is issued by */
/* > XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] BWORK */
/* > \verbatim */
/* > BWORK is LOGICAL array, dimension (N) */
/* > Not referenced if SORT = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = i, and i is */
/* > <= N: the QR algorithm failed to compute all the */
/* > eigenvalues; elements 1:ILO-1 and i+1:N of W */
/* > contain those eigenvalues which have converged; if */
/* > JOBVS = 'V', VS contains the transformation which */
/* > reduces A to its partially converged Schur form. */
/* > = N+1: the eigenvalues could not be reordered because some */
/* > eigenvalues were too close to separate (the problem */
/* > is very ill-conditioned); */
/* > = N+2: after reordering, roundoff changed values of some */
/* > complex eigenvalues so that leading eigenvalues in */
/* > the Schur form no longer satisfy SELECT=.TRUE. This */
/* > could also be caused by underflow due to scaling. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date June 2016 */

/* > \ingroup complexGEeigen */

/* ===================================================================== */
/* Subroutine */ int cgeesx_(char *jobvs, char *sort, L_fp select, char *
sense, integer *n, complex *a, integer *lda, integer *sdim, complex *
w, complex *vs, integer *ldvs, real *rconde, real *rcondv, complex *
work, integer *lwork, real *rwork, logical *bwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2;

/* Local variables */
integer ibal;
real anrm;
integer ierr, itau, iwrk, lwrk, i__, icond, ieval;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
complex *, integer *), cgebak_(char *, char *, integer *, integer
*, integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *,
integer *, integer *, real *, integer *), slabad_(real *,
real *);
logical scalea;
extern real clange_(char *, integer *, integer *, complex *, integer *,
real *);
real cscale;
extern /* Subroutine */ int cgehrd_(integer *, integer *, integer *,
complex *, integer *, complex *, complex *, integer *, integer *),
clascl_(char *, integer *, integer *, real *, real *, integer *,
integer *, complex *, integer *, integer *);
extern real slamch_(char *);
extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
*, integer *, complex *, integer *), xerbla_(char *,
integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
real bignum;
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *), chseqr_(char *, char *, integer *, integer *, integer *,
complex *, integer *, complex *, complex *, integer *, complex *,
integer *, integer *), cunghr_(integer *, integer
*, integer *, complex *, integer *, complex *, complex *, integer
*, integer *);
logical wantsb;
extern /* Subroutine */ int ctrsen_(char *, char *, logical *, integer *,
complex *, integer *, complex *, integer *, complex *, integer *,
real *, real *, complex *, integer *, integer *);
logical wantse;
integer minwrk, maxwrk;
logical wantsn;
real smlnum;
integer hswork;
logical wantst, lquery, wantsv, wantvs;
integer ihi, ilo;
real dum[1], eps;


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2016 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--w;
vs_dim1 = *ldvs;
vs_offset = 1 + vs_dim1 * 1;
vs -= vs_offset;
--work;
--rwork;
--bwork;

/* Function Body */
*info = 0;
wantvs = lsame_(jobvs, "V");
wantst = lsame_(sort, "S");
wantsn = lsame_(sense, "N");
wantse = lsame_(sense, "E");
wantsv = lsame_(sense, "V");
wantsb = lsame_(sense, "B");
lquery = *lwork == -1;

if (! wantvs && ! lsame_(jobvs, "N")) {
*info = -1;
} else if (! wantst && ! lsame_(sort, "N")) {
*info = -2;
} else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
wantsn) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*lda < f2cmax(1,*n)) {
*info = -7;
} else if (*ldvs < 1 || wantvs && *ldvs < *n) {
*info = -11;
}

/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of real workspace needed at that point in the */
/* code, as well as the preferred amount for good performance. */
/* CWorkspace refers to complex workspace, and RWorkspace to real */
/* workspace. NB refers to the optimal block size for the */
/* immediately following subroutine, as returned by ILAENV. */
/* HSWORK refers to the workspace preferred by CHSEQR, as */
/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/* the worst case. */
/* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */
/* depends on SDIM, which is computed by the routine CTRSEN later */
/* in the code.) */

if (*info == 0) {
if (*n == 0) {
minwrk = 1;
lwrk = 1;
} else {
maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
c__0, (ftnlen)6, (ftnlen)1);
minwrk = *n << 1;

chseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[
vs_offset], ldvs, &work[1], &c_n1, &ieval);
hswork = work[1].r;

if (! wantvs) {
maxwrk = f2cmax(maxwrk,hswork);
} else {
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
" ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
maxwrk = f2cmax(i__1,i__2);
maxwrk = f2cmax(maxwrk,hswork);
}
lwrk = maxwrk;
if (! wantsn) {
/* Computing MAX */
i__1 = lwrk, i__2 = *n * *n / 2;
lwrk = f2cmax(i__1,i__2);
}
}
work[1].r = (real) lwrk, work[1].i = 0.f;

if (*lwork < minwrk && ! lquery) {
*info = -15;
}
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEESX", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

if (*n == 0) {
*sdim = 0;
return 0;
}

/* Get machine constants */

eps = slamch_("P");
smlnum = slamch_("S");
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);
smlnum = sqrt(smlnum) / eps;
bignum = 1.f / smlnum;

/* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */

anrm = clange_("M", n, n, &a[a_offset], lda, dum);
scalea = FALSE_;
if (anrm > 0.f && anrm < smlnum) {
scalea = TRUE_;
cscale = smlnum;
} else if (anrm > bignum) {
scalea = TRUE_;
cscale = bignum;
}
if (scalea) {
clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
ierr);
}


/* Permute the matrix to make it more nearly triangular */
/* (CWorkspace: none) */
/* (RWorkspace: need N) */

ibal = 1;
cgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);

/* Reduce to upper Hessenberg form */
/* (CWorkspace: need 2*N, prefer N+N*NB) */
/* (RWorkspace: none) */

itau = 1;
iwrk = *n + itau;
i__1 = *lwork - iwrk + 1;
cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
&ierr);

if (wantvs) {

/* Copy Householder vectors to VS */

clacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
;

/* Generate unitary matrix in VS */
/* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/* (RWorkspace: none) */

i__1 = *lwork - iwrk + 1;
cunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
&i__1, &ierr);
}

*sdim = 0;

/* Perform QR iteration, accumulating Schur vectors in VS if desired */
/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/* (RWorkspace: none) */

iwrk = itau;
i__1 = *lwork - iwrk + 1;
chseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[
vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
if (ieval > 0) {
*info = ieval;
}

/* Sort eigenvalues if desired */

if (wantst && *info == 0) {
if (scalea) {
clascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, &
ierr);
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
bwork[i__] = (*select)(&w[i__]);
/* L10: */
}

/* Reorder eigenvalues, transform Schur vectors, and compute */
/* reciprocal condition numbers */
/* (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM) */
/* otherwise, need none ) */
/* (RWorkspace: none) */

i__1 = *lwork - iwrk + 1;
ctrsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
ldvs, &w[1], sdim, rconde, rcondv, &work[iwrk], &i__1, &
icond);
if (! wantsn) {
/* Computing MAX */
i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
maxwrk = f2cmax(i__1,i__2);
}
if (icond == -14) {

/* Not enough complex workspace */

*info = -15;
}
}

if (wantvs) {

/* Undo balancing */
/* (CWorkspace: none) */
/* (RWorkspace: need N) */

cgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset],
ldvs, &ierr);
}

if (scalea) {

/* Undo scaling for the Schur form of A */

clascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
ierr);
i__1 = *lda + 1;
ccopy_(n, &a[a_offset], &i__1, &w[1], &c__1);
if ((wantsv || wantsb) && *info == 0) {
dum[0] = *rcondv;
slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &
c__1, &ierr);
*rcondv = dum[0];
}
}

work[1].r = (real) maxwrk, work[1].i = 0.f;
return 0;

/* End of CGEESX */

} /* cgeesx_ */


+ 1015
- 0
lapack-netlib/SRC/cgeev.c
File diff suppressed because it is too large
View File


+ 1189
- 0
lapack-netlib/SRC/cgeevx.c
File diff suppressed because it is too large
View File


+ 653
- 0
lapack-netlib/SRC/cgehd2.c View File

@@ -0,0 +1,653 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b CGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
*/

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEHD2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgehd2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgehd2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgehd2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO ) */

/* INTEGER IHI, ILO, INFO, LDA, N */
/* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEHD2 reduces a complex general matrix A to upper Hessenberg form H */
/* > by a unitary similarity transformation: Q**H * A * Q = H . */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] ILO */
/* > \verbatim */
/* > ILO is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[in] IHI */
/* > \verbatim */
/* > IHI is INTEGER */
/* > */
/* > It is assumed that A is already upper triangular in rows */
/* > and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/* > set by a previous call to CGEBAL; otherwise they should be */
/* > set to 1 and N respectively. See Further Details. */
/* > 1 <= ILO <= IHI <= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the n by n general matrix to be reduced. */
/* > On exit, the upper triangle and the first subdiagonal of A */
/* > are overwritten with the upper Hessenberg matrix H, and the */
/* > elements below the first subdiagonal, with the array TAU, */
/* > represent the unitary matrix Q as a product of elementary */
/* > reflectors. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (N-1) */
/* > The scalar factors of the elementary reflectors (see Further */
/* > Details). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of (ihi-ilo) elementary */
/* > reflectors */
/* > */
/* > Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
/* > exit in A(i+2:ihi,i), and tau in TAU(i). */
/* > */
/* > The contents of A are illustrated by the following example, with */
/* > n = 7, ilo = 2 and ihi = 6: */
/* > */
/* > on entry, on exit, */
/* > */
/* > ( a a a a a a a ) ( a a h h h h a ) */
/* > ( a a a a a a ) ( a h h h h a ) */
/* > ( a a a a a a ) ( h h h h h h ) */
/* > ( a a a a a a ) ( v2 h h h h h ) */
/* > ( a a a a a a ) ( v2 v3 h h h h ) */
/* > ( a a a a a a ) ( v2 v3 v4 h h h ) */
/* > ( a ) ( a ) */
/* > */
/* > where a denotes an element of the original matrix A, h denotes a */
/* > modified element of the upper Hessenberg matrix H, and vi denotes an */
/* > element of the vector defining H(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgehd2_(integer *n, integer *ilo, integer *ihi, complex *
a, integer *lda, complex *tau, complex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
complex q__1;

/* Local variables */
integer i__;
complex alpha;
extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
, integer *, complex *, complex *, integer *, complex *),
clarfg_(integer *, complex *, complex *, integer *, complex *),
xerbla_(char *, integer *, ftnlen);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;

/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*ilo < 1 || *ilo > f2cmax(1,*n)) {
*info = -2;
} else if (*ihi < f2cmin(*ilo,*n) || *ihi > *n) {
*info = -3;
} else if (*lda < f2cmax(1,*n)) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEHD2", &i__1, (ftnlen)6);
return 0;
}

i__1 = *ihi - 1;
for (i__ = *ilo; i__ <= i__1; ++i__) {

/* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */

i__2 = i__ + 1 + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = *ihi - i__;
/* Computing MIN */
i__3 = i__ + 2;
clarfg_(&i__2, &alpha, &a[f2cmin(i__3,*n) + i__ * a_dim1], &c__1, &tau[
i__]);
i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;

/* Apply H(i) to A(1:ihi,i+1:ihi) from the right */

i__2 = *ihi - i__;
clarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]);

/* Apply H(i)**H to A(i+1:ihi,i+1:n) from the left */

i__2 = *ihi - i__;
i__3 = *n - i__;
r_cnjg(&q__1, &tau[i__]);
clarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &q__1,
&a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]);

i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = alpha.r, a[i__2].i = alpha.i;
/* L10: */
}

return 0;

/* End of CGEHD2 */

} /* cgehd2_ */


+ 817
- 0
lapack-netlib/SRC/cgehrd.c View File

@@ -0,0 +1,817 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b2 = {1.f,0.f};
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
static integer c__65 = 65;

/* > \brief \b CGEHRD */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEHRD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgehrd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgehrd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgehrd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) */

/* INTEGER IHI, ILO, INFO, LDA, LWORK, N */
/* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEHRD reduces a complex general matrix A to upper Hessenberg form H by */
/* > an unitary similarity transformation: Q**H * A * Q = H . */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] ILO */
/* > \verbatim */
/* > ILO is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[in] IHI */
/* > \verbatim */
/* > IHI is INTEGER */
/* > */
/* > It is assumed that A is already upper triangular in rows */
/* > and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/* > set by a previous call to CGEBAL; otherwise they should be */
/* > set to 1 and N respectively. See Further Details. */
/* > 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the N-by-N general matrix to be reduced. */
/* > On exit, the upper triangle and the first subdiagonal of A */
/* > are overwritten with the upper Hessenberg matrix H, and the */
/* > elements below the first subdiagonal, with the array TAU, */
/* > represent the unitary matrix Q as a product of elementary */
/* > reflectors. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (N-1) */
/* > The scalar factors of the elementary reflectors (see Further */
/* > Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to */
/* > zero. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (LWORK) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The length of the array WORK. LWORK >= f2cmax(1,N). */
/* > For good performance, LWORK should generally be larger. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of (ihi-ilo) elementary */
/* > reflectors */
/* > */
/* > Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
/* > exit in A(i+2:ihi,i), and tau in TAU(i). */
/* > */
/* > The contents of A are illustrated by the following example, with */
/* > n = 7, ilo = 2 and ihi = 6: */
/* > */
/* > on entry, on exit, */
/* > */
/* > ( a a a a a a a ) ( a a h h h h a ) */
/* > ( a a a a a a ) ( a h h h h a ) */
/* > ( a a a a a a ) ( h h h h h h ) */
/* > ( a a a a a a ) ( v2 h h h h h ) */
/* > ( a a a a a a ) ( v2 v3 h h h h ) */
/* > ( a a a a a a ) ( v2 v3 v4 h h h ) */
/* > ( a ) ( a ) */
/* > */
/* > where a denotes an element of the original matrix A, h denotes a */
/* > modified element of the upper Hessenberg matrix H, and vi denotes an */
/* > element of the vector defining H(i). */
/* > */
/* > This file is a slight modification of LAPACK-3.0's DGEHRD */
/* > subroutine incorporating improvements proposed by Quintana-Orti and */
/* > Van de Geijn (2006). (See DLAHR2.) */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgehrd_(integer *n, integer *ilo, integer *ihi, complex *
a, integer *lda, complex *tau, complex *work, integer *lwork, integer
*info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
complex q__1;

/* Local variables */
integer i__, j;
extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
integer *, complex *, complex *, integer *, complex *, integer *,
complex *, complex *, integer *);
integer nbmin, iinfo;
extern /* Subroutine */ int ctrmm_(char *, char *, char *, char *,
integer *, integer *, complex *, complex *, integer *, complex *,
integer *), caxpy_(integer *,
complex *, complex *, integer *, complex *, integer *), cgehd2_(
integer *, integer *, integer *, complex *, integer *, complex *,
complex *, integer *), clahr2_(integer *, integer *, integer *,
complex *, integer *, complex *, complex *, integer *, complex *,
integer *);
integer ib;
complex ei;
integer nb, nh;
extern /* Subroutine */ int clarfb_(char *, char *, char *, char *,
integer *, integer *, integer *, complex *, integer *, complex *,
integer *, complex *, integer *, complex *, integer *);
integer nx;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer ldwork, lwkopt;
logical lquery;
integer iwt;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input parameters */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;

/* Function Body */
*info = 0;
lquery = *lwork == -1;
if (*n < 0) {
*info = -1;
} else if (*ilo < 1 || *ilo > f2cmax(1,*n)) {
*info = -2;
} else if (*ihi < f2cmin(*ilo,*n) || *ihi > *n) {
*info = -3;
} else if (*lda < f2cmax(1,*n)) {
*info = -5;
} else if (*lwork < f2cmax(1,*n) && ! lquery) {
*info = -8;
}

if (*info == 0) {

/* Compute the workspace requirements */

/* Computing MIN */
i__1 = 64, i__2 = ilaenv_(&c__1, "CGEHRD", " ", n, ilo, ihi, &c_n1, (
ftnlen)6, (ftnlen)1);
nb = f2cmin(i__1,i__2);
lwkopt = *n * nb + 4160;
work[1].r = (real) lwkopt, work[1].i = 0.f;
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEHRD", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */

i__1 = *ilo - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
tau[i__2].r = 0.f, tau[i__2].i = 0.f;
/* L10: */
}
i__1 = *n - 1;
for (i__ = f2cmax(1,*ihi); i__ <= i__1; ++i__) {
i__2 = i__;
tau[i__2].r = 0.f, tau[i__2].i = 0.f;
/* L20: */
}

/* Quick return if possible */

nh = *ihi - *ilo + 1;
if (nh <= 1) {
work[1].r = 1.f, work[1].i = 0.f;
return 0;
}

/* Determine the block size */

/* Computing MIN */
i__1 = 64, i__2 = ilaenv_(&c__1, "CGEHRD", " ", n, ilo, ihi, &c_n1, (
ftnlen)6, (ftnlen)1);
nb = f2cmin(i__1,i__2);
nbmin = 2;
if (nb > 1 && nb < nh) {

/* Determine when to cross over from blocked to unblocked code */
/* (last block is always handled by unblocked code) */

/* Computing MAX */
i__1 = nb, i__2 = ilaenv_(&c__3, "CGEHRD", " ", n, ilo, ihi, &c_n1, (
ftnlen)6, (ftnlen)1);
nx = f2cmax(i__1,i__2);
if (nx < nh) {

/* Determine if workspace is large enough for blocked code */

if (*lwork < *n * nb + 4160) {

/* Not enough workspace to use optimal NB: determine the */
/* minimum value of NB, and reduce NB or force use of */
/* unblocked code */

/* Computing MAX */
i__1 = 2, i__2 = ilaenv_(&c__2, "CGEHRD", " ", n, ilo, ihi, &
c_n1, (ftnlen)6, (ftnlen)1);
nbmin = f2cmax(i__1,i__2);
if (*lwork >= *n * nbmin + 4160) {
nb = (*lwork - 4160) / *n;
} else {
nb = 1;
}
}
}
}
ldwork = *n;

if (nb < nbmin || nb >= nh) {

/* Use unblocked code below */

i__ = *ilo;

} else {

/* Use blocked code */

iwt = *n * nb + 1;
i__1 = *ihi - 1 - nx;
i__2 = nb;
for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__3 = nb, i__4 = *ihi - i__;
ib = f2cmin(i__3,i__4);

/* Reduce columns i:i+ib-1 to Hessenberg form, returning the */
/* matrices V and T of the block reflector H = I - V*T*V**H */
/* which performs the reduction, and also the matrix Y = A*V*T */

clahr2_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], &
work[iwt], &c__65, &work[1], &ldwork);

/* Apply the block reflector H to A(1:ihi,i+ib:ihi) from the */
/* right, computing A := A - Y * V**H. V(i+ib,ib-1) must be set */
/* to 1 */

i__3 = i__ + ib + (i__ + ib - 1) * a_dim1;
ei.r = a[i__3].r, ei.i = a[i__3].i;
i__3 = i__ + ib + (i__ + ib - 1) * a_dim1;
a[i__3].r = 1.f, a[i__3].i = 0.f;
i__3 = *ihi - i__ - ib + 1;
q__1.r = -1.f, q__1.i = 0.f;
cgemm_("No transpose", "Conjugate transpose", ihi, &i__3, &ib, &
q__1, &work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda,
&c_b2, &a[(i__ + ib) * a_dim1 + 1], lda);
i__3 = i__ + ib + (i__ + ib - 1) * a_dim1;
a[i__3].r = ei.r, a[i__3].i = ei.i;

/* Apply the block reflector H to A(1:i,i+1:i+ib-1) from the */
/* right */

i__3 = ib - 1;
ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", &i__, &
i__3, &c_b2, &a[i__ + 1 + i__ * a_dim1], lda, &work[1], &
ldwork);
i__3 = ib - 2;
for (j = 0; j <= i__3; ++j) {
q__1.r = -1.f, q__1.i = 0.f;
caxpy_(&i__, &q__1, &work[ldwork * j + 1], &c__1, &a[(i__ + j
+ 1) * a_dim1 + 1], &c__1);
/* L30: */
}

/* Apply the block reflector H to A(i+1:ihi,i+ib:n) from the */
/* left */

i__3 = *ihi - i__;
i__4 = *n - i__ - ib + 1;
clarfb_("Left", "Conjugate transpose", "Forward", "Columnwise", &
i__3, &i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, &work[
iwt], &c__65, &a[i__ + 1 + (i__ + ib) * a_dim1], lda, &
work[1], &ldwork);
/* L40: */
}
}

/* Use unblocked code to reduce the rest of the matrix */

cgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo);
work[1].r = (real) lwkopt, work[1].i = 0.f;

return 0;

/* End of CGEHRD */

} /* cgehrd_ */


+ 3448
- 0
lapack-netlib/SRC/cgejsv.c
File diff suppressed because it is too large
View File


+ 766
- 0
lapack-netlib/SRC/cgelq.c View File

@@ -0,0 +1,766 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;

/* > \brief \b CGELQ */

/* Definition: */
/* =========== */

/* SUBROUTINE CGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, */
/* INFO ) */

/* INTEGER INFO, LDA, M, N, TSIZE, LWORK */
/* COMPLEX A( LDA, * ), T( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGELQ computes an LQ factorization of a complex M-by-N matrix A: */
/* > */
/* > A = ( L 0 ) * Q */
/* > */
/* > where: */
/* > */
/* > Q is a N-by-N orthogonal matrix; */
/* > L is a lower-triangular M-by-M matrix; */
/* > 0 is a M-by-(N-M) zero matrix, if M < N. */
/* > */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the elements on and below the diagonal of the array */
/* > contain the M-by-f2cmin(M,N) lower trapezoidal matrix L */
/* > (L is lower triangular if M <= N); */
/* > the elements above the diagonal are used to store part of the */
/* > data structure to represent Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (MAX(5,TSIZE)) */
/* > On exit, if INFO = 0, T(1) returns optimal (or either minimal */
/* > or optimal, if query is assumed) TSIZE. See TSIZE for details. */
/* > Remaining T contains part of the data structure used to represent Q. */
/* > If one wants to apply or construct Q, then one needs to keep T */
/* > (in addition to A) and pass it to further subroutines. */
/* > \endverbatim */
/* > */
/* > \param[in] TSIZE */
/* > \verbatim */
/* > TSIZE is INTEGER */
/* > If TSIZE >= 5, the dimension of the array T. */
/* > If TSIZE = -1 or -2, then a workspace query is assumed. The routine */
/* > only calculates the sizes of the T and WORK arrays, returns these */
/* > values as the first entries of the T and WORK arrays, and no error */
/* > message related to T or WORK is issued by XERBLA. */
/* > If TSIZE = -1, the routine calculates optimal size of T for the */
/* > optimum performance and returns this value in T(1). */
/* > If TSIZE = -2, the routine calculates minimal size of T and */
/* > returns this value in T(1). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > (workspace) COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) contains optimal (or either minimal */
/* > or optimal, if query was assumed) LWORK. */
/* > See LWORK for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If LWORK = -1 or -2, then a workspace query is assumed. The routine */
/* > only calculates the sizes of the T and WORK arrays, returns these */
/* > values as the first entries of the T and WORK arrays, and no error */
/* > message related to T or WORK is issued by XERBLA. */
/* > If LWORK = -1, the routine calculates optimal size of WORK for the */
/* > optimal performance and returns this value in WORK(1). */
/* > If LWORK = -2, the routine calculates minimal size of WORK and */
/* > returns this value in WORK(1). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \par Further Details */
/* ==================== */
/* > */
/* > \verbatim */
/* > */
/* > The goal of the interface is to give maximum freedom to the developers for */
/* > creating any LQ factorization algorithm they wish. The triangular */
/* > (trapezoidal) L has to be stored in the lower part of A. The lower part of A */
/* > and the array T can be used to store any relevant information for applying or */
/* > constructing the Q factor. The WORK array can safely be discarded after exit. */
/* > */
/* > Caution: One should not expect the sizes of T and WORK to be the same from one */
/* > LAPACK implementation to the other, or even from one execution to the other. */
/* > A workspace query (for T and WORK) is needed at each execution. However, */
/* > for a given execution, the size of T and WORK are fixed and will not change */
/* > from one query to the next. */
/* > */
/* > \endverbatim */
/* > */
/* > \par Further Details particular to this LAPACK implementation: */
/* ============================================================== */
/* > */
/* > \verbatim */
/* > */
/* > These details are particular for this LAPACK implementation. Users should not */
/* > take them for granted. These details may change in the future, and are not likely */
/* > true for another LAPACK implementation. These details are relevant if one wants */
/* > to try to understand the code. They are not part of the interface. */
/* > */
/* > In this version, */
/* > */
/* > T(2): row block size (MB) */
/* > T(3): column block size (NB) */
/* > T(6:TSIZE): data structure needed for Q, computed by */
/* > CLASWLQ or CGELQT */
/* > */
/* > Depending on the matrix dimensions M and N, and row and column */
/* > block sizes MB and NB returned by ILAENV, CGELQ will use either */
/* > CLASWLQ (if the matrix is short-and-wide) or CGELQT to compute */
/* > the LQ factorization. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgelq_(integer *m, integer *n, complex *a, integer *lda,
complex *t, integer *tsize, complex *work, integer *lwork, integer *
info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;

/* Local variables */
logical mint, minw;
integer lwmin, lwreq, lwopt, mb, nb, nblcks;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int cgelqt_(integer *, integer *, integer *,
complex *, integer *, complex *, integer *, complex *, integer *);
logical lminws, lquery;
integer mintsz;
extern /* Subroutine */ int claswlq_(integer *, integer *, integer *,
integer *, complex *, integer *, complex *, integer *, complex *,
integer *, integer *);


/* -- LAPACK computational routine (version 3.9.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- */
/* November 2019 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--t;
--work;

/* Function Body */
*info = 0;

lquery = *tsize == -1 || *tsize == -2 || *lwork == -1 || *lwork == -2;

mint = FALSE_;
minw = FALSE_;
if (*tsize == -2 || *lwork == -2) {
if (*tsize != -1) {
mint = TRUE_;
}
if (*lwork != -1) {
minw = TRUE_;
}
}

/* Determine the block size */

if (f2cmin(*m,*n) > 0) {
mb = ilaenv_(&c__1, "CGELQ ", " ", m, n, &c__1, &c_n1, (ftnlen)6, (
ftnlen)1);
nb = ilaenv_(&c__1, "CGELQ ", " ", m, n, &c__2, &c_n1, (ftnlen)6, (
ftnlen)1);
} else {
mb = 1;
nb = *n;
}
if (mb > f2cmin(*m,*n) || mb < 1) {
mb = 1;
}
if (nb > *n || nb <= *m) {
nb = *n;
}
mintsz = *m + 5;
if (nb > *m && *n > *m) {
if ((*n - *m) % (nb - *m) == 0) {
nblcks = (*n - *m) / (nb - *m);
} else {
nblcks = (*n - *m) / (nb - *m) + 1;
}
} else {
nblcks = 1;
}

/* Determine if the workspace size satisfies minimal size */

if (*n <= *m || nb <= *m || nb >= *n) {
lwmin = f2cmax(1,*n);
/* Computing MAX */
i__1 = 1, i__2 = mb * *n;
lwopt = f2cmax(i__1,i__2);
} else {
lwmin = f2cmax(1,*m);
/* Computing MAX */
i__1 = 1, i__2 = mb * *m;
lwopt = f2cmax(i__1,i__2);
}
lminws = FALSE_;
/* Computing MAX */
i__1 = 1, i__2 = mb * *m * nblcks + 5;
if ((*tsize < f2cmax(i__1,i__2) || *lwork < lwopt) && *lwork >= lwmin && *
tsize >= mintsz && ! lquery) {
/* Computing MAX */
i__1 = 1, i__2 = mb * *m * nblcks + 5;
if (*tsize < f2cmax(i__1,i__2)) {
lminws = TRUE_;
mb = 1;
nb = *n;
}
if (*lwork < lwopt) {
lminws = TRUE_;
mb = 1;
}
}
if (*n <= *m || nb <= *m || nb >= *n) {
/* Computing MAX */
i__1 = 1, i__2 = mb * *n;
lwreq = f2cmax(i__1,i__2);
} else {
/* Computing MAX */
i__1 = 1, i__2 = mb * *m;
lwreq = f2cmax(i__1,i__2);
}

if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = mb * *m * nblcks + 5;
if (*tsize < f2cmax(i__1,i__2) && ! lquery && ! lminws) {
*info = -6;
} else if (*lwork < lwreq && ! lquery && ! lminws) {
*info = -8;
}
}

if (*info == 0) {
if (mint) {
t[1].r = (real) mintsz, t[1].i = 0.f;
} else {
i__1 = mb * *m * nblcks + 5;
t[1].r = (real) i__1, t[1].i = 0.f;
}
t[2].r = (real) mb, t[2].i = 0.f;
t[3].r = (real) nb, t[3].i = 0.f;
if (minw) {
work[1].r = (real) lwmin, work[1].i = 0.f;
} else {
work[1].r = (real) lwreq, work[1].i = 0.f;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGELQ", &i__1, (ftnlen)5);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

if (f2cmin(*m,*n) == 0) {
return 0;
}

/* The LQ Decomposition */

if (*n <= *m || nb <= *m || nb >= *n) {
cgelqt_(m, n, &mb, &a[a_offset], lda, &t[6], &mb, &work[1], info);
} else {
claswlq_(m, n, &mb, &nb, &a[a_offset], lda, &t[6], &mb, &work[1],
lwork, info);
}

work[1].r = (real) lwreq, work[1].i = 0.f;

return 0;

/* End of CGELQ */

} /* cgelq_ */


+ 626
- 0
lapack-netlib/SRC/cgelq2.c View File

@@ -0,0 +1,626 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorit
hm. */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGELQ2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelq2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelq2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelq2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGELQ2( M, N, A, LDA, TAU, WORK, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGELQ2 computes an LQ factorization of a complex m-by-n matrix A: */
/* > */
/* > A = ( L 0 ) * Q */
/* > */
/* > where: */
/* > */
/* > Q is a n-by-n orthogonal matrix; */
/* > L is an lower-triangular m-by-m matrix; */
/* > 0 is a m-by-(n-m) zero matrix, if m < n. */
/* > */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the m by n matrix A. */
/* > On exit, the elements on and below the diagonal of the array */
/* > contain the m by f2cmin(m,n) lower trapezoidal matrix L (L is */
/* > lower triangular if m <= n); the elements above the diagonal, */
/* > with the array TAU, represent the unitary matrix Q as a */
/* > product of elementary reflectors (see Further Details). */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors (see Further */
/* > Details). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (M) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date November 2019 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(k)**H . . . H(2)**H H(1)**H, where k = f2cmin(m,n). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in */
/* > A(i,i+1:n), and tau in TAU(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgelq2_(integer *m, integer *n, complex *a, integer *lda,
complex *tau, complex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;

/* Local variables */
integer i__, k;
complex alpha;
extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
, integer *, complex *, complex *, integer *, complex *),
clarfg_(integer *, complex *, complex *, integer *, complex *),
clacgv_(integer *, complex *, integer *), xerbla_(char *, integer
*, ftnlen);


/* -- LAPACK computational routine (version 3.9.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2019 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGELQ2", &i__1, (ftnlen)6);
return 0;
}

k = f2cmin(*m,*n);

i__1 = k;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Generate elementary reflector H(i) to annihilate A(i,i+1:n) */

i__2 = *n - i__ + 1;
clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
i__2 = i__ + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = *n - i__ + 1;
/* Computing MIN */
i__3 = i__ + 1;
clarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &tau[i__]
);
if (i__ < *m) {

/* Apply H(i) to A(i+1:m,i:n) from the right */

i__2 = i__ + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;
i__2 = *m - i__;
i__3 = *n - i__ + 1;
clarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[
i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
}
i__2 = i__ + i__ * a_dim1;
a[i__2].r = alpha.r, a[i__2].i = alpha.i;
i__2 = *n - i__ + 1;
clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
/* L10: */
}
return 0;

/* End of CGELQ2 */

} /* cgelq2_ */


+ 720
- 0
lapack-netlib/SRC/cgelqf.c View File

@@ -0,0 +1,720 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;

/* > \brief \b CGELQF */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGELQF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelqf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelqf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelqf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) */

/* INTEGER INFO, LDA, LWORK, M, N */
/* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGELQF computes an LQ factorization of a complex M-by-N matrix A: */
/* > */
/* > A = ( L 0 ) * Q */
/* > */
/* > where: */
/* > */
/* > Q is a N-by-N orthogonal matrix; */
/* > L is an lower-triangular M-by-M matrix; */
/* > 0 is a M-by-(N-M) zero matrix, if M < N. */
/* > */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the elements on and below the diagonal of the array */
/* > contain the m-by-f2cmin(m,n) lower trapezoidal matrix L (L is */
/* > lower triangular if m <= n); the elements above the diagonal, */
/* > with the array TAU, represent the unitary matrix Q as a */
/* > product of elementary reflectors (see Further Details). */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors (see Further */
/* > Details). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= f2cmax(1,M). */
/* > For optimum performance LWORK >= M*NB, where NB is the */
/* > optimal blocksize. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date November 2019 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(k)**H . . . H(2)**H H(1)**H, where k = f2cmin(m,n). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in */
/* > A(i,i+1:n), and tau in TAU(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgelqf_(integer *m, integer *n, complex *a, integer *lda,
complex *tau, complex *work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

/* Local variables */
integer i__, k, nbmin, iinfo;
extern /* Subroutine */ int cgelq2_(integer *, integer *, complex *,
integer *, complex *, complex *, integer *);
integer ib, nb;
extern /* Subroutine */ int clarfb_(char *, char *, char *, char *,
integer *, integer *, integer *, complex *, integer *, complex *,
integer *, complex *, integer *, complex *, integer *);
integer nx;
extern /* Subroutine */ int clarft_(char *, char *, integer *, integer *,
complex *, integer *, complex *, complex *, integer *), xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer ldwork, lwkopt;
logical lquery;
integer iws;


/* -- LAPACK computational routine (version 3.9.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2019 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;

/* Function Body */
*info = 0;
nb = ilaenv_(&c__1, "CGELQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
1);
lwkopt = *m * nb;
work[1].r = (real) lwkopt, work[1].i = 0.f;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
} else if (*lwork < f2cmax(1,*m) && ! lquery) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGELQF", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

k = f2cmin(*m,*n);
if (k == 0) {
work[1].r = 1.f, work[1].i = 0.f;
return 0;
}

nbmin = 2;
nx = 0;
iws = *m;
if (nb > 1 && nb < k) {

/* Determine when to cross over from blocked to unblocked code. */

/* Computing MAX */
i__1 = 0, i__2 = ilaenv_(&c__3, "CGELQF", " ", m, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
nx = f2cmax(i__1,i__2);
if (nx < k) {

/* Determine if workspace is large enough for blocked code. */

ldwork = *m;
iws = ldwork * nb;
if (*lwork < iws) {

/* Not enough workspace to use optimal NB: reduce NB and */
/* determine the minimum value of NB. */

nb = *lwork / ldwork;
/* Computing MAX */
i__1 = 2, i__2 = ilaenv_(&c__2, "CGELQF", " ", m, n, &c_n1, &
c_n1, (ftnlen)6, (ftnlen)1);
nbmin = f2cmax(i__1,i__2);
}
}
}

if (nb >= nbmin && nb < k && nx < k) {

/* Use blocked code initially */

i__1 = k - nx;
i__2 = nb;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__3 = k - i__ + 1;
ib = f2cmin(i__3,nb);

/* Compute the LQ factorization of the current block */
/* A(i:i+ib-1,i:n) */

i__3 = *n - i__ + 1;
cgelq2_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
1], &iinfo);
if (i__ + ib <= *m) {

/* Form the triangular factor of the block reflector */
/* H = H(i) H(i+1) . . . H(i+ib-1) */

i__3 = *n - i__ + 1;
clarft_("Forward", "Rowwise", &i__3, &ib, &a[i__ + i__ *
a_dim1], lda, &tau[i__], &work[1], &ldwork);

/* Apply H to A(i+ib:m,i:n) from the right */

i__3 = *m - i__ - ib + 1;
i__4 = *n - i__ + 1;
clarfb_("Right", "No transpose", "Forward", "Rowwise", &i__3,
&i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib +
1], &ldwork);
}
/* L10: */
}
} else {
i__ = 1;
}

/* Use unblocked code to factor the last or only block. */

if (i__ <= k) {
i__2 = *m - i__ + 1;
i__1 = *n - i__ + 1;
cgelq2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
, &iinfo);
}

work[1].r = (real) iws, work[1].i = 0.f;
return 0;

/* End of CGELQF */

} /* cgelqf_ */


+ 622
- 0
lapack-netlib/SRC/cgelqt.c View File

@@ -0,0 +1,622 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGELQT */

/* Definition: */
/* =========== */

/* SUBROUTINE CGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO ) */

/* INTEGER INFO, LDA, LDT, M, N, MB */
/* COMPLEX A( LDA, * ), T( LDT, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGELQT computes a blocked LQ factorization of a complex M-by-N matrix A */
/* > using the compact WY representation of Q. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] MB */
/* > \verbatim */
/* > MB is INTEGER */
/* > The block size to be used in the blocked QR. MIN(M,N) >= MB >= 1. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the elements on and below the diagonal of the array */
/* > contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is */
/* > lower triangular if M <= N); the elements above the diagonal */
/* > are the rows of V. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (LDT,MIN(M,N)) */
/* > The upper triangular block reflectors stored in compact form */
/* > as a sequence of upper triangular blocks. See below */
/* > for further details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= MB. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MB*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date June 2017 */

/* > \ingroup doubleGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix V stores the elementary reflectors H(i) in the i-th row */
/* > above the diagonal. For example, if M=5 and N=3, the matrix V is */
/* > */
/* > V = ( 1 v1 v1 v1 v1 ) */
/* > ( 1 v2 v2 v2 ) */
/* > ( 1 v3 v3 ) */
/* > */
/* > */
/* > where the vi's represent the vectors which define H(i), which are returned */
/* > in the matrix A. The 1's along the diagonal of V are not stored in A. */
/* > Let K=MIN(M,N). The number of blocks is B = ceiling(K/MB), where each */
/* > block is of order MB except for the last block, which is of order */
/* > IB = K - (B-1)*MB. For each of the B blocks, a upper triangular block */
/* > reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB */
/* > for the last block) T's are stored in the MB-by-K matrix T as */
/* > */
/* > T = (T1 T2 ... TB). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgelqt_(integer *m, integer *n, integer *mb, complex *a,
integer *lda, complex *t, integer *ldt, complex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, t_dim1, t_offset, i__1, i__2, i__3, i__4, i__5;

/* Local variables */
integer i__, k, iinfo, ib;
extern /* Subroutine */ int clarfb_(char *, char *, char *, char *,
integer *, integer *, integer *, complex *, integer *, complex *,
integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *, ftnlen),
cgelqt3_(integer *, integer *, complex *, integer *, complex *,
integer *, integer *);


/* -- LAPACK computational routine (version 3.7.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2017 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
--work;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*mb < 1 || *mb > f2cmin(*m,*n) && f2cmin(*m,*n) > 0) {
*info = -3;
} else if (*lda < f2cmax(1,*m)) {
*info = -5;
} else if (*ldt < *mb) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGELQT", &i__1, (ftnlen)6);
return 0;
}

/* Quick return if possible */

k = f2cmin(*m,*n);
if (k == 0) {
return 0;
}

/* Blocked loop of length K */

i__1 = k;
i__2 = *mb;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__3 = k - i__ + 1;
ib = f2cmin(i__3,*mb);

/* Compute the LQ factorization of the current block A(I:M,I:I+IB-1) */

i__3 = *n - i__ + 1;
cgelqt3_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &t[i__ * t_dim1 + 1]
, ldt, &iinfo);
if (i__ + ib <= *m) {

/* Update by applying H**T to A(I:M,I+IB:N) from the right */

i__3 = *m - i__ - ib + 1;
i__4 = *n - i__ + 1;
i__5 = *m - i__ - ib + 1;
clarfb_("R", "N", "F", "R", &i__3, &i__4, &ib, &a[i__ + i__ *
a_dim1], lda, &t[i__ * t_dim1 + 1], ldt, &a[i__ + ib +
i__ * a_dim1], lda, &work[1], &i__5);
}
}
return 0;

/* End of CGELQT */

} /* cgelqt_ */


+ 697
- 0
lapack-netlib/SRC/cgelqt3.c View File

@@ -0,0 +1,697 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {1.f,0.f};

/* > \brief \b CGELQT3 */

/* Definition: */
/* =========== */

/* SUBROUTINE CGELQT3( M, N, A, LDA, T, LDT, INFO ) */

/* INTEGER INFO, LDA, M, N, LDT */
/* COMPLEX A( LDA, * ), T( LDT, * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGELQT3 recursively computes a LQ factorization of a complex M-by-N */
/* > matrix A, using the compact WY representation of Q. */
/* > */
/* > Based on the algorithm of Elmroth and Gustavson, */
/* > IBM J. Res. Develop. Vol 44 No. 4 July 2000. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M =< N. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the real M-by-N matrix A. On exit, the elements on and */
/* > below the diagonal contain the N-by-N lower triangular matrix L; the */
/* > elements above the diagonal are the rows of V. See below for */
/* > further details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (LDT,N) */
/* > The N-by-N upper triangular factor of the block reflector. */
/* > The elements on and above the diagonal contain the block */
/* > reflector T; the elements below the diagonal are not used. */
/* > See below for further details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date November 2017 */

/* > \ingroup doubleGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix V stores the elementary reflectors H(i) in the i-th row */
/* > above the diagonal. For example, if M=5 and N=3, the matrix V is */
/* > */
/* > V = ( 1 v1 v1 v1 v1 ) */
/* > ( 1 v2 v2 v2 ) */
/* > ( 1 v3 v3 v3 ) */
/* > */
/* > */
/* > where the vi's represent the vectors which define H(i), which are returned */
/* > in the matrix A. The 1's along the diagonal of V are not stored in A. The */
/* > block reflector H is then given by */
/* > */
/* > H = I - V * T * V**T */
/* > */
/* > where V**T is the transpose of V. */
/* > */
/* > For details of the algorithm, see Elmroth and Gustavson (cited above). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgelqt3_(integer *m, integer *n, complex *a, integer *
lda, complex *t, integer *ldt, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, t_dim1, t_offset, i__1, i__2, i__3, i__4, i__5;
complex q__1;

/* Local variables */
integer i__, j;
extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
integer *, complex *, complex *, integer *, complex *, integer *,
complex *, complex *, integer *);
integer iinfo;
extern /* Subroutine */ int ctrmm_(char *, char *, char *, char *,
integer *, integer *, complex *, complex *, integer *, complex *,
integer *);
integer i1, j1, m1, m2;
extern /* Subroutine */ int clarfg_(integer *, complex *, complex *,
integer *, complex *), xerbla_(char *, integer *, ftnlen);


/* -- LAPACK computational routine (version 3.8.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2017 */


/* ===================================================================== */


/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < *m) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
} else if (*ldt < f2cmax(1,*m)) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGELQT3", &i__1, (ftnlen)7);
return 0;
}

if (*m == 1) {

/* Compute Householder transform when N=1 */

clarfg_(n, &a[a_offset], &a[f2cmin(2,*n) * a_dim1 + 1], lda, &t[t_offset]
);
i__1 = t_dim1 + 1;
r_cnjg(&q__1, &t[t_dim1 + 1]);
t[i__1].r = q__1.r, t[i__1].i = q__1.i;

} else {

/* Otherwise, split A into blocks... */

m1 = *m / 2;
m2 = *m - m1;
/* Computing MIN */
i__1 = m1 + 1;
i1 = f2cmin(i__1,*m);
/* Computing MIN */
i__1 = *m + 1;
j1 = f2cmin(i__1,*n);

/* Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H */

cgelqt3_(&m1, n, &a[a_offset], lda, &t[t_offset], ldt, &iinfo);

/* Compute A(J1:M,1:N) = A(J1:M,1:N) Q1^H [workspace: T(1:N1,J1:N)] */

i__1 = m2;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = m1;
for (j = 1; j <= i__2; ++j) {
i__3 = i__ + m1 + j * t_dim1;
i__4 = i__ + m1 + j * a_dim1;
t[i__3].r = a[i__4].r, t[i__3].i = a[i__4].i;
}
}
ctrmm_("R", "U", "C", "U", &m2, &m1, &c_b1, &a[a_offset], lda, &t[i1
+ t_dim1], ldt);

i__1 = *n - m1;
cgemm_("N", "C", &m2, &m1, &i__1, &c_b1, &a[i1 + i1 * a_dim1], lda, &
a[i1 * a_dim1 + 1], lda, &c_b1, &t[i1 + t_dim1], ldt);

ctrmm_("R", "U", "N", "N", &m2, &m1, &c_b1, &t[t_offset], ldt, &t[i1
+ t_dim1], ldt);

i__1 = *n - m1;
q__1.r = -1.f, q__1.i = 0.f;
cgemm_("N", "N", &m2, &i__1, &m1, &q__1, &t[i1 + t_dim1], ldt, &a[i1 *
a_dim1 + 1], lda, &c_b1, &a[i1 + i1 * a_dim1], lda);

ctrmm_("R", "U", "N", "U", &m2, &m1, &c_b1, &a[a_offset], lda, &t[i1
+ t_dim1], ldt);

i__1 = m2;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = m1;
for (j = 1; j <= i__2; ++j) {
i__3 = i__ + m1 + j * a_dim1;
i__4 = i__ + m1 + j * a_dim1;
i__5 = i__ + m1 + j * t_dim1;
q__1.r = a[i__4].r - t[i__5].r, q__1.i = a[i__4].i - t[i__5]
.i;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
i__3 = i__ + m1 + j * t_dim1;
t[i__3].r = 0.f, t[i__3].i = 0.f;
}
}

/* Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H */

i__1 = *n - m1;
cgelqt3_(&m2, &i__1, &a[i1 + i1 * a_dim1], lda, &t[i1 + i1 * t_dim1],
ldt, &iinfo);

/* Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2 */

i__1 = m2;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = m1;
for (j = 1; j <= i__2; ++j) {
i__3 = j + (i__ + m1) * t_dim1;
i__4 = j + (i__ + m1) * a_dim1;
t[i__3].r = a[i__4].r, t[i__3].i = a[i__4].i;
}
}

ctrmm_("R", "U", "C", "U", &m1, &m2, &c_b1, &a[i1 + i1 * a_dim1], lda,
&t[i1 * t_dim1 + 1], ldt);

i__1 = *n - *m;
cgemm_("N", "C", &m1, &m2, &i__1, &c_b1, &a[j1 * a_dim1 + 1], lda, &a[
i1 + j1 * a_dim1], lda, &c_b1, &t[i1 * t_dim1 + 1], ldt);

q__1.r = -1.f, q__1.i = 0.f;
ctrmm_("L", "U", "N", "N", &m1, &m2, &q__1, &t[t_offset], ldt, &t[i1 *
t_dim1 + 1], ldt)
;

ctrmm_("R", "U", "N", "N", &m1, &m2, &c_b1, &t[i1 + i1 * t_dim1], ldt,
&t[i1 * t_dim1 + 1], ldt);



/* Y = (Y1,Y2); L = [ L1 0 ]; T = [T1 T3] */
/* [ A(1:N1,J1:N) L2 ] [ 0 T2] */

}

return 0;

/* End of CGELQT3 */

} /* cgelqt3_ */


+ 982
- 0
lapack-netlib/SRC/cgels.c View File

@@ -0,0 +1,982 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {0.f,0.f};
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__0 = 0;

/* > \brief <b> CGELS solves overdetermined or underdetermined systems for GE matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGELS + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgels.f
"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgels.f
"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgels.f
"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, */
/* INFO ) */

/* CHARACTER TRANS */
/* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS */
/* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGELS solves overdetermined or underdetermined complex linear systems */
/* > involving an M-by-N matrix A, or its conjugate-transpose, using a QR */
/* > or LQ factorization of A. It is assumed that A has full rank. */
/* > */
/* > The following options are provided: */
/* > */
/* > 1. If TRANS = 'N' and m >= n: find the least squares solution of */
/* > an overdetermined system, i.e., solve the least squares problem */
/* > minimize || B - A*X ||. */
/* > */
/* > 2. If TRANS = 'N' and m < n: find the minimum norm solution of */
/* > an underdetermined system A * X = B. */
/* > */
/* > 3. If TRANS = 'C' and m >= n: find the minimum norm solution of */
/* > an underdetermined system A**H * X = B. */
/* > */
/* > 4. If TRANS = 'C' and m < n: find the least squares solution of */
/* > an overdetermined system, i.e., solve the least squares problem */
/* > minimize || B - A**H * X ||. */
/* > */
/* > Several right hand side vectors b and solution vectors x can be */
/* > handled in a single call; they are stored as the columns of the */
/* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/* > matrix X. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > = 'N': the linear system involves A; */
/* > = 'C': the linear system involves A**H. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of */
/* > columns of the matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > if M >= N, A is overwritten by details of its QR */
/* > factorization as returned by CGEQRF; */
/* > if M < N, A is overwritten by details of its LQ */
/* > factorization as returned by CGELQF. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,NRHS) */
/* > On entry, the matrix B of right hand side vectors, stored */
/* > columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
/* > if TRANS = 'C'. */
/* > On exit, if INFO = 0, B is overwritten by the solution */
/* > vectors, stored columnwise: */
/* > if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
/* > squares solution vectors; the residual sum of squares for the */
/* > solution in each column is given by the sum of squares of the */
/* > modulus of elements N+1 to M in that column; */
/* > if TRANS = 'N' and m < n, rows 1 to N of B contain the */
/* > minimum norm solution vectors; */
/* > if TRANS = 'C' and m >= n, rows 1 to M of B contain the */
/* > minimum norm solution vectors; */
/* > if TRANS = 'C' and m < n, rows 1 to M of B contain the */
/* > least squares solution vectors; the residual sum of squares */
/* > for the solution in each column is given by the sum of */
/* > squares of the modulus of elements M+1 to N in that column. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= MAX(1,M,N). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > LWORK >= f2cmax( 1, MN + f2cmax( MN, NRHS ) ). */
/* > For optimal performance, */
/* > LWORK >= f2cmax( 1, MN + f2cmax( MN, NRHS )*NB ). */
/* > where MN = f2cmin(M,N) and NB is the optimum block size. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, the i-th diagonal element of the */
/* > triangular factor of A is zero, so that A does not have */
/* > full rank; the least squares solution could not be */
/* > computed. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEsolve */

/* ===================================================================== */
/* Subroutine */ int cgels_(char *trans, integer *m, integer *n, integer *
nrhs, complex *a, integer *lda, complex *b, integer *ldb, complex *
work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
real r__1;

/* Local variables */
real anrm, bnrm;
integer brow;
logical tpsd;
integer i__, j, iascl, ibscl;
extern logical lsame_(char *, char *);
integer wsize;
real rwork[1];
integer nb;
extern /* Subroutine */ int slabad_(real *, real *);
extern real clange_(char *, integer *, integer *, complex *, integer *,
real *);
integer mn;
extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *,
integer *, complex *, complex *, integer *, integer *), clascl_(
char *, integer *, integer *, real *, real *, integer *, integer *
, complex *, integer *, integer *);
extern real slamch_(char *);
extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *,
integer *, complex *, complex *, integer *, integer *), claset_(
char *, integer *, integer *, complex *, complex *, complex *,
integer *), xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer scllen;
real bignum;
extern /* Subroutine */ int cunmlq_(char *, char *, integer *, integer *,
integer *, complex *, integer *, complex *, complex *, integer *,
complex *, integer *, integer *), cunmqr_(char *,
char *, integer *, integer *, integer *, complex *, integer *,
complex *, complex *, integer *, complex *, integer *, integer *);
real smlnum;
logical lquery;
extern /* Subroutine */ int ctrtrs_(char *, char *, char *, integer *,
integer *, complex *, integer *, complex *, integer *, integer *);


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input arguments. */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--work;

/* Function Body */
*info = 0;
mn = f2cmin(*m,*n);
lquery = *lwork == -1;
if (! (lsame_(trans, "N") || lsame_(trans, "C"))) {
*info = -1;
} else if (*m < 0) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*lda < f2cmax(1,*m)) {
*info = -6;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = f2cmax(1,*m);
if (*ldb < f2cmax(i__1,*n)) {
*info = -8;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = mn + f2cmax(mn,*nrhs);
if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
*info = -10;
}
}
}

/* Figure out optimal block size */

if (*info == 0 || *info == -10) {

tpsd = TRUE_;
if (lsame_(trans, "N")) {
tpsd = FALSE_;
}

if (*m >= *n) {
nb = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
if (tpsd) {
/* Computing MAX */
i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMQR", "LN", m, nrhs, n, &
c_n1, (ftnlen)6, (ftnlen)2);
nb = f2cmax(i__1,i__2);
} else {
/* Computing MAX */
i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMQR", "LC", m, nrhs, n, &
c_n1, (ftnlen)6, (ftnlen)2);
nb = f2cmax(i__1,i__2);
}
} else {
nb = ilaenv_(&c__1, "CGELQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
if (tpsd) {
/* Computing MAX */
i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &
c_n1, (ftnlen)6, (ftnlen)2);
nb = f2cmax(i__1,i__2);
} else {
/* Computing MAX */
i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMLQ", "LN", n, nrhs, m, &
c_n1, (ftnlen)6, (ftnlen)2);
nb = f2cmax(i__1,i__2);
}
}

/* Computing MAX */
i__1 = 1, i__2 = mn + f2cmax(mn,*nrhs) * nb;
wsize = f2cmax(i__1,i__2);
r__1 = (real) wsize;
work[1].r = r__1, work[1].i = 0.f;

}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGELS ", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

/* Computing MIN */
i__1 = f2cmin(*m,*n);
if (f2cmin(i__1,*nrhs) == 0) {
i__1 = f2cmax(*m,*n);
claset_("Full", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
return 0;
}

/* Get machine parameters */

smlnum = slamch_("S") / slamch_("P");
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);

/* Scale A, B if f2cmax element outside range [SMLNUM,BIGNUM] */

anrm = clange_("M", m, n, &a[a_offset], lda, rwork);
iascl = 0;
if (anrm > 0.f && anrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info);
iascl = 1;
} else if (anrm > bignum) {

/* Scale matrix norm down to BIGNUM */

clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info);
iascl = 2;
} else if (anrm == 0.f) {

/* Matrix all zero. Return zero solution. */

i__1 = f2cmax(*m,*n);
claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
goto L50;
}

brow = *m;
if (tpsd) {
brow = *n;
}
bnrm = clange_("M", &brow, nrhs, &b[b_offset], ldb, rwork);
ibscl = 0;
if (bnrm > 0.f && bnrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

clascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset],
ldb, info);
ibscl = 1;
} else if (bnrm > bignum) {

/* Scale matrix norm down to BIGNUM */

clascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset],
ldb, info);
ibscl = 2;
}

if (*m >= *n) {

/* compute QR factorization of A */

i__1 = *lwork - mn;
cgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
;

/* workspace at least N, optimally N*NB */

if (! tpsd) {

/* Least-Squares Problem f2cmin || A * X - B || */

/* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS) */

i__1 = *lwork - mn;
cunmqr_("Left", "Conjugate transpose", m, nrhs, n, &a[a_offset],
lda, &work[1], &b[b_offset], ldb, &work[mn + 1], &i__1,
info);

/* workspace at least NRHS, optimally NRHS*NB */

/* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */

ctrtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset]
, lda, &b[b_offset], ldb, info);

if (*info > 0) {
return 0;
}

scllen = *n;

} else {

/* Underdetermined system of equations A**T * X = B */

/* B(1:N,1:NRHS) := inv(R**H) * B(1:N,1:NRHS) */

ctrtrs_("Upper", "Conjugate transpose", "Non-unit", n, nrhs, &a[
a_offset], lda, &b[b_offset], ldb, info);

if (*info > 0) {
return 0;
}

/* B(N+1:M,1:NRHS) = ZERO */

i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = *n + 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * b_dim1;
b[i__3].r = 0.f, b[i__3].i = 0.f;
/* L10: */
}
/* L20: */
}

/* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */

i__1 = *lwork - mn;
cunmqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, &
work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);

/* workspace at least NRHS, optimally NRHS*NB */

scllen = *m;

}

} else {

/* Compute LQ factorization of A */

i__1 = *lwork - mn;
cgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
;

/* workspace at least M, optimally M*NB. */

if (! tpsd) {

/* underdetermined system of equations A * X = B */

/* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */

ctrtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset]
, lda, &b[b_offset], ldb, info);

if (*info > 0) {
return 0;
}

/* B(M+1:N,1:NRHS) = 0 */

i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = *m + 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * b_dim1;
b[i__3].r = 0.f, b[i__3].i = 0.f;
/* L30: */
}
/* L40: */
}

/* B(1:N,1:NRHS) := Q(1:N,:)**H * B(1:M,1:NRHS) */

i__1 = *lwork - mn;
cunmlq_("Left", "Conjugate transpose", n, nrhs, m, &a[a_offset],
lda, &work[1], &b[b_offset], ldb, &work[mn + 1], &i__1,
info);

/* workspace at least NRHS, optimally NRHS*NB */

scllen = *n;

} else {

/* overdetermined system f2cmin || A**H * X - B || */

/* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */

i__1 = *lwork - mn;
cunmlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, &
work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);

/* workspace at least NRHS, optimally NRHS*NB */

/* B(1:M,1:NRHS) := inv(L**H) * B(1:M,1:NRHS) */

ctrtrs_("Lower", "Conjugate transpose", "Non-unit", m, nrhs, &a[
a_offset], lda, &b[b_offset], ldb, info);

if (*info > 0) {
return 0;
}

scllen = *m;

}

}

/* Undo scaling */

if (iascl == 1) {
clascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
, ldb, info);
} else if (iascl == 2) {
clascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
, ldb, info);
}
if (ibscl == 1) {
clascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
, ldb, info);
} else if (ibscl == 2) {
clascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
, ldb, info);
}

L50:
r__1 = (real) wsize;
work[1].r = r__1, work[1].i = 0.f;

return 0;

/* End of CGELS */

} /* cgels_ */


+ 1204
- 0
lapack-netlib/SRC/cgelsd.c
File diff suppressed because it is too large
View File


+ 1336
- 0
lapack-netlib/SRC/cgelss.c
File diff suppressed because it is too large
View File


+ 987
- 0
lapack-netlib/SRC/cgelsy.c View File

@@ -0,0 +1,987 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static complex c_b1 = {0.f,0.f};
static complex c_b2 = {1.f,0.f};
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__0 = 0;
static integer c__2 = 2;

/* > \brief <b> CGELSY solves overdetermined or underdetermined systems for GE matrices</b> */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGELSY + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsy.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsy.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsy.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
/* WORK, LWORK, RWORK, INFO ) */

/* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
/* REAL RCOND */
/* INTEGER JPVT( * ) */
/* REAL RWORK( * ) */
/* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGELSY computes the minimum-norm solution to a complex linear least */
/* > squares problem: */
/* > minimize || A * X - B || */
/* > using a complete orthogonal factorization of A. A is an M-by-N */
/* > matrix which may be rank-deficient. */
/* > */
/* > Several right hand side vectors b and solution vectors x can be */
/* > handled in a single call; they are stored as the columns of the */
/* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/* > matrix X. */
/* > */
/* > The routine first computes a QR factorization with column pivoting: */
/* > A * P = Q * [ R11 R12 ] */
/* > [ 0 R22 ] */
/* > with R11 defined as the largest leading submatrix whose estimated */
/* > condition number is less than 1/RCOND. The order of R11, RANK, */
/* > is the effective rank of A. */
/* > */
/* > Then, R22 is considered to be negligible, and R12 is annihilated */
/* > by unitary transformations from the right, arriving at the */
/* > complete orthogonal factorization: */
/* > A * P = Q * [ T11 0 ] * Z */
/* > [ 0 0 ] */
/* > The minimum-norm solution is then */
/* > X = P * Z**H [ inv(T11)*Q1**H*B ] */
/* > [ 0 ] */
/* > where Q1 consists of the first RANK columns of Q. */
/* > */
/* > This routine is basically identical to the original xGELSX except */
/* > three differences: */
/* > o The permutation of matrix B (the right hand side) is faster and */
/* > more simple. */
/* > o The call to the subroutine xGEQPF has been substituted by the */
/* > the call to the subroutine xGEQP3. This subroutine is a Blas-3 */
/* > version of the QR factorization with column pivoting. */
/* > o Matrix B (the right hand side) is updated with Blas-3. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of */
/* > columns of matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, A has been overwritten by details of its */
/* > complete orthogonal factorization. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,NRHS) */
/* > On entry, the M-by-NRHS right hand side matrix B. */
/* > On exit, the N-by-NRHS solution matrix X. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/* > to the front of AP, otherwise column i is a free column. */
/* > On exit, if JPVT(i) = k, then the i-th column of A*P */
/* > was the k-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[in] RCOND */
/* > \verbatim */
/* > RCOND is REAL */
/* > RCOND is used to determine the effective rank of A, which */
/* > is defined as the order of the largest leading triangular */
/* > submatrix R11 in the QR factorization with pivoting of A, */
/* > whose estimated condition number < 1/RCOND. */
/* > \endverbatim */
/* > */
/* > \param[out] RANK */
/* > \verbatim */
/* > RANK is INTEGER */
/* > The effective rank of A, i.e., the order of the submatrix */
/* > R11. This is the same as the order of the submatrix T11 */
/* > in the complete orthogonal factorization of A. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > The unblocked strategy requires that: */
/* > LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS ) */
/* > where MN = f2cmin(M,N). */
/* > The block algorithm requires that: */
/* > LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS ) */
/* > where NB is an upper bound on the blocksize returned */
/* > by ILAENV for the routines CGEQP3, CTZRZF, CTZRQF, CUNMQR, */
/* > and CUNMRZ. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEsolve */

/* > \par Contributors: */
/* ================== */
/* > */
/* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n */
/* > E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n */
/* > G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgelsy_(integer *m, integer *n, integer *nrhs, complex *
a, integer *lda, complex *b, integer *ldb, integer *jpvt, real *rcond,
integer *rank, complex *work, integer *lwork, real *rwork, integer *
info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
real r__1, r__2;
complex q__1;

/* Local variables */
real anrm, bnrm, smin, smax;
integer i__, j, iascl, ibscl;
extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
complex *, integer *);
integer ismin, ismax;
complex c1, c2;
extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *,
integer *, integer *, complex *, complex *, integer *, complex *,
integer *), claic1_(integer *,
integer *, complex *, real *, complex *, complex *, real *,
complex *, complex *);
real wsize;
complex s1, s2;
extern /* Subroutine */ int cgeqp3_(integer *, integer *, complex *,
integer *, integer *, complex *, complex *, integer *, real *,
integer *);
integer nb;
extern /* Subroutine */ int slabad_(real *, real *);
extern real clange_(char *, integer *, integer *, complex *, integer *,
real *);
integer mn;
extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, complex *, integer *, integer *);
extern real slamch_(char *);
extern /* Subroutine */ int claset_(char *, integer *, integer *, complex
*, complex *, complex *, integer *), xerbla_(char *,
integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
real bignum;
integer nb1, nb2, nb3, nb4;
extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *,
integer *, complex *, integer *, complex *, complex *, integer *,
complex *, integer *, integer *);
real sminpr, smaxpr, smlnum;
extern /* Subroutine */ int cunmrz_(char *, char *, integer *, integer *,
integer *, integer *, complex *, integer *, complex *, complex *,
integer *, complex *, integer *, integer *);
integer lwkopt;
logical lquery;
extern /* Subroutine */ int ctzrzf_(integer *, integer *, complex *,
integer *, complex *, complex *, integer *, integer *);


/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--jpvt;
--work;
--rwork;

/* Function Body */
mn = f2cmin(*m,*n);
ismin = mn + 1;
ismax = (mn << 1) + 1;

/* Test the input arguments. */

*info = 0;
nb1 = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
nb2 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
nb3 = ilaenv_(&c__1, "CUNMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
1);
nb4 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
1);
/* Computing MAX */
i__1 = f2cmax(nb1,nb2), i__1 = f2cmax(i__1,nb3);
nb = f2cmax(i__1,nb4);
/* Computing MAX */
i__1 = 1, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = f2cmax(i__1,i__2),
i__2 = (mn << 1) + nb * *nrhs;
lwkopt = f2cmax(i__1,i__2);
q__1.r = (real) lwkopt, q__1.i = 0.f;
work[1].r = q__1.r, work[1].i = q__1.i;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < f2cmax(1,*m)) {
*info = -5;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = f2cmax(1,*m);
if (*ldb < f2cmax(i__1,*n)) {
*info = -7;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = mn << 1, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = mn +
*nrhs;
if (*lwork < mn + f2cmax(i__1,i__2) && ! lquery) {
*info = -12;
}
}
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGELSY", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

/* Computing MIN */
i__1 = f2cmin(*m,*n);
if (f2cmin(i__1,*nrhs) == 0) {
*rank = 0;
return 0;
}

/* Get machine parameters */

smlnum = slamch_("S") / slamch_("P");
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);

/* Scale A, B if f2cmax entries outside range [SMLNUM,BIGNUM] */

anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
iascl = 0;
if (anrm > 0.f && anrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info);
iascl = 1;
} else if (anrm > bignum) {

/* Scale matrix norm down to BIGNUM */

clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info);
iascl = 2;
} else if (anrm == 0.f) {

/* Matrix all zero. Return zero solution. */

i__1 = f2cmax(*m,*n);
claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
*rank = 0;
goto L70;
}

bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
ibscl = 0;
if (bnrm > 0.f && bnrm < smlnum) {

/* Scale matrix norm up to SMLNUM */

clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 1;
} else if (bnrm > bignum) {

/* Scale matrix norm down to BIGNUM */

clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 2;
}

/* Compute QR factorization with column pivoting of A: */
/* A * P = Q * R */

i__1 = *lwork - mn;
cgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1,
&rwork[1], info);
i__1 = mn + 1;
wsize = mn + work[i__1].r;

/* complex workspace: MN+NB*(N+1). real workspace 2*N. */
/* Details of Householder rotations stored in WORK(1:MN). */

/* Determine RANK using incremental condition estimation */

i__1 = ismin;
work[i__1].r = 1.f, work[i__1].i = 0.f;
i__1 = ismax;
work[i__1].r = 1.f, work[i__1].i = 0.f;
smax = c_abs(&a[a_dim1 + 1]);
smin = smax;
if (c_abs(&a[a_dim1 + 1]) == 0.f) {
*rank = 0;
i__1 = f2cmax(*m,*n);
claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
goto L70;
} else {
*rank = 1;
}

L10:
if (*rank < mn) {
i__ = *rank + 1;
claic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &sminpr, &s1, &c1);
claic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
i__ + i__ * a_dim1], &smaxpr, &s2, &c2);

if (smaxpr * *rcond <= sminpr) {
i__1 = *rank;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = ismin + i__ - 1;
i__3 = ismin + i__ - 1;
q__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, q__1.i =
s1.r * work[i__3].i + s1.i * work[i__3].r;
work[i__2].r = q__1.r, work[i__2].i = q__1.i;
i__2 = ismax + i__ - 1;
i__3 = ismax + i__ - 1;
q__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, q__1.i =
s2.r * work[i__3].i + s2.i * work[i__3].r;
work[i__2].r = q__1.r, work[i__2].i = q__1.i;
/* L20: */
}
i__1 = ismin + *rank;
work[i__1].r = c1.r, work[i__1].i = c1.i;
i__1 = ismax + *rank;
work[i__1].r = c2.r, work[i__1].i = c2.i;
smin = sminpr;
smax = smaxpr;
++(*rank);
goto L10;
}
}

/* complex workspace: 3*MN. */

/* Logically partition R = [ R11 R12 ] */
/* [ 0 R22 ] */
/* where R11 = R(1:RANK,1:RANK) */

/* [R11,R12] = [ T11, 0 ] * Y */

if (*rank < *n) {
i__1 = *lwork - (mn << 1);
ctzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) +
1], &i__1, info);
}

/* complex workspace: 2*MN. */
/* Details of Householder rotations stored in WORK(MN+1:2*MN) */

/* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS) */

i__1 = *lwork - (mn << 1);
cunmqr_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, &
work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info);
/* Computing MAX */
i__1 = (mn << 1) + 1;
r__1 = wsize, r__2 = (mn << 1) + work[i__1].r;
wsize = f2cmax(r__1,r__2);

/* complex workspace: 2*MN+NB*NRHS. */

/* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

ctrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[
a_offset], lda, &b[b_offset], ldb);

i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = *rank + 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * b_dim1;
b[i__3].r = 0.f, b[i__3].i = 0.f;
/* L30: */
}
/* L40: */
}

/* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS) */

if (*rank < *n) {
i__1 = *n - *rank;
i__2 = *lwork - (mn << 1);
cunmrz_("Left", "Conjugate transpose", n, nrhs, rank, &i__1, &a[
a_offset], lda, &work[mn + 1], &b[b_offset], ldb, &work[(mn <<
1) + 1], &i__2, info);
}

/* complex workspace: 2*MN+NRHS. */

/* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = jpvt[i__];
i__4 = i__ + j * b_dim1;
work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
/* L50: */
}
ccopy_(n, &work[1], &c__1, &b[j * b_dim1 + 1], &c__1);
/* L60: */
}

/* complex workspace: N. */

/* Undo scaling */

if (iascl == 1) {
clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
info);
clascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
lda, info);
} else if (iascl == 2) {
clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
info);
clascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
lda, info);
}
if (ibscl == 1) {
clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
} else if (ibscl == 2) {
clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
}

L70:
q__1.r = (real) lwkopt, q__1.i = 0.f;
work[1].r = q__1.r, work[1].i = q__1.i;

return 0;

/* End of CGELSY */

} /* cgelsy_ */


+ 707
- 0
lapack-netlib/SRC/cgemlq.c View File

@@ -0,0 +1,707 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGEMLQ */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, */
/* $ TSIZE, C, LDC, WORK, LWORK, INFO ) */


/* CHARACTER SIDE, TRANS */
/* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC */
/* COMPLEX A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) */

/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEMLQ overwrites the general real M-by-N matrix C with */
/* > */
/* > SIDE = 'L' SIDE = 'R' */
/* > TRANS = 'N': Q * C C * Q */
/* > TRANS = 'C': Q**H * C C * Q**H */
/* > where Q is a complex unitary matrix defined as the product */
/* > of blocked elementary reflectors computed by short wide */
/* > LQ factorization (CGELQ) */
/* > */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': apply Q or Q**T from the Left; */
/* > = 'R': apply Q or Q**T from the Right. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > = 'N': No transpose, apply Q; */
/* > = 'T': Transpose, apply Q**T. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >=0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The number of elementary reflectors whose product defines */
/* > the matrix Q. */
/* > If SIDE = 'L', M >= K >= 0; */
/* > if SIDE = 'R', N >= K >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension */
/* > (LDA,M) if SIDE = 'L', */
/* > (LDA,N) if SIDE = 'R' */
/* > Part of the data structure to represent Q as returned by CGELQ. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,K). */
/* > \endverbatim */
/* > */
/* > \param[in] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (MAX(5,TSIZE)). */
/* > Part of the data structure to represent Q as returned by CGELQ. */
/* > \endverbatim */
/* > */
/* > \param[in] TSIZE */
/* > \verbatim */
/* > TSIZE is INTEGER */
/* > The dimension of the array T. TSIZE >= 5. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is COMPLEX array, dimension (LDC,N) */
/* > On entry, the M-by-N matrix C. */
/* > On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > (workspace) COMPLEX array, dimension (MAX(1,LWORK)) */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If LWORK = -1, then a workspace query is assumed. The routine */
/* > only calculates the size of the WORK array, returns this */
/* > value as WORK(1), and no error message related to WORK */
/* > is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \par Further Details */
/* ==================== */
/* > */
/* > \verbatim */
/* > */
/* > These details are particular for this LAPACK implementation. Users should not */
/* > take them for granted. These details may change in the future, and are not likely */
/* > true for another LAPACK implementation. These details are relevant if one wants */
/* > to try to understand the code. They are not part of the interface. */
/* > */
/* > In this version, */
/* > */
/* > T(2): row block size (MB) */
/* > T(3): column block size (NB) */
/* > T(6:TSIZE): data structure needed for Q, computed by */
/* > CLASWQR or CGELQT */
/* > */
/* > Depending on the matrix dimensions M and N, and row and column */
/* > block sizes MB and NB returned by ILAENV, CGELQ will use either */
/* > CLASWLQ (if the matrix is wide-and-short) or CGELQT to compute */
/* > the LQ factorization. */
/* > This version of CGEMLQ will use either CLAMSWLQ or CGEMLQT to */
/* > multiply matrix Q by another matrix. */
/* > Further Details in CLAMSWLQ or CGEMLQT. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgemlq_(char *side, char *trans, integer *m, integer *n,
integer *k, complex *a, integer *lda, complex *t, integer *tsize,
complex *c__, integer *ldc, complex *work, integer *lwork, integer *
info)
{
/* System generated locals */
integer a_dim1, a_offset, c_dim1, c_offset, i__1;
real r__1;

/* Local variables */
logical left, tran;
extern /* Subroutine */ int clamswlq_(char *, char *, integer *, integer *
, integer *, integer *, integer *, complex *, integer *, complex *
, integer *, complex *, integer *, complex *, integer *, integer *
);
extern logical lsame_(char *, char *);
logical right;
integer mb, nb, mn, lw, nblcks;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical notran, lquery;
extern /* Subroutine */ int cgemlqt_(char *, char *, integer *, integer *,
integer *, integer *, complex *, integer *, complex *, integer *,
complex *, integer *, complex *, integer *);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--t;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
--work;

/* Function Body */
lquery = *lwork == -1;
notran = lsame_(trans, "N");
tran = lsame_(trans, "C");
left = lsame_(side, "L");
right = lsame_(side, "R");

mb = (integer) t[2].r;
nb = (integer) t[3].r;
if (left) {
lw = *n * mb;
mn = *m;
} else {
lw = *m * mb;
mn = *n;
}

if (nb > *k && mn > *k) {
if ((mn - *k) % (nb - *k) == 0) {
nblcks = (mn - *k) / (nb - *k);
} else {
nblcks = (mn - *k) / (nb - *k) + 1;
}
} else {
nblcks = 1;
}

*info = 0;
if (! left && ! right) {
*info = -1;
} else if (! tran && ! notran) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > mn) {
*info = -5;
} else if (*lda < f2cmax(1,*k)) {
*info = -7;
} else if (*tsize < 5) {
*info = -9;
} else if (*ldc < f2cmax(1,*m)) {
*info = -11;
} else if (*lwork < f2cmax(1,lw) && ! lquery) {
*info = -13;
}

if (*info == 0) {
r__1 = (real) lw;
work[1].r = r__1, work[1].i = 0.f;
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEMLQ", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

/* Computing MIN */
i__1 = f2cmin(*m,*n);
if (f2cmin(i__1,*k) == 0) {
return 0;
}

/* Computing MAX */
i__1 = f2cmax(*m,*n);
if (left && *m <= *k || right && *n <= *k || nb <= *k || nb >= f2cmax(i__1,*
k)) {
cgemlqt_(side, trans, m, n, k, &mb, &a[a_offset], lda, &t[6], &mb, &
c__[c_offset], ldc, &work[1], info);
} else {
clamswlq_(side, trans, m, n, k, &mb, &nb, &a[a_offset], lda, &t[6], &
mb, &c__[c_offset], ldc, &work[1], lwork, info);
}

r__1 = (real) lw;
work[1].r = r__1, work[1].i = 0.f;

return 0;

/* End of CGEMLQ */

} /* cgemlq_ */


+ 708
- 0
lapack-netlib/SRC/cgemlqt.c View File

@@ -0,0 +1,708 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGEMLQT */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT, */
/* C, LDC, WORK, INFO ) */

/* CHARACTER SIDE, TRANS */
/* INTEGER INFO, K, LDV, LDC, M, N, MB, LDT */
/* COMPLEX V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEMLQT overwrites the general real M-by-N matrix C with */
/* > */
/* > SIDE = 'L' SIDE = 'R' */
/* > TRANS = 'N': Q C C Q */
/* > TRANS = 'C': Q**H C C Q**H */
/* > */
/* > where Q is a complex orthogonal matrix defined as the product of K */
/* > elementary reflectors: */
/* > */
/* > Q = H(1) H(2) . . . H(K) = I - V T V**H */
/* > */
/* > generated using the compact WY representation as returned by CGELQT. */
/* > */
/* > Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': apply Q or Q**H from the Left; */
/* > = 'R': apply Q or Q**H from the Right. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > = 'N': No transpose, apply Q; */
/* > = 'C': Transpose, apply Q**H. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The number of elementary reflectors whose product defines */
/* > the matrix Q. */
/* > If SIDE = 'L', M >= K >= 0; */
/* > if SIDE = 'R', N >= K >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] MB */
/* > \verbatim */
/* > MB is INTEGER */
/* > The block size used for the storage of T. K >= MB >= 1. */
/* > This must be the same value of MB used to generate T */
/* > in DGELQT. */
/* > \endverbatim */
/* > */
/* > \param[in] V */
/* > \verbatim */
/* > V is COMPLEX array, dimension */
/* > (LDV,M) if SIDE = 'L', */
/* > (LDV,N) if SIDE = 'R' */
/* > The i-th row must contain the vector which defines the */
/* > elementary reflector H(i), for i = 1,2,...,k, as returned by */
/* > DGELQT in the first K rows of its array argument A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV */
/* > \verbatim */
/* > LDV is INTEGER */
/* > The leading dimension of the array V. LDV >= f2cmax(1,K). */
/* > \endverbatim */
/* > */
/* > \param[in] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (LDT,K) */
/* > The upper triangular factors of the block reflectors */
/* > as returned by DGELQT, stored as a MB-by-K matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= MB. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is COMPLEX array, dimension (LDC,N) */
/* > On entry, the M-by-N matrix C. */
/* > On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array. The dimension of */
/* > WORK is N*MB if SIDE = 'L', or M*MB if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date November 2017 */

/* > \ingroup doubleGEcomputational */

/* ===================================================================== */
/* Subroutine */ int cgemlqt_(char *side, char *trans, integer *m, integer *n,
integer *k, integer *mb, complex *v, integer *ldv, complex *t,
integer *ldt, complex *c__, integer *ldc, complex *work, integer *
info)
{
/* System generated locals */
integer v_dim1, v_offset, c_dim1, c_offset, t_dim1, t_offset, i__1, i__2,
i__3, i__4;

/* Local variables */
logical left, tran;
integer i__;
extern logical lsame_(char *, char *);
logical right;
integer ib, kf;
extern /* Subroutine */ int clarfb_(char *, char *, char *, char *,
integer *, integer *, integer *, complex *, integer *, complex *,
integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *, ftnlen);
logical notran;
integer ldwork;


/* -- LAPACK computational routine (version 3.8.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2017 */


/* ===================================================================== */



/* Parameter adjustments */
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
--work;

/* Function Body */
*info = 0;
left = lsame_(side, "L");
right = lsame_(side, "R");
tran = lsame_(trans, "C");
notran = lsame_(trans, "N");

if (left) {
ldwork = f2cmax(1,*n);
} else if (right) {
ldwork = f2cmax(1,*m);
}
if (! left && ! right) {
*info = -1;
} else if (! tran && ! notran) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0) {
*info = -5;
} else if (*mb < 1 || *mb > *k && *k > 0) {
*info = -6;
} else if (*ldv < f2cmax(1,*k)) {
*info = -8;
} else if (*ldt < *mb) {
*info = -10;
} else if (*ldc < f2cmax(1,*m)) {
*info = -12;
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEMLQT", &i__1, (ftnlen)7);
return 0;
}


if (*m == 0 || *n == 0 || *k == 0) {
return 0;
}

if (left && notran) {

i__1 = *k;
i__2 = *mb;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__3 = *mb, i__4 = *k - i__ + 1;
ib = f2cmin(i__3,i__4);
i__3 = *m - i__ + 1;
clarfb_("L", "C", "F", "R", &i__3, n, &ib, &v[i__ + i__ * v_dim1],
ldv, &t[i__ * t_dim1 + 1], ldt, &c__[i__ + c_dim1], ldc,
&work[1], &ldwork);
}

} else if (right && tran) {

i__2 = *k;
i__1 = *mb;
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
/* Computing MIN */
i__3 = *mb, i__4 = *k - i__ + 1;
ib = f2cmin(i__3,i__4);
i__3 = *n - i__ + 1;
clarfb_("R", "N", "F", "R", m, &i__3, &ib, &v[i__ + i__ * v_dim1],
ldv, &t[i__ * t_dim1 + 1], ldt, &c__[i__ * c_dim1 + 1],
ldc, &work[1], &ldwork);
}

} else if (left && tran) {

kf = (*k - 1) / *mb * *mb + 1;
i__1 = -(*mb);
for (i__ = kf; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
/* Computing MIN */
i__2 = *mb, i__3 = *k - i__ + 1;
ib = f2cmin(i__2,i__3);
i__2 = *m - i__ + 1;
clarfb_("L", "N", "F", "R", &i__2, n, &ib, &v[i__ + i__ * v_dim1],
ldv, &t[i__ * t_dim1 + 1], ldt, &c__[i__ + c_dim1], ldc,
&work[1], &ldwork);
}

} else if (right && notran) {

kf = (*k - 1) / *mb * *mb + 1;
i__1 = -(*mb);
for (i__ = kf; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
/* Computing MIN */
i__2 = *mb, i__3 = *k - i__ + 1;
ib = f2cmin(i__2,i__3);
i__2 = *n - i__ + 1;
clarfb_("R", "C", "F", "R", m, &i__2, &ib, &v[i__ + i__ * v_dim1],
ldv, &t[i__ * t_dim1 + 1], ldt, &c__[i__ * c_dim1 + 1],
ldc, &work[1], &ldwork);
}

}

return 0;

/* End of CGEMLQT */

} /* cgemlqt_ */


+ 706
- 0
lapack-netlib/SRC/cgemqr.c View File

@@ -0,0 +1,706 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGEMQR */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, */
/* $ TSIZE, C, LDC, WORK, LWORK, INFO ) */


/* CHARACTER SIDE, TRANS */
/* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC */
/* COMPLEX A( LDA, * ), T( * ), C( LDC, * ), WORK( * ) */

/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEMQR overwrites the general real M-by-N matrix C with */
/* > */
/* > SIDE = 'L' SIDE = 'R' */
/* > TRANS = 'N': Q * C C * Q */
/* > TRANS = 'T': Q**H * C C * Q**H */
/* > */
/* > where Q is a complex unitary matrix defined as the product */
/* > of blocked elementary reflectors computed by tall skinny */
/* > QR factorization (CGEQR) */
/* > */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': apply Q or Q**T from the Left; */
/* > = 'R': apply Q or Q**T from the Right. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > = 'N': No transpose, apply Q; */
/* > = 'T': Transpose, apply Q**T. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >=0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The number of elementary reflectors whose product defines */
/* > the matrix Q. */
/* > If SIDE = 'L', M >= K >= 0; */
/* > if SIDE = 'R', N >= K >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,K) */
/* > Part of the data structure to represent Q as returned by CGEQR. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. */
/* > If SIDE = 'L', LDA >= f2cmax(1,M); */
/* > if SIDE = 'R', LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (MAX(5,TSIZE)). */
/* > Part of the data structure to represent Q as returned by CGEQR. */
/* > \endverbatim */
/* > */
/* > \param[in] TSIZE */
/* > \verbatim */
/* > TSIZE is INTEGER */
/* > The dimension of the array T. TSIZE >= 5. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is COMPLEX array, dimension (LDC,N) */
/* > On entry, the M-by-N matrix C. */
/* > On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > (workspace) COMPLEX array, dimension (MAX(1,LWORK)) */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If LWORK = -1, then a workspace query is assumed. The routine */
/* > only calculates the size of the WORK array, returns this */
/* > value as WORK(1), and no error message related to WORK */
/* > is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \par Further Details */
/* ==================== */
/* > */
/* > \verbatim */
/* > */
/* > These details are particular for this LAPACK implementation. Users should not */
/* > take them for granted. These details may change in the future, and are not likely */
/* > true for another LAPACK implementation. These details are relevant if one wants */
/* > to try to understand the code. They are not part of the interface. */
/* > */
/* > In this version, */
/* > */
/* > T(2): row block size (MB) */
/* > T(3): column block size (NB) */
/* > T(6:TSIZE): data structure needed for Q, computed by */
/* > CLATSQR or CGEQRT */
/* > */
/* > Depending on the matrix dimensions M and N, and row and column */
/* > block sizes MB and NB returned by ILAENV, CGEQR will use either */
/* > CLATSQR (if the matrix is tall-and-skinny) or CGEQRT to compute */
/* > the QR factorization. */
/* > This version of CGEMQR will use either CLAMTSQR or CGEMQRT to */
/* > multiply matrix Q by another matrix. */
/* > Further Details in CLAMTSQR or CGEMQRT. */
/* > */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgemqr_(char *side, char *trans, integer *m, integer *n,
integer *k, complex *a, integer *lda, complex *t, integer *tsize,
complex *c__, integer *ldc, complex *work, integer *lwork, integer *
info)
{
/* System generated locals */
integer a_dim1, a_offset, c_dim1, c_offset, i__1;

/* Local variables */
logical left, tran;
extern /* Subroutine */ int clamtsqr_(char *, char *, integer *, integer *
, integer *, integer *, integer *, complex *, integer *, complex *
, integer *, complex *, integer *, complex *, integer *, integer *
);
extern logical lsame_(char *, char *);
logical right;
integer mb, nb, mn, lw, nblcks;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical notran, lquery;
extern /* Subroutine */ int cgemqrt_(char *, char *, integer *, integer *,
integer *, integer *, complex *, integer *, complex *, integer *,
complex *, integer *, complex *, integer *);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--t;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
--work;

/* Function Body */
lquery = *lwork == -1;
notran = lsame_(trans, "N");
tran = lsame_(trans, "C");
left = lsame_(side, "L");
right = lsame_(side, "R");

mb = (integer) t[2].r;
nb = (integer) t[3].r;
if (left) {
lw = *n * nb;
mn = *m;
} else {
lw = mb * nb;
mn = *n;
}

if (mb > *k && mn > *k) {
if ((mn - *k) % (mb - *k) == 0) {
nblcks = (mn - *k) / (mb - *k);
} else {
nblcks = (mn - *k) / (mb - *k) + 1;
}
} else {
nblcks = 1;
}

*info = 0;
if (! left && ! right) {
*info = -1;
} else if (! tran && ! notran) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > mn) {
*info = -5;
} else if (*lda < f2cmax(1,mn)) {
*info = -7;
} else if (*tsize < 5) {
*info = -9;
} else if (*ldc < f2cmax(1,*m)) {
*info = -11;
} else if (*lwork < f2cmax(1,lw) && ! lquery) {
*info = -13;
}

if (*info == 0) {
work[1].r = (real) lw, work[1].i = 0.f;
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEMQR", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

/* Computing MIN */
i__1 = f2cmin(*m,*n);
if (f2cmin(i__1,*k) == 0) {
return 0;
}

/* Computing MAX */
i__1 = f2cmax(*m,*n);
if (left && *m <= *k || right && *n <= *k || mb <= *k || mb >= f2cmax(i__1,*
k)) {
cgemqrt_(side, trans, m, n, k, &nb, &a[a_offset], lda, &t[6], &nb, &
c__[c_offset], ldc, &work[1], info);
} else {
clamtsqr_(side, trans, m, n, k, &mb, &nb, &a[a_offset], lda, &t[6], &
nb, &c__[c_offset], ldc, &work[1], lwork, info);
}

work[1].r = (real) lw, work[1].i = 0.f;

return 0;

/* End of CGEMQR */

} /* cgemqr_ */


+ 728
- 0
lapack-netlib/SRC/cgemqrt.c View File

@@ -0,0 +1,728 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* > \brief \b CGEMQRT */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEMQRT + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgemqrt
.f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgemqrt
.f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgemqrt
.f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEMQRT( SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT, */
/* C, LDC, WORK, INFO ) */

/* CHARACTER SIDE, TRANS */
/* INTEGER INFO, K, LDV, LDC, M, N, NB, LDT */
/* COMPLEX V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEMQRT overwrites the general complex M-by-N matrix C with */
/* > */
/* > SIDE = 'L' SIDE = 'R' */
/* > TRANS = 'N': Q C C Q */
/* > TRANS = 'C': Q**H C C Q**H */
/* > */
/* > where Q is a complex orthogonal matrix defined as the product of K */
/* > elementary reflectors: */
/* > */
/* > Q = H(1) H(2) . . . H(K) = I - V T V**H */
/* > */
/* > generated using the compact WY representation as returned by CGEQRT. */
/* > */
/* > Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': apply Q or Q**H from the Left; */
/* > = 'R': apply Q or Q**H from the Right. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > = 'N': No transpose, apply Q; */
/* > = 'C': Transpose, apply Q**H. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The number of elementary reflectors whose product defines */
/* > the matrix Q. */
/* > If SIDE = 'L', M >= K >= 0; */
/* > if SIDE = 'R', N >= K >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NB */
/* > \verbatim */
/* > NB is INTEGER */
/* > The block size used for the storage of T. K >= NB >= 1. */
/* > This must be the same value of NB used to generate T */
/* > in CGEQRT. */
/* > \endverbatim */
/* > */
/* > \param[in] V */
/* > \verbatim */
/* > V is COMPLEX array, dimension (LDV,K) */
/* > The i-th column must contain the vector which defines the */
/* > elementary reflector H(i), for i = 1,2,...,k, as returned by */
/* > CGEQRT in the first K columns of its array argument A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV */
/* > \verbatim */
/* > LDV is INTEGER */
/* > The leading dimension of the array V. */
/* > If SIDE = 'L', LDA >= f2cmax(1,M); */
/* > if SIDE = 'R', LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (LDT,K) */
/* > The upper triangular factors of the block reflectors */
/* > as returned by CGEQRT, stored as a NB-by-N matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= NB. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is COMPLEX array, dimension (LDC,N) */
/* > On entry, the M-by-N matrix C. */
/* > On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array. The dimension of WORK is */
/* > N*NB if SIDE = 'L', or M*NB if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* ===================================================================== */
/* Subroutine */ int cgemqrt_(char *side, char *trans, integer *m, integer *n,
integer *k, integer *nb, complex *v, integer *ldv, complex *t,
integer *ldt, complex *c__, integer *ldc, complex *work, integer *
info)
{
/* System generated locals */
integer v_dim1, v_offset, c_dim1, c_offset, t_dim1, t_offset, i__1, i__2,
i__3, i__4;

/* Local variables */
logical left, tran;
integer i__, q;
extern logical lsame_(char *, char *);
logical right;
integer ib, kf;
extern /* Subroutine */ int clarfb_(char *, char *, char *, char *,
integer *, integer *, integer *, complex *, integer *, complex *,
integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *, ftnlen);
logical notran;
integer ldwork;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */



/* Parameter adjustments */
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
--work;

/* Function Body */
*info = 0;
left = lsame_(side, "L");
right = lsame_(side, "R");
tran = lsame_(trans, "C");
notran = lsame_(trans, "N");

if (left) {
ldwork = f2cmax(1,*n);
q = *m;
} else if (right) {
ldwork = f2cmax(1,*m);
q = *n;
}
if (! left && ! right) {
*info = -1;
} else if (! tran && ! notran) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > q) {
*info = -5;
} else if (*nb < 1 || *nb > *k && *k > 0) {
*info = -6;
} else if (*ldv < f2cmax(1,q)) {
*info = -8;
} else if (*ldt < *nb) {
*info = -10;
} else if (*ldc < f2cmax(1,*m)) {
*info = -12;
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEMQRT", &i__1, (ftnlen)7);
return 0;
}


if (*m == 0 || *n == 0 || *k == 0) {
return 0;
}

if (left && tran) {

i__1 = *k;
i__2 = *nb;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__3 = *nb, i__4 = *k - i__ + 1;
ib = f2cmin(i__3,i__4);
i__3 = *m - i__ + 1;
clarfb_("L", "C", "F", "C", &i__3, n, &ib, &v[i__ + i__ * v_dim1],
ldv, &t[i__ * t_dim1 + 1], ldt, &c__[i__ + c_dim1], ldc,
&work[1], &ldwork);
}

} else if (right && notran) {

i__2 = *k;
i__1 = *nb;
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
/* Computing MIN */
i__3 = *nb, i__4 = *k - i__ + 1;
ib = f2cmin(i__3,i__4);
i__3 = *n - i__ + 1;
clarfb_("R", "N", "F", "C", m, &i__3, &ib, &v[i__ + i__ * v_dim1],
ldv, &t[i__ * t_dim1 + 1], ldt, &c__[i__ * c_dim1 + 1],
ldc, &work[1], &ldwork);
}

} else if (left && notran) {

kf = (*k - 1) / *nb * *nb + 1;
i__1 = -(*nb);
for (i__ = kf; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
/* Computing MIN */
i__2 = *nb, i__3 = *k - i__ + 1;
ib = f2cmin(i__2,i__3);
i__2 = *m - i__ + 1;
clarfb_("L", "N", "F", "C", &i__2, n, &ib, &v[i__ + i__ * v_dim1],
ldv, &t[i__ * t_dim1 + 1], ldt, &c__[i__ + c_dim1], ldc,
&work[1], &ldwork);
}

} else if (right && tran) {

kf = (*k - 1) / *nb * *nb + 1;
i__1 = -(*nb);
for (i__ = kf; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
/* Computing MIN */
i__2 = *nb, i__3 = *k - i__ + 1;
ib = f2cmin(i__2,i__3);
i__2 = *n - i__ + 1;
clarfb_("R", "C", "F", "C", m, &i__2, &ib, &v[i__ + i__ * v_dim1],
ldv, &t[i__ * t_dim1 + 1], ldt, &c__[i__ * c_dim1 + 1],
ldc, &work[1], &ldwork);
}

}

return 0;

/* End of CGEMQRT */

} /* cgemqrt_ */


+ 617
- 0
lapack-netlib/SRC/cgeql2.c View File

@@ -0,0 +1,617 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b CGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorit
hm. */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEQL2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeql2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeql2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeql2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEQL2( M, N, A, LDA, TAU, WORK, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEQL2 computes a QL factorization of a complex m by n matrix A: */
/* > A = Q * L. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the m by n matrix A. */
/* > On exit, if m >= n, the lower triangle of the subarray */
/* > A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; */
/* > if m <= n, the elements on and below the (n-m)-th */
/* > superdiagonal contain the m by n lower trapezoidal matrix L; */
/* > the remaining elements, with the array TAU, represent the */
/* > unitary matrix Q as a product of elementary reflectors */
/* > (see Further Details). */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors (see Further */
/* > Details). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(k) . . . H(2) H(1), where k = f2cmin(m,n). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in */
/* > A(1:m-k+i-1,n-k+i), and tau in TAU(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgeql2_(integer *m, integer *n, complex *a, integer *lda,
complex *tau, complex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
complex q__1;

/* Local variables */
integer i__, k;
complex alpha;
extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
, integer *, complex *, complex *, integer *, complex *),
clarfg_(integer *, complex *, complex *, integer *, complex *),
xerbla_(char *, integer *, ftnlen);


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEQL2", &i__1, (ftnlen)6);
return 0;
}

k = f2cmin(*m,*n);

for (i__ = k; i__ >= 1; --i__) {

/* Generate elementary reflector H(i) to annihilate */
/* A(1:m-k+i-1,n-k+i) */

i__1 = *m - k + i__ + (*n - k + i__) * a_dim1;
alpha.r = a[i__1].r, alpha.i = a[i__1].i;
i__1 = *m - k + i__;
clarfg_(&i__1, &alpha, &a[(*n - k + i__) * a_dim1 + 1], &c__1, &tau[
i__]);

/* Apply H(i)**H to A(1:m-k+i,1:n-k+i-1) from the left */

i__1 = *m - k + i__ + (*n - k + i__) * a_dim1;
a[i__1].r = 1.f, a[i__1].i = 0.f;
i__1 = *m - k + i__;
i__2 = *n - k + i__ - 1;
r_cnjg(&q__1, &tau[i__]);
clarf_("Left", &i__1, &i__2, &a[(*n - k + i__) * a_dim1 + 1], &c__1, &
q__1, &a[a_offset], lda, &work[1]);
i__1 = *m - k + i__ + (*n - k + i__) * a_dim1;
a[i__1].r = alpha.r, a[i__1].i = alpha.i;
/* L10: */
}
return 0;

/* End of CGEQL2 */

} /* cgeql2_ */


+ 731
- 0
lapack-netlib/SRC/cgeqlf.c View File

@@ -0,0 +1,731 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;

/* > \brief \b CGEQLF */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEQLF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqlf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqlf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqlf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) */

/* INTEGER INFO, LDA, LWORK, M, N */
/* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEQLF computes a QL factorization of a complex M-by-N matrix A: */
/* > A = Q * L. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, */
/* > if m >= n, the lower triangle of the subarray */
/* > A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; */
/* > if m <= n, the elements on and below the (n-m)-th */
/* > superdiagonal contain the M-by-N lower trapezoidal matrix L; */
/* > the remaining elements, with the array TAU, represent the */
/* > unitary matrix Q as a product of elementary reflectors */
/* > (see Further Details). */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors (see Further */
/* > Details). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= f2cmax(1,N). */
/* > For optimum performance LWORK >= N*NB, where NB is */
/* > the optimal blocksize. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(k) . . . H(2) H(1), where k = f2cmin(m,n). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in */
/* > A(1:m-k+i-1,n-k+i), and tau in TAU(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgeqlf_(integer *m, integer *n, complex *a, integer *lda,
complex *tau, complex *work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

/* Local variables */
integer i__, k, nbmin, iinfo;
extern /* Subroutine */ int cgeql2_(integer *, integer *, complex *,
integer *, complex *, complex *, integer *);
integer ib, nb, ki, kk;
extern /* Subroutine */ int clarfb_(char *, char *, char *, char *,
integer *, integer *, integer *, complex *, integer *, complex *,
integer *, complex *, integer *, complex *, integer *);
integer mu, nu, nx;
extern /* Subroutine */ int clarft_(char *, char *, integer *, integer *,
complex *, integer *, complex *, complex *, integer *), xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer ldwork, lwkopt;
logical lquery;
integer iws;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;

/* Function Body */
*info = 0;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}

if (*info == 0) {
k = f2cmin(*m,*n);
if (k == 0) {
lwkopt = 1;
} else {
nb = ilaenv_(&c__1, "CGEQLF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
lwkopt = *n * nb;
}
work[1].r = (real) lwkopt, work[1].i = 0.f;

if (*lwork < f2cmax(1,*n) && ! lquery) {
*info = -7;
}
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEQLF", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

if (k == 0) {
return 0;
}

nbmin = 2;
nx = 1;
iws = *n;
if (nb > 1 && nb < k) {

/* Determine when to cross over from blocked to unblocked code. */

/* Computing MAX */
i__1 = 0, i__2 = ilaenv_(&c__3, "CGEQLF", " ", m, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
nx = f2cmax(i__1,i__2);
if (nx < k) {

/* Determine if workspace is large enough for blocked code. */

ldwork = *n;
iws = ldwork * nb;
if (*lwork < iws) {

/* Not enough workspace to use optimal NB: reduce NB and */
/* determine the minimum value of NB. */

nb = *lwork / ldwork;
/* Computing MAX */
i__1 = 2, i__2 = ilaenv_(&c__2, "CGEQLF", " ", m, n, &c_n1, &
c_n1, (ftnlen)6, (ftnlen)1);
nbmin = f2cmax(i__1,i__2);
}
}
}

if (nb >= nbmin && nb < k && nx < k) {

/* Use blocked code initially. */
/* The last kk columns are handled by the block method. */

ki = (k - nx - 1) / nb * nb;
/* Computing MIN */
i__1 = k, i__2 = ki + nb;
kk = f2cmin(i__1,i__2);

i__1 = k - kk + 1;
i__2 = -nb;
for (i__ = k - kk + ki + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__
+= i__2) {
/* Computing MIN */
i__3 = k - i__ + 1;
ib = f2cmin(i__3,nb);

/* Compute the QL factorization of the current block */
/* A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1) */

i__3 = *m - k + i__ + ib - 1;
cgeql2_(&i__3, &ib, &a[(*n - k + i__) * a_dim1 + 1], lda, &tau[
i__], &work[1], &iinfo);
if (*n - k + i__ > 1) {

/* Form the triangular factor of the block reflector */
/* H = H(i+ib-1) . . . H(i+1) H(i) */

i__3 = *m - k + i__ + ib - 1;
clarft_("Backward", "Columnwise", &i__3, &ib, &a[(*n - k +
i__) * a_dim1 + 1], lda, &tau[i__], &work[1], &ldwork);

/* Apply H**H to A(1:m-k+i+ib-1,1:n-k+i-1) from the left */

i__3 = *m - k + i__ + ib - 1;
i__4 = *n - k + i__ - 1;
clarfb_("Left", "Conjugate transpose", "Backward", "Columnwi"
"se", &i__3, &i__4, &ib, &a[(*n - k + i__) * a_dim1 +
1], lda, &work[1], &ldwork, &a[a_offset], lda, &work[
ib + 1], &ldwork);
}
/* L10: */
}
mu = *m - k + i__ + nb - 1;
nu = *n - k + i__ + nb - 1;
} else {
mu = *m;
nu = *n;
}

/* Use unblocked code to factor the last or only block */

if (mu > 0 && nu > 0) {
cgeql2_(&mu, &nu, &a[a_offset], lda, &tau[1], &work[1], &iinfo);
}

work[1].r = (real) iws, work[1].i = 0.f;
return 0;

/* End of CGEQLF */

} /* cgeqlf_ */


+ 826
- 0
lapack-netlib/SRC/cgeqp3.c View File

@@ -0,0 +1,826 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;

/* > \brief \b CGEQP3 */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEQP3 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqp3.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqp3.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqp3.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, */
/* INFO ) */

/* INTEGER INFO, LDA, LWORK, M, N */
/* INTEGER JPVT( * ) */
/* REAL RWORK( * ) */
/* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEQP3 computes a QR factorization with column pivoting of a */
/* > matrix A: A*P = Q*R using Level 3 BLAS. */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the upper triangle of the array contains the */
/* > f2cmin(M,N)-by-N upper trapezoidal matrix R; the elements below */
/* > the diagonal, together with the array TAU, represent the */
/* > unitary matrix Q as a product of f2cmin(M,N) elementary */
/* > reflectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] JPVT */
/* > \verbatim */
/* > JPVT is INTEGER array, dimension (N) */
/* > On entry, if JPVT(J).ne.0, the J-th column of A is permuted */
/* > to the front of A*P (a leading column); if JPVT(J)=0, */
/* > the J-th column of A is a free column. */
/* > On exit, if JPVT(J)=K, then the J-th column of A*P was the */
/* > the K-th column of A. */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO=0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= N+1. */
/* > For optimal performance LWORK >= ( N+1 )*NB, where NB */
/* > is the optimal blocksize. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date December 2016 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(k), where k = f2cmin(m,n). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a real/complex vector */
/* > with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in */
/* > A(i+1:m,i), and tau in TAU(i). */
/* > \endverbatim */

/* > \par Contributors: */
/* ================== */
/* > */
/* > G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
/* > X. Sun, Computer Science Dept., Duke University, USA */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgeqp3_(integer *m, integer *n, complex *a, integer *lda,
integer *jpvt, complex *tau, complex *work, integer *lwork, real *
rwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
complex q__1;

/* Local variables */
integer nfxd, j, nbmin;
extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
complex *, integer *);
integer minmn, minws;
extern /* Subroutine */ int claqp2_(integer *, integer *, integer *,
complex *, integer *, integer *, complex *, real *, real *,
complex *);
extern real scnrm2_(integer *, complex *, integer *);
integer jb, na, nb, sm, sn, nx;
extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *,
integer *, complex *, complex *, integer *, integer *), xerbla_(
char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int claqps_(integer *, integer *, integer *,
integer *, integer *, complex *, integer *, integer *, complex *,
real *, real *, complex *, complex *, integer *);
integer topbmn, sminmn;
extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *,
integer *, complex *, integer *, complex *, complex *, integer *,
complex *, integer *, integer *);
integer lwkopt;
logical lquery;
integer fjb, iws;


/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */


/* ===================================================================== */


/* Test input arguments */
/* ==================== */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--jpvt;
--tau;
--work;
--rwork;

/* Function Body */
*info = 0;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}

if (*info == 0) {
minmn = f2cmin(*m,*n);
if (minmn == 0) {
iws = 1;
lwkopt = 1;
} else {
iws = *n + 1;
nb = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
lwkopt = (*n + 1) * nb;
}
q__1.r = (real) lwkopt, q__1.i = 0.f;
work[1].r = q__1.r, work[1].i = q__1.i;

if (*lwork < iws && ! lquery) {
*info = -8;
}
}

if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEQP3", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}

/* Move initial columns up front. */

nfxd = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (jpvt[j] != 0) {
if (j != nfxd) {
cswap_(m, &a[j * a_dim1 + 1], &c__1, &a[nfxd * a_dim1 + 1], &
c__1);
jpvt[j] = jpvt[nfxd];
jpvt[nfxd] = j;
} else {
jpvt[j] = j;
}
++nfxd;
} else {
jpvt[j] = j;
}
/* L10: */
}
--nfxd;

/* Factorize fixed columns */
/* ======================= */

/* Compute the QR factorization of fixed columns and update */
/* remaining columns. */

if (nfxd > 0) {
na = f2cmin(*m,nfxd);
/* CC CALL CGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) */
cgeqrf_(m, &na, &a[a_offset], lda, &tau[1], &work[1], lwork, info);
/* Computing MAX */
i__1 = iws, i__2 = (integer) work[1].r;
iws = f2cmax(i__1,i__2);
if (na < *n) {
/* CC CALL CUNM2R( 'Left', 'Conjugate Transpose', M, N-NA, */
/* CC $ NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK, */
/* CC $ INFO ) */
i__1 = *n - na;
cunmqr_("Left", "Conjugate Transpose", m, &i__1, &na, &a[a_offset]
, lda, &tau[1], &a[(na + 1) * a_dim1 + 1], lda, &work[1],
lwork, info);
/* Computing MAX */
i__1 = iws, i__2 = (integer) work[1].r;
iws = f2cmax(i__1,i__2);
}
}

/* Factorize free columns */
/* ====================== */

if (nfxd < minmn) {

sm = *m - nfxd;
sn = *n - nfxd;
sminmn = minmn - nfxd;

/* Determine the block size. */

nb = ilaenv_(&c__1, "CGEQRF", " ", &sm, &sn, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
nbmin = 2;
nx = 0;

if (nb > 1 && nb < sminmn) {

/* Determine when to cross over from blocked to unblocked code. */

/* Computing MAX */
i__1 = 0, i__2 = ilaenv_(&c__3, "CGEQRF", " ", &sm, &sn, &c_n1, &
c_n1, (ftnlen)6, (ftnlen)1);
nx = f2cmax(i__1,i__2);


if (nx < sminmn) {

/* Determine if workspace is large enough for blocked code. */

minws = (sn + 1) * nb;
iws = f2cmax(iws,minws);
if (*lwork < minws) {

/* Not enough workspace to use optimal NB: Reduce NB and */
/* determine the minimum value of NB. */

nb = *lwork / (sn + 1);
/* Computing MAX */
i__1 = 2, i__2 = ilaenv_(&c__2, "CGEQRF", " ", &sm, &sn, &
c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
nbmin = f2cmax(i__1,i__2);


}
}
}

/* Initialize partial column norms. The first N elements of work */
/* store the exact column norms. */

i__1 = *n;
for (j = nfxd + 1; j <= i__1; ++j) {
rwork[j] = scnrm2_(&sm, &a[nfxd + 1 + j * a_dim1], &c__1);
rwork[*n + j] = rwork[j];
/* L20: */
}

if (nb >= nbmin && nb < sminmn && nx < sminmn) {

/* Use blocked code initially. */

j = nfxd + 1;

/* Compute factorization: while loop. */


topbmn = minmn - nx;
L30:
if (j <= topbmn) {
/* Computing MIN */
i__1 = nb, i__2 = topbmn - j + 1;
jb = f2cmin(i__1,i__2);

/* Factorize JB columns among columns J:N. */

i__1 = *n - j + 1;
i__2 = j - 1;
i__3 = *n - j + 1;
claqps_(m, &i__1, &i__2, &jb, &fjb, &a[j * a_dim1 + 1], lda, &
jpvt[j], &tau[j], &rwork[j], &rwork[*n + j], &work[1],
&work[jb + 1], &i__3);

j += fjb;
goto L30;
}
} else {
j = nfxd + 1;
}

/* Use unblocked code to factor the last or only block. */


if (j <= minmn) {
i__1 = *n - j + 1;
i__2 = j - 1;
claqp2_(m, &i__1, &i__2, &a[j * a_dim1 + 1], lda, &jpvt[j], &tau[
j], &rwork[j], &rwork[*n + j], &work[1]);
}

}

q__1.r = (real) lwkopt, q__1.i = 0.f;
work[1].r = q__1.r, work[1].i = q__1.i;
return 0;

/* End of CGEQP3 */

} /* cgeqp3_ */


+ 759
- 0
lapack-netlib/SRC/cgeqr.c View File

@@ -0,0 +1,759 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;

/* > \brief \b CGEQR */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, */
/* INFO ) */

/* INTEGER INFO, LDA, M, N, TSIZE, LWORK */
/* COMPLEX A( LDA, * ), T( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEQR computes a QR factorization of a complex M-by-N matrix A: */
/* > */
/* > A = Q * ( R ), */
/* > ( 0 ) */
/* > */
/* > where: */
/* > */
/* > Q is a M-by-M orthogonal matrix; */
/* > R is an upper-triangular N-by-N matrix; */
/* > 0 is a (M-N)-by-N zero matrix, if M > N. */
/* > */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the elements on and above the diagonal of the array */
/* > contain the f2cmin(M,N)-by-N upper trapezoidal matrix R */
/* > (R is upper triangular if M >= N); */
/* > the elements below the diagonal are used to store part of the */
/* > data structure to represent Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (MAX(5,TSIZE)) */
/* > On exit, if INFO = 0, T(1) returns optimal (or either minimal */
/* > or optimal, if query is assumed) TSIZE. See TSIZE for details. */
/* > Remaining T contains part of the data structure used to represent Q. */
/* > If one wants to apply or construct Q, then one needs to keep T */
/* > (in addition to A) and pass it to further subroutines. */
/* > \endverbatim */
/* > */
/* > \param[in] TSIZE */
/* > \verbatim */
/* > TSIZE is INTEGER */
/* > If TSIZE >= 5, the dimension of the array T. */
/* > If TSIZE = -1 or -2, then a workspace query is assumed. The routine */
/* > only calculates the sizes of the T and WORK arrays, returns these */
/* > values as the first entries of the T and WORK arrays, and no error */
/* > message related to T or WORK is issued by XERBLA. */
/* > If TSIZE = -1, the routine calculates optimal size of T for the */
/* > optimum performance and returns this value in T(1). */
/* > If TSIZE = -2, the routine calculates minimal size of T and */
/* > returns this value in T(1). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > (workspace) COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) contains optimal (or either minimal */
/* > or optimal, if query was assumed) LWORK. */
/* > See LWORK for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If LWORK = -1 or -2, then a workspace query is assumed. The routine */
/* > only calculates the sizes of the T and WORK arrays, returns these */
/* > values as the first entries of the T and WORK arrays, and no error */
/* > message related to T or WORK is issued by XERBLA. */
/* > If LWORK = -1, the routine calculates optimal size of WORK for the */
/* > optimal performance and returns this value in WORK(1). */
/* > If LWORK = -2, the routine calculates minimal size of WORK and */
/* > returns this value in WORK(1). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \par Further Details */
/* ==================== */
/* > */
/* > \verbatim */
/* > */
/* > The goal of the interface is to give maximum freedom to the developers for */
/* > creating any QR factorization algorithm they wish. The triangular */
/* > (trapezoidal) R has to be stored in the upper part of A. The lower part of A */
/* > and the array T can be used to store any relevant information for applying or */
/* > constructing the Q factor. The WORK array can safely be discarded after exit. */
/* > */
/* > Caution: One should not expect the sizes of T and WORK to be the same from one */
/* > LAPACK implementation to the other, or even from one execution to the other. */
/* > A workspace query (for T and WORK) is needed at each execution. However, */
/* > for a given execution, the size of T and WORK are fixed and will not change */
/* > from one query to the next. */
/* > */
/* > \endverbatim */
/* > */
/* > \par Further Details particular to this LAPACK implementation: */
/* ============================================================== */
/* > */
/* > \verbatim */
/* > */
/* > These details are particular for this LAPACK implementation. Users should not */
/* > take them for granted. These details may change in the future, and are not likely */
/* > true for another LAPACK implementation. These details are relevant if one wants */
/* > to try to understand the code. They are not part of the interface. */
/* > */
/* > In this version, */
/* > */
/* > T(2): row block size (MB) */
/* > T(3): column block size (NB) */
/* > T(6:TSIZE): data structure needed for Q, computed by */
/* > CLATSQR or CGEQRT */
/* > */
/* > Depending on the matrix dimensions M and N, and row and column */
/* > block sizes MB and NB returned by ILAENV, CGEQR will use either */
/* > CLATSQR (if the matrix is tall-and-skinny) or CGEQRT to compute */
/* > the QR factorization. */
/* > */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgeqr_(integer *m, integer *n, complex *a, integer *lda,
complex *t, integer *tsize, complex *work, integer *lwork, integer *
info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;

/* Local variables */
logical mint, minw;
integer mb, nb, nblcks;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int cgeqrt_(integer *, integer *, integer *,
complex *, integer *, complex *, integer *, complex *, integer *);
logical lminws, lquery;
integer mintsz;
extern /* Subroutine */ int clatsqr_(integer *, integer *, integer *,
integer *, complex *, integer *, complex *, integer *, complex *,
integer *, integer *);


/* -- LAPACK computational routine (version 3.9.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- */
/* November 2019 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--t;
--work;

/* Function Body */
*info = 0;

lquery = *tsize == -1 || *tsize == -2 || *lwork == -1 || *lwork == -2;

mint = FALSE_;
minw = FALSE_;
if (*tsize == -2 || *lwork == -2) {
if (*tsize != -1) {
mint = TRUE_;
}
if (*lwork != -1) {
minw = TRUE_;
}
}

/* Determine the block size */

if (f2cmin(*m,*n) > 0) {
mb = ilaenv_(&c__1, "CGEQR ", " ", m, n, &c__1, &c_n1, (ftnlen)6, (
ftnlen)1);
nb = ilaenv_(&c__1, "CGEQR ", " ", m, n, &c__2, &c_n1, (ftnlen)6, (
ftnlen)1);
} else {
mb = *m;
nb = 1;
}
if (mb > *m || mb <= *n) {
mb = *m;
}
if (nb > f2cmin(*m,*n) || nb < 1) {
nb = 1;
}
mintsz = *n + 5;
if (mb > *n && *m > *n) {
if ((*m - *n) % (mb - *n) == 0) {
nblcks = (*m - *n) / (mb - *n);
} else {
nblcks = (*m - *n) / (mb - *n) + 1;
}
} else {
nblcks = 1;
}

/* Determine if the workspace size satisfies minimal size */

lminws = FALSE_;
/* Computing MAX */
i__1 = 1, i__2 = nb * *n * nblcks + 5;
if ((*tsize < f2cmax(i__1,i__2) || *lwork < nb * *n) && *lwork >= *n && *
tsize >= mintsz && ! lquery) {
/* Computing MAX */
i__1 = 1, i__2 = nb * *n * nblcks + 5;
if (*tsize < f2cmax(i__1,i__2)) {
lminws = TRUE_;
nb = 1;
mb = *m;
}
if (*lwork < nb * *n) {
lminws = TRUE_;
nb = 1;
}
}

if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = nb * *n * nblcks + 5;
if (*tsize < f2cmax(i__1,i__2) && ! lquery && ! lminws) {
*info = -6;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *n * nb;
if (*lwork < f2cmax(i__1,i__2) && ! lquery && ! lminws) {
*info = -8;
}
}
}

if (*info == 0) {
if (mint) {
t[1].r = (real) mintsz, t[1].i = 0.f;
} else {
i__1 = nb * *n * nblcks + 5;
t[1].r = (real) i__1, t[1].i = 0.f;
}
t[2].r = (real) mb, t[2].i = 0.f;
t[3].r = (real) nb, t[3].i = 0.f;
if (minw) {
i__1 = f2cmax(1,*n);
work[1].r = (real) i__1, work[1].i = 0.f;
} else {
/* Computing MAX */
i__2 = 1, i__3 = nb * *n;
i__1 = f2cmax(i__2,i__3);
work[1].r = (real) i__1, work[1].i = 0.f;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEQR", &i__1, (ftnlen)5);
return 0;
} else if (lquery) {
return 0;
}

/* Quick return if possible */

if (f2cmin(*m,*n) == 0) {
return 0;
}

/* The QR Decomposition */

if (*m <= *n || mb <= *n || mb >= *m) {
cgeqrt_(m, n, &nb, &a[a_offset], lda, &t[6], &nb, &work[1], info);
} else {
clatsqr_(m, n, &mb, &nb, &a[a_offset], lda, &t[6], &nb, &work[1],
lwork, info);
}

/* Computing MAX */
i__2 = 1, i__3 = nb * *n;
i__1 = f2cmax(i__2,i__3);
work[1].r = (real) i__1, work[1].i = 0.f;

return 0;

/* End of CGEQR */

} /* cgeqr_ */


+ 628
- 0
lapack-netlib/SRC/cgeqr2.c View File

@@ -0,0 +1,628 @@
/* f2c.h -- Standard Fortran to C header file */

/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."

- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */

#ifndef F2C_INCLUDE
#define F2C_INCLUDE

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif

#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif

#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif

typedef blasint integer;

typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;

#define TRUE_ (1)
#define FALSE_ (0)

/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif

/* I/O stuff */

typedef int flag;
typedef int ftnlen;
typedef int ftnint;

/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;

/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;

/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;

/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;

/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;

/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;

#define VOID void

union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};

typedef union Multitype Multitype;

struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;

struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;

#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))

#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimag(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}

/* procedure parameter types for -A and -C++ */

#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif

static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/



/* Table of constant values */

static integer c__1 = 1;

/* > \brief \b CGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorit
hm. */

/* =========== DOCUMENTATION =========== */

/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */

/* > \htmlonly */
/* > Download CGEQR2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqr2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqr2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqr2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */

/* Definition: */
/* =========== */

/* SUBROUTINE CGEQR2( M, N, A, LDA, TAU, WORK, INFO ) */

/* INTEGER INFO, LDA, M, N */
/* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) */


/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEQR2 computes a QR factorization of a complex m-by-n matrix A: */
/* > */
/* > A = Q * ( R ), */
/* > ( 0 ) */
/* > */
/* > where: */
/* > */
/* > Q is a m-by-m orthogonal matrix; */
/* > R is an upper-triangular n-by-n matrix; */
/* > 0 is a (m-n)-by-n zero matrix, if m > n. */
/* > */
/* > \endverbatim */

/* Arguments: */
/* ========== */

/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the m by n matrix A. */
/* > On exit, the elements on and above the diagonal of the array */
/* > contain the f2cmin(m,n) by n upper trapezoidal matrix R (R is */
/* > upper triangular if m >= n); the elements below the diagonal, */
/* > with the array TAU, represent the unitary matrix Q as a */
/* > product of elementary reflectors (see Further Details). */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX array, dimension (f2cmin(M,N)) */
/* > The scalar factors of the elementary reflectors (see Further */
/* > Details). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */

/* Authors: */
/* ======== */

/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */

/* > \date November 2019 */

/* > \ingroup complexGEcomputational */

/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(k), where k = f2cmin(m,n). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/* > and tau in TAU(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int cgeqr2_(integer *m, integer *n, complex *a, integer *lda,
complex *tau, complex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
complex q__1;

/* Local variables */
integer i__, k;
complex alpha;
extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
, integer *, complex *, complex *, integer *, complex *),
clarfg_(integer *, complex *, complex *, integer *, complex *),
xerbla_(char *, integer *, ftnlen);


/* -- LAPACK computational routine (version 3.9.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2019 */


/* ===================================================================== */


/* Test the input arguments */

/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;

/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEQR2", &i__1, (ftnlen)6);
return 0;
}

k = f2cmin(*m,*n);

i__1 = k;
for (i__ = 1; i__ <= i__1; ++i__) {

/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */

i__2 = *m - i__ + 1;
/* Computing MIN */
i__3 = i__ + 1;
clarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[f2cmin(i__3,*m) + i__ * a_dim1]
, &c__1, &tau[i__]);
if (i__ < *n) {

/* Apply H(i)**H to A(i:m,i+1:n) from the left */

i__2 = i__ + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = i__ + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;
i__2 = *m - i__ + 1;
i__3 = *n - i__;
r_cnjg(&q__1, &tau[i__]);
clarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &q__1,
&a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
i__2 = i__ + i__ * a_dim1;
a[i__2].r = alpha.r, a[i__2].i = alpha.i;
}
/* L10: */
}
return 0;

/* End of CGEQR2 */

} /* cgeqr2_ */


Some files were not shown because too many files changed in this diff

Loading…
Cancel
Save