|
- /* f2c.h -- Standard Fortran to C header file */
-
- /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
-
- - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
-
- #ifndef F2C_INCLUDE
- #define F2C_INCLUDE
-
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimag(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {0.f,0.f};
- static integer c__9 = 9;
- static integer c__0 = 0;
- static integer c__6 = 6;
- static integer c_n1 = -1;
- static integer c__1 = 1;
- static real c_b80 = 0.f;
-
- /* > \brief <b> CGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b
- > */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGELSD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
- /* WORK, LWORK, RWORK, IWORK, INFO ) */
-
- /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
- /* REAL RCOND */
- /* INTEGER IWORK( * ) */
- /* REAL RWORK( * ), S( * ) */
- /* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CGELSD computes the minimum-norm solution to a real linear least */
- /* > squares problem: */
- /* > minimize 2-norm(| b - A*x |) */
- /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
- /* > matrix which may be rank-deficient. */
- /* > */
- /* > Several right hand side vectors b and solution vectors x can be */
- /* > handled in a single call; they are stored as the columns of the */
- /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
- /* > matrix X. */
- /* > */
- /* > The problem is solved in three steps: */
- /* > (1) Reduce the coefficient matrix A to bidiagonal form with */
- /* > Householder transformations, reducing the original problem */
- /* > into a "bidiagonal least squares problem" (BLS) */
- /* > (2) Solve the BLS using a divide and conquer approach. */
- /* > (3) Apply back all the Householder transformations to solve */
- /* > the original least squares problem. */
- /* > */
- /* > The effective rank of A is determined by treating as zero those */
- /* > singular values which are less than RCOND times the largest singular */
- /* > value. */
- /* > */
- /* > The divide and conquer algorithm makes very mild assumptions about */
- /* > floating point arithmetic. It will work on machines with a guard */
- /* > digit in add/subtract, or on those binary machines without guard */
- /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
- /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
- /* > without guard digits, but we know of none. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right hand sides, i.e., the number of columns */
- /* > of the matrices B and X. NRHS >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA,N) */
- /* > On entry, the M-by-N matrix A. */
- /* > On exit, A has been destroyed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX array, dimension (LDB,NRHS) */
- /* > On entry, the M-by-NRHS right hand side matrix B. */
- /* > On exit, B is overwritten by the N-by-NRHS solution matrix X. */
- /* > If m >= n and RANK = n, the residual sum-of-squares for */
- /* > the solution in the i-th column is given by the sum of */
- /* > squares of the modulus of elements n+1:m in that column. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is REAL array, dimension (f2cmin(M,N)) */
- /* > The singular values of A in decreasing order. */
- /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RCOND */
- /* > \verbatim */
- /* > RCOND is REAL */
- /* > RCOND is used to determine the effective rank of A. */
- /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
- /* > If RCOND < 0, machine precision is used instead. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RANK */
- /* > \verbatim */
- /* > RANK is INTEGER */
- /* > The effective rank of A, i.e., the number of singular values */
- /* > which are greater than RCOND*S(1). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK must be at least 1. */
- /* > The exact minimum amount of workspace needed depends on M, */
- /* > N and NRHS. As long as LWORK is at least */
- /* > 2 * N + N * NRHS */
- /* > if M is greater than or equal to N or */
- /* > 2 * M + M * NRHS */
- /* > if M is less than N, the code will execute correctly. */
- /* > For good performance, LWORK should generally be larger. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the array WORK and the */
- /* > minimum sizes of the arrays RWORK and IWORK, and returns */
- /* > these values as the first entries of the WORK, RWORK and */
- /* > IWORK arrays, and no error message related to LWORK is issued */
- /* > by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
- /* > LRWORK >= */
- /* > 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */
- /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ) */
- /* > if M is greater than or equal to N or */
- /* > 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS + */
- /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ) */
- /* > if M is less than N, the code will execute correctly. */
- /* > SMLSIZ is returned by ILAENV and is equal to the maximum */
- /* > size of the subproblems at the bottom of the computation */
- /* > tree (usually about 25), and */
- /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
- /* > On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
- /* > LIWORK >= f2cmax(1, 3*MINMN*NLVL + 11*MINMN), */
- /* > where MINMN = MIN( M,N ). */
- /* > On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: the algorithm for computing the SVD failed to converge; */
- /* > if INFO = i, i off-diagonal elements of an intermediate */
- /* > bidiagonal form did not converge to zero. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexGEsolve */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
- /* > California at Berkeley, USA \n */
- /* > Osni Marques, LBNL/NERSC, USA \n */
-
- /* ===================================================================== */
- /* Subroutine */ int cgelsd_(integer *m, integer *n, integer *nrhs, complex *
- a, integer *lda, complex *b, integer *ldb, real *s, real *rcond,
- integer *rank, complex *work, integer *lwork, real *rwork, integer *
- iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- real anrm, bnrm;
- integer itau, nlvl, iascl, ibscl;
- real sfmin;
- integer minmn, maxmn, itaup, itauq, mnthr, nwork, ie, il;
- extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *,
- integer *, real *, real *, complex *, complex *, complex *,
- integer *, integer *), slabad_(real *, real *);
- extern real clange_(char *, integer *, integer *, complex *, integer *,
- real *);
- integer mm;
- extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *,
- integer *, complex *, complex *, integer *, integer *), clalsd_(
- char *, integer *, integer *, integer *, real *, real *, complex *
- , integer *, real *, integer *, complex *, real *, integer *,
- integer *), clascl_(char *, integer *, integer *, real *,
- real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *,
- complex *, complex *, integer *, integer *);
- extern real slamch_(char *);
- extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
- *, integer *, complex *, integer *), claset_(char *,
- integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- real bignum;
- extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
- real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, complex *, integer *,
- complex *, integer *, integer *), slaset_(
- char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *,
- complex *, integer *, complex *, complex *, integer *, complex *,
- integer *, integer *);
- integer ldwork;
- extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, complex *, integer *,
- complex *, integer *, integer *);
- integer liwork, minwrk, maxwrk;
- real smlnum;
- integer lrwork;
- logical lquery;
- integer nrwork, smlsiz;
- real eps;
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --s;
- --work;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
- minmn = f2cmin(*m,*n);
- maxmn = f2cmax(*m,*n);
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -5;
- } else if (*ldb < f2cmax(1,maxmn)) {
- *info = -7;
- }
-
- /* Compute workspace. */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* NB refers to the optimal block size for the immediately */
- /* following subroutine, as returned by ILAENV.) */
-
- if (*info == 0) {
- minwrk = 1;
- maxwrk = 1;
- liwork = 1;
- lrwork = 1;
- if (minmn > 0) {
- smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0,
- (ftnlen)6, (ftnlen)1);
- mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- /* Computing MAX */
- i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log(
- 2.f)) + 1;
- nlvl = f2cmax(i__1,0);
- liwork = minmn * 3 * nlvl + minmn * 11;
- mm = *m;
- if (*m >= *n && *m >= mnthr) {
-
- /* Path 1a - overdetermined, with many more rows than */
- /* columns. */
-
- mm = *n;
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n,
- &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC",
- m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
- maxwrk = f2cmax(i__1,i__2);
- }
- if (*m >= *n) {
-
- /* Path 1 - overdetermined or exactly determined. */
-
- /* Computing MAX */
- /* Computing 2nd power */
- i__3 = smlsiz + 1;
- i__1 = i__3 * i__3, i__2 = *n * (*nrhs + 1) + (*nrhs << 1);
- lrwork = *n * 10 + (*n << 1) * smlsiz + (*n << 3) * nlvl +
- smlsiz * 3 * *nrhs + f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1,
- "CGEBRD", " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1,
- "CUNMBR", "QLC", &mm, nrhs, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
- "CUNMBR", "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*n << 1) + *n * *nrhs;
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = (*n << 1) + mm, i__2 = (*n << 1) + *n * *nrhs;
- minwrk = f2cmax(i__1,i__2);
- }
- if (*n > *m) {
- /* Computing MAX */
- /* Computing 2nd power */
- i__3 = smlsiz + 1;
- i__1 = i__3 * i__3, i__2 = *n * (*nrhs + 1) + (*nrhs << 1);
- lrwork = *m * 10 + (*m << 1) * smlsiz + (*m << 3) * nlvl +
- smlsiz * 3 * *nrhs + f2cmax(i__1,i__2);
- if (*n >= mnthr) {
-
- /* Path 2a - underdetermined, with many more columns */
- /* than rows. */
-
- maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) *
- ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1,
- (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs *
- ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1,
- (ftnlen)6, (ftnlen)3);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) *
- ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1,
- (ftnlen)6, (ftnlen)2);
- maxwrk = f2cmax(i__1,i__2);
- if (*nrhs > 1) {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
- maxwrk = f2cmax(i__1,i__2);
- } else {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
- maxwrk = f2cmax(i__1,i__2);
- }
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *m * *nrhs;
- maxwrk = f2cmax(i__1,i__2);
- /* XXX: Ensure the Path 2a case below is triggered. The workspace */
- /* calculation should use queries for all routines eventually. */
- /* Computing MAX */
- /* Computing MAX */
- i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4),
- i__3 = f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
- i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + f2cmax(i__3,i__4)
- ;
- maxwrk = f2cmax(i__1,i__2);
- } else {
-
- /* Path 2 - underdetermined. */
-
- maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD",
- " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1,
- "CUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1,
- "CUNMBR", "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (
- ftnlen)3);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs;
- maxwrk = f2cmax(i__1,i__2);
- }
- /* Computing MAX */
- i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs;
- minwrk = f2cmax(i__1,i__2);
- }
- }
- minwrk = f2cmin(minwrk,maxwrk);
- work[1].r = (real) maxwrk, work[1].i = 0.f;
- iwork[1] = liwork;
- rwork[1] = (real) lrwork;
-
- if (*lwork < minwrk && ! lquery) {
- *info = -12;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CGELSD", &i__1, (ftnlen)6);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
- /* Quick return if possible. */
-
- if (*m == 0 || *n == 0) {
- *rank = 0;
- return 0;
- }
-
- /* Get machine parameters. */
-
- eps = slamch_("P");
- sfmin = slamch_("S");
- smlnum = sfmin / eps;
- bignum = 1.f / smlnum;
- slabad_(&smlnum, &bignum);
-
- /* Scale A if f2cmax entry outside range [SMLNUM,BIGNUM]. */
-
- anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
- iascl = 0;
- if (anrm > 0.f && anrm < smlnum) {
-
- /* Scale matrix norm up to SMLNUM */
-
- clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
- info);
- iascl = 1;
- } else if (anrm > bignum) {
-
- /* Scale matrix norm down to BIGNUM. */
-
- clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
- info);
- iascl = 2;
- } else if (anrm == 0.f) {
-
- /* Matrix all zero. Return zero solution. */
-
- i__1 = f2cmax(*m,*n);
- claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
- slaset_("F", &minmn, &c__1, &c_b80, &c_b80, &s[1], &c__1);
- *rank = 0;
- goto L10;
- }
-
- /* Scale B if f2cmax entry outside range [SMLNUM,BIGNUM]. */
-
- bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
- ibscl = 0;
- if (bnrm > 0.f && bnrm < smlnum) {
-
- /* Scale matrix norm up to SMLNUM. */
-
- clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 1;
- } else if (bnrm > bignum) {
-
- /* Scale matrix norm down to BIGNUM. */
-
- clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 2;
- }
-
- /* If M < N make sure B(M+1:N,:) = 0 */
-
- if (*m < *n) {
- i__1 = *n - *m;
- claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
- }
-
- /* Overdetermined case. */
-
- if (*m >= *n) {
-
- /* Path 1 - overdetermined or exactly determined. */
-
- mm = *m;
- if (*m >= mnthr) {
-
- /* Path 1a - overdetermined, with many more rows than columns */
-
- mm = *n;
- itau = 1;
- nwork = itau + *n;
-
- /* Compute A=Q*R. */
- /* (RWorkspace: need N) */
- /* (CWorkspace: need N, prefer N*NB) */
-
- i__1 = *lwork - nwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
- info);
-
- /* Multiply B by transpose(Q). */
- /* (RWorkspace: need N) */
- /* (CWorkspace: need NRHS, prefer NRHS*NB) */
-
- i__1 = *lwork - nwork + 1;
- cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
- b_offset], ldb, &work[nwork], &i__1, info);
-
- /* Zero out below R. */
-
- if (*n > 1) {
- i__1 = *n - 1;
- i__2 = *n - 1;
- claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
- }
- }
-
- itauq = 1;
- itaup = itauq + *n;
- nwork = itaup + *n;
- ie = 1;
- nrwork = ie + *n;
-
- /* Bidiagonalize R in A. */
- /* (RWorkspace: need N) */
- /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
-
- i__1 = *lwork - nwork + 1;
- cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
- work[itaup], &work[nwork], &i__1, info);
-
- /* Multiply B by transpose of left bidiagonalizing vectors of R. */
- /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
-
- i__1 = *lwork - nwork + 1;
- cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
- &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- /* Solve the bidiagonal least squares problem. */
-
- clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb,
- rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
- if (*info != 0) {
- goto L10;
- }
-
- /* Multiply B by right bidiagonalizing vectors of R. */
-
- i__1 = *lwork - nwork + 1;
- cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
- b[b_offset], ldb, &work[nwork], &i__1, info);
-
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = *m, i__2 = (*m << 1) - 4, i__1 = f2cmax(i__1,i__2), i__1 = f2cmax(
- i__1,*nrhs), i__2 = *n - *m * 3;
- if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__1,i__2)) {
-
- /* Path 2a - underdetermined, with many more columns than rows */
- /* and sufficient workspace for an efficient algorithm. */
-
- ldwork = *m;
- /* Computing MAX */
- /* Computing MAX */
- i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 =
- f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
- i__1 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__2 = *m * *lda +
- *m + *m * *nrhs;
- if (*lwork >= f2cmax(i__1,i__2)) {
- ldwork = *lda;
- }
- itau = 1;
- nwork = *m + 1;
-
- /* Compute A=L*Q. */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
-
- i__1 = *lwork - nwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
- info);
- il = nwork;
-
- /* Copy L to WORK(IL), zeroing out above its diagonal. */
-
- clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
- i__1 = *m - 1;
- i__2 = *m - 1;
- claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], &
- ldwork);
- itauq = il + ldwork * *m;
- itaup = itauq + *m;
- nwork = itaup + *m;
- ie = 1;
- nrwork = ie + *m;
-
- /* Bidiagonalize L in WORK(IL). */
- /* (RWorkspace: need M) */
- /* (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */
-
- i__1 = *lwork - nwork + 1;
- cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
- &work[itaup], &work[nwork], &i__1, info);
-
- /* Multiply B by transpose of left bidiagonalizing vectors of L. */
- /* (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
-
- i__1 = *lwork - nwork + 1;
- cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
- itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- /* Solve the bidiagonal least squares problem. */
-
- clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
- ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
- info);
- if (*info != 0) {
- goto L10;
- }
-
- /* Multiply B by right bidiagonalizing vectors of L. */
-
- i__1 = *lwork - nwork + 1;
- cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
- itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- /* Zero out below first M rows of B. */
-
- i__1 = *n - *m;
- claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
- nwork = itau + *m;
-
- /* Multiply transpose(Q) by B. */
- /* (CWorkspace: need NRHS, prefer NRHS*NB) */
-
- i__1 = *lwork - nwork + 1;
- cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
- b_offset], ldb, &work[nwork], &i__1, info);
-
- } else {
-
- /* Path 2 - remaining underdetermined cases. */
-
- itauq = 1;
- itaup = itauq + *m;
- nwork = itaup + *m;
- ie = 1;
- nrwork = ie + *m;
-
- /* Bidiagonalize A. */
- /* (RWorkspace: need M) */
- /* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
-
- i__1 = *lwork - nwork + 1;
- cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
- &work[itaup], &work[nwork], &i__1, info);
-
- /* Multiply B by transpose of left bidiagonalizing vectors. */
- /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
-
- i__1 = *lwork - nwork + 1;
- cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
- , &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- /* Solve the bidiagonal least squares problem. */
-
- clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
- ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
- info);
- if (*info != 0) {
- goto L10;
- }
-
- /* Multiply B by right bidiagonalizing vectors of A. */
-
- i__1 = *lwork - nwork + 1;
- cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
- , &b[b_offset], ldb, &work[nwork], &i__1, info);
-
- }
- }
-
- /* Undo scaling. */
-
- if (iascl == 1) {
- clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
- info);
- slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
- minmn, info);
- } else if (iascl == 2) {
- clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
- info);
- slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
- minmn, info);
- }
- if (ibscl == 1) {
- clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- } else if (ibscl == 2) {
- clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- }
-
- L10:
- work[1].r = (real) maxwrk, work[1].i = 0.f;
- iwork[1] = liwork;
- rwork[1] = (real) lrwork;
- return 0;
-
- /* End of CGELSD */
-
- } /* cgelsd_ */
|