You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgelsd.c 37 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static complex c_b1 = {0.f,0.f};
  381. static integer c__9 = 9;
  382. static integer c__0 = 0;
  383. static integer c__6 = 6;
  384. static integer c_n1 = -1;
  385. static integer c__1 = 1;
  386. static real c_b80 = 0.f;
  387. /* > \brief <b> CGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b
  388. > */
  389. /* =========== DOCUMENTATION =========== */
  390. /* Online html documentation available at */
  391. /* http://www.netlib.org/lapack/explore-html/ */
  392. /* > \htmlonly */
  393. /* > Download CGELSD + dependencies */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsd.
  395. f"> */
  396. /* > [TGZ]</a> */
  397. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsd.
  398. f"> */
  399. /* > [ZIP]</a> */
  400. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsd.
  401. f"> */
  402. /* > [TXT]</a> */
  403. /* > \endhtmlonly */
  404. /* Definition: */
  405. /* =========== */
  406. /* SUBROUTINE CGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
  407. /* WORK, LWORK, RWORK, IWORK, INFO ) */
  408. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  409. /* REAL RCOND */
  410. /* INTEGER IWORK( * ) */
  411. /* REAL RWORK( * ), S( * ) */
  412. /* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */
  413. /* > \par Purpose: */
  414. /* ============= */
  415. /* > */
  416. /* > \verbatim */
  417. /* > */
  418. /* > CGELSD computes the minimum-norm solution to a real linear least */
  419. /* > squares problem: */
  420. /* > minimize 2-norm(| b - A*x |) */
  421. /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
  422. /* > matrix which may be rank-deficient. */
  423. /* > */
  424. /* > Several right hand side vectors b and solution vectors x can be */
  425. /* > handled in a single call; they are stored as the columns of the */
  426. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  427. /* > matrix X. */
  428. /* > */
  429. /* > The problem is solved in three steps: */
  430. /* > (1) Reduce the coefficient matrix A to bidiagonal form with */
  431. /* > Householder transformations, reducing the original problem */
  432. /* > into a "bidiagonal least squares problem" (BLS) */
  433. /* > (2) Solve the BLS using a divide and conquer approach. */
  434. /* > (3) Apply back all the Householder transformations to solve */
  435. /* > the original least squares problem. */
  436. /* > */
  437. /* > The effective rank of A is determined by treating as zero those */
  438. /* > singular values which are less than RCOND times the largest singular */
  439. /* > value. */
  440. /* > */
  441. /* > The divide and conquer algorithm makes very mild assumptions about */
  442. /* > floating point arithmetic. It will work on machines with a guard */
  443. /* > digit in add/subtract, or on those binary machines without guard */
  444. /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
  445. /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
  446. /* > without guard digits, but we know of none. */
  447. /* > \endverbatim */
  448. /* Arguments: */
  449. /* ========== */
  450. /* > \param[in] M */
  451. /* > \verbatim */
  452. /* > M is INTEGER */
  453. /* > The number of rows of the matrix A. M >= 0. */
  454. /* > \endverbatim */
  455. /* > */
  456. /* > \param[in] N */
  457. /* > \verbatim */
  458. /* > N is INTEGER */
  459. /* > The number of columns of the matrix A. N >= 0. */
  460. /* > \endverbatim */
  461. /* > */
  462. /* > \param[in] NRHS */
  463. /* > \verbatim */
  464. /* > NRHS is INTEGER */
  465. /* > The number of right hand sides, i.e., the number of columns */
  466. /* > of the matrices B and X. NRHS >= 0. */
  467. /* > \endverbatim */
  468. /* > */
  469. /* > \param[in,out] A */
  470. /* > \verbatim */
  471. /* > A is COMPLEX array, dimension (LDA,N) */
  472. /* > On entry, the M-by-N matrix A. */
  473. /* > On exit, A has been destroyed. */
  474. /* > \endverbatim */
  475. /* > */
  476. /* > \param[in] LDA */
  477. /* > \verbatim */
  478. /* > LDA is INTEGER */
  479. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in,out] B */
  483. /* > \verbatim */
  484. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  485. /* > On entry, the M-by-NRHS right hand side matrix B. */
  486. /* > On exit, B is overwritten by the N-by-NRHS solution matrix X. */
  487. /* > If m >= n and RANK = n, the residual sum-of-squares for */
  488. /* > the solution in the i-th column is given by the sum of */
  489. /* > squares of the modulus of elements n+1:m in that column. */
  490. /* > \endverbatim */
  491. /* > */
  492. /* > \param[in] LDB */
  493. /* > \verbatim */
  494. /* > LDB is INTEGER */
  495. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  496. /* > \endverbatim */
  497. /* > */
  498. /* > \param[out] S */
  499. /* > \verbatim */
  500. /* > S is REAL array, dimension (f2cmin(M,N)) */
  501. /* > The singular values of A in decreasing order. */
  502. /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
  503. /* > \endverbatim */
  504. /* > */
  505. /* > \param[in] RCOND */
  506. /* > \verbatim */
  507. /* > RCOND is REAL */
  508. /* > RCOND is used to determine the effective rank of A. */
  509. /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
  510. /* > If RCOND < 0, machine precision is used instead. */
  511. /* > \endverbatim */
  512. /* > */
  513. /* > \param[out] RANK */
  514. /* > \verbatim */
  515. /* > RANK is INTEGER */
  516. /* > The effective rank of A, i.e., the number of singular values */
  517. /* > which are greater than RCOND*S(1). */
  518. /* > \endverbatim */
  519. /* > */
  520. /* > \param[out] WORK */
  521. /* > \verbatim */
  522. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  523. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  524. /* > \endverbatim */
  525. /* > */
  526. /* > \param[in] LWORK */
  527. /* > \verbatim */
  528. /* > LWORK is INTEGER */
  529. /* > The dimension of the array WORK. LWORK must be at least 1. */
  530. /* > The exact minimum amount of workspace needed depends on M, */
  531. /* > N and NRHS. As long as LWORK is at least */
  532. /* > 2 * N + N * NRHS */
  533. /* > if M is greater than or equal to N or */
  534. /* > 2 * M + M * NRHS */
  535. /* > if M is less than N, the code will execute correctly. */
  536. /* > For good performance, LWORK should generally be larger. */
  537. /* > */
  538. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  539. /* > only calculates the optimal size of the array WORK and the */
  540. /* > minimum sizes of the arrays RWORK and IWORK, and returns */
  541. /* > these values as the first entries of the WORK, RWORK and */
  542. /* > IWORK arrays, and no error message related to LWORK is issued */
  543. /* > by XERBLA. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[out] RWORK */
  547. /* > \verbatim */
  548. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  549. /* > LRWORK >= */
  550. /* > 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */
  551. /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ) */
  552. /* > if M is greater than or equal to N or */
  553. /* > 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS + */
  554. /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ) */
  555. /* > if M is less than N, the code will execute correctly. */
  556. /* > SMLSIZ is returned by ILAENV and is equal to the maximum */
  557. /* > size of the subproblems at the bottom of the computation */
  558. /* > tree (usually about 25), and */
  559. /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
  560. /* > On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[out] IWORK */
  564. /* > \verbatim */
  565. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  566. /* > LIWORK >= f2cmax(1, 3*MINMN*NLVL + 11*MINMN), */
  567. /* > where MINMN = MIN( M,N ). */
  568. /* > On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[out] INFO */
  572. /* > \verbatim */
  573. /* > INFO is INTEGER */
  574. /* > = 0: successful exit */
  575. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  576. /* > > 0: the algorithm for computing the SVD failed to converge; */
  577. /* > if INFO = i, i off-diagonal elements of an intermediate */
  578. /* > bidiagonal form did not converge to zero. */
  579. /* > \endverbatim */
  580. /* Authors: */
  581. /* ======== */
  582. /* > \author Univ. of Tennessee */
  583. /* > \author Univ. of California Berkeley */
  584. /* > \author Univ. of Colorado Denver */
  585. /* > \author NAG Ltd. */
  586. /* > \date December 2016 */
  587. /* > \ingroup complexGEsolve */
  588. /* > \par Contributors: */
  589. /* ================== */
  590. /* > */
  591. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  592. /* > California at Berkeley, USA \n */
  593. /* > Osni Marques, LBNL/NERSC, USA \n */
  594. /* ===================================================================== */
  595. /* Subroutine */ int cgelsd_(integer *m, integer *n, integer *nrhs, complex *
  596. a, integer *lda, complex *b, integer *ldb, real *s, real *rcond,
  597. integer *rank, complex *work, integer *lwork, real *rwork, integer *
  598. iwork, integer *info)
  599. {
  600. /* System generated locals */
  601. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  602. /* Local variables */
  603. real anrm, bnrm;
  604. integer itau, nlvl, iascl, ibscl;
  605. real sfmin;
  606. integer minmn, maxmn, itaup, itauq, mnthr, nwork, ie, il;
  607. extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *,
  608. integer *, real *, real *, complex *, complex *, complex *,
  609. integer *, integer *), slabad_(real *, real *);
  610. extern real clange_(char *, integer *, integer *, complex *, integer *,
  611. real *);
  612. integer mm;
  613. extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *,
  614. integer *, complex *, complex *, integer *, integer *), clalsd_(
  615. char *, integer *, integer *, integer *, real *, real *, complex *
  616. , integer *, real *, integer *, complex *, real *, integer *,
  617. integer *), clascl_(char *, integer *, integer *, real *,
  618. real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *,
  619. complex *, complex *, integer *, integer *);
  620. extern real slamch_(char *);
  621. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  622. *, integer *, complex *, integer *), claset_(char *,
  623. integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *, ftnlen);
  624. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  625. integer *, integer *, ftnlen, ftnlen);
  626. real bignum;
  627. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  628. real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *,
  629. integer *, complex *, integer *, complex *, complex *, integer *,
  630. complex *, integer *, integer *), slaset_(
  631. char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *,
  632. complex *, integer *, complex *, complex *, integer *, complex *,
  633. integer *, integer *);
  634. integer ldwork;
  635. extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *,
  636. integer *, complex *, integer *, complex *, complex *, integer *,
  637. complex *, integer *, integer *);
  638. integer liwork, minwrk, maxwrk;
  639. real smlnum;
  640. integer lrwork;
  641. logical lquery;
  642. integer nrwork, smlsiz;
  643. real eps;
  644. /* -- LAPACK driver routine (version 3.7.0) -- */
  645. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  646. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  647. /* December 2016 */
  648. /* ===================================================================== */
  649. /* Test the input arguments. */
  650. /* Parameter adjustments */
  651. a_dim1 = *lda;
  652. a_offset = 1 + a_dim1 * 1;
  653. a -= a_offset;
  654. b_dim1 = *ldb;
  655. b_offset = 1 + b_dim1 * 1;
  656. b -= b_offset;
  657. --s;
  658. --work;
  659. --rwork;
  660. --iwork;
  661. /* Function Body */
  662. *info = 0;
  663. minmn = f2cmin(*m,*n);
  664. maxmn = f2cmax(*m,*n);
  665. lquery = *lwork == -1;
  666. if (*m < 0) {
  667. *info = -1;
  668. } else if (*n < 0) {
  669. *info = -2;
  670. } else if (*nrhs < 0) {
  671. *info = -3;
  672. } else if (*lda < f2cmax(1,*m)) {
  673. *info = -5;
  674. } else if (*ldb < f2cmax(1,maxmn)) {
  675. *info = -7;
  676. }
  677. /* Compute workspace. */
  678. /* (Note: Comments in the code beginning "Workspace:" describe the */
  679. /* minimal amount of workspace needed at that point in the code, */
  680. /* as well as the preferred amount for good performance. */
  681. /* NB refers to the optimal block size for the immediately */
  682. /* following subroutine, as returned by ILAENV.) */
  683. if (*info == 0) {
  684. minwrk = 1;
  685. maxwrk = 1;
  686. liwork = 1;
  687. lrwork = 1;
  688. if (minmn > 0) {
  689. smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0,
  690. (ftnlen)6, (ftnlen)1);
  691. mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)
  692. 6, (ftnlen)1);
  693. /* Computing MAX */
  694. i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log(
  695. 2.f)) + 1;
  696. nlvl = f2cmax(i__1,0);
  697. liwork = minmn * 3 * nlvl + minmn * 11;
  698. mm = *m;
  699. if (*m >= *n && *m >= mnthr) {
  700. /* Path 1a - overdetermined, with many more rows than */
  701. /* columns. */
  702. mm = *n;
  703. /* Computing MAX */
  704. i__1 = maxwrk, i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n,
  705. &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  706. maxwrk = f2cmax(i__1,i__2);
  707. /* Computing MAX */
  708. i__1 = maxwrk, i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC",
  709. m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
  710. maxwrk = f2cmax(i__1,i__2);
  711. }
  712. if (*m >= *n) {
  713. /* Path 1 - overdetermined or exactly determined. */
  714. /* Computing MAX */
  715. /* Computing 2nd power */
  716. i__3 = smlsiz + 1;
  717. i__1 = i__3 * i__3, i__2 = *n * (*nrhs + 1) + (*nrhs << 1);
  718. lrwork = *n * 10 + (*n << 1) * smlsiz + (*n << 3) * nlvl +
  719. smlsiz * 3 * *nrhs + f2cmax(i__1,i__2);
  720. /* Computing MAX */
  721. i__1 = maxwrk, i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1,
  722. "CGEBRD", " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (
  723. ftnlen)1);
  724. maxwrk = f2cmax(i__1,i__2);
  725. /* Computing MAX */
  726. i__1 = maxwrk, i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1,
  727. "CUNMBR", "QLC", &mm, nrhs, n, &c_n1, (ftnlen)6, (
  728. ftnlen)3);
  729. maxwrk = f2cmax(i__1,i__2);
  730. /* Computing MAX */
  731. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
  732. "CUNMBR", "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (
  733. ftnlen)3);
  734. maxwrk = f2cmax(i__1,i__2);
  735. /* Computing MAX */
  736. i__1 = maxwrk, i__2 = (*n << 1) + *n * *nrhs;
  737. maxwrk = f2cmax(i__1,i__2);
  738. /* Computing MAX */
  739. i__1 = (*n << 1) + mm, i__2 = (*n << 1) + *n * *nrhs;
  740. minwrk = f2cmax(i__1,i__2);
  741. }
  742. if (*n > *m) {
  743. /* Computing MAX */
  744. /* Computing 2nd power */
  745. i__3 = smlsiz + 1;
  746. i__1 = i__3 * i__3, i__2 = *n * (*nrhs + 1) + (*nrhs << 1);
  747. lrwork = *m * 10 + (*m << 1) * smlsiz + (*m << 3) * nlvl +
  748. smlsiz * 3 * *nrhs + f2cmax(i__1,i__2);
  749. if (*n >= mnthr) {
  750. /* Path 2a - underdetermined, with many more columns */
  751. /* than rows. */
  752. maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, &
  753. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  754. /* Computing MAX */
  755. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) *
  756. ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1,
  757. (ftnlen)6, (ftnlen)1);
  758. maxwrk = f2cmax(i__1,i__2);
  759. /* Computing MAX */
  760. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs *
  761. ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1,
  762. (ftnlen)6, (ftnlen)3);
  763. maxwrk = f2cmax(i__1,i__2);
  764. /* Computing MAX */
  765. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) *
  766. ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1,
  767. (ftnlen)6, (ftnlen)2);
  768. maxwrk = f2cmax(i__1,i__2);
  769. if (*nrhs > 1) {
  770. /* Computing MAX */
  771. i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
  772. maxwrk = f2cmax(i__1,i__2);
  773. } else {
  774. /* Computing MAX */
  775. i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
  776. maxwrk = f2cmax(i__1,i__2);
  777. }
  778. /* Computing MAX */
  779. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *m * *nrhs;
  780. maxwrk = f2cmax(i__1,i__2);
  781. /* XXX: Ensure the Path 2a case below is triggered. The workspace */
  782. /* calculation should use queries for all routines eventually. */
  783. /* Computing MAX */
  784. /* Computing MAX */
  785. i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4),
  786. i__3 = f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
  787. i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + f2cmax(i__3,i__4)
  788. ;
  789. maxwrk = f2cmax(i__1,i__2);
  790. } else {
  791. /* Path 2 - underdetermined. */
  792. maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD",
  793. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  794. /* Computing MAX */
  795. i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1,
  796. "CUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, (
  797. ftnlen)3);
  798. maxwrk = f2cmax(i__1,i__2);
  799. /* Computing MAX */
  800. i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1,
  801. "CUNMBR", "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (
  802. ftnlen)3);
  803. maxwrk = f2cmax(i__1,i__2);
  804. /* Computing MAX */
  805. i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs;
  806. maxwrk = f2cmax(i__1,i__2);
  807. }
  808. /* Computing MAX */
  809. i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs;
  810. minwrk = f2cmax(i__1,i__2);
  811. }
  812. }
  813. minwrk = f2cmin(minwrk,maxwrk);
  814. work[1].r = (real) maxwrk, work[1].i = 0.f;
  815. iwork[1] = liwork;
  816. rwork[1] = (real) lrwork;
  817. if (*lwork < minwrk && ! lquery) {
  818. *info = -12;
  819. }
  820. }
  821. if (*info != 0) {
  822. i__1 = -(*info);
  823. xerbla_("CGELSD", &i__1, (ftnlen)6);
  824. return 0;
  825. } else if (lquery) {
  826. return 0;
  827. }
  828. /* Quick return if possible. */
  829. if (*m == 0 || *n == 0) {
  830. *rank = 0;
  831. return 0;
  832. }
  833. /* Get machine parameters. */
  834. eps = slamch_("P");
  835. sfmin = slamch_("S");
  836. smlnum = sfmin / eps;
  837. bignum = 1.f / smlnum;
  838. slabad_(&smlnum, &bignum);
  839. /* Scale A if f2cmax entry outside range [SMLNUM,BIGNUM]. */
  840. anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  841. iascl = 0;
  842. if (anrm > 0.f && anrm < smlnum) {
  843. /* Scale matrix norm up to SMLNUM */
  844. clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  845. info);
  846. iascl = 1;
  847. } else if (anrm > bignum) {
  848. /* Scale matrix norm down to BIGNUM. */
  849. clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  850. info);
  851. iascl = 2;
  852. } else if (anrm == 0.f) {
  853. /* Matrix all zero. Return zero solution. */
  854. i__1 = f2cmax(*m,*n);
  855. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  856. slaset_("F", &minmn, &c__1, &c_b80, &c_b80, &s[1], &c__1);
  857. *rank = 0;
  858. goto L10;
  859. }
  860. /* Scale B if f2cmax entry outside range [SMLNUM,BIGNUM]. */
  861. bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  862. ibscl = 0;
  863. if (bnrm > 0.f && bnrm < smlnum) {
  864. /* Scale matrix norm up to SMLNUM. */
  865. clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  866. info);
  867. ibscl = 1;
  868. } else if (bnrm > bignum) {
  869. /* Scale matrix norm down to BIGNUM. */
  870. clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  871. info);
  872. ibscl = 2;
  873. }
  874. /* If M < N make sure B(M+1:N,:) = 0 */
  875. if (*m < *n) {
  876. i__1 = *n - *m;
  877. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
  878. }
  879. /* Overdetermined case. */
  880. if (*m >= *n) {
  881. /* Path 1 - overdetermined or exactly determined. */
  882. mm = *m;
  883. if (*m >= mnthr) {
  884. /* Path 1a - overdetermined, with many more rows than columns */
  885. mm = *n;
  886. itau = 1;
  887. nwork = itau + *n;
  888. /* Compute A=Q*R. */
  889. /* (RWorkspace: need N) */
  890. /* (CWorkspace: need N, prefer N*NB) */
  891. i__1 = *lwork - nwork + 1;
  892. cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
  893. info);
  894. /* Multiply B by transpose(Q). */
  895. /* (RWorkspace: need N) */
  896. /* (CWorkspace: need NRHS, prefer NRHS*NB) */
  897. i__1 = *lwork - nwork + 1;
  898. cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
  899. b_offset], ldb, &work[nwork], &i__1, info);
  900. /* Zero out below R. */
  901. if (*n > 1) {
  902. i__1 = *n - 1;
  903. i__2 = *n - 1;
  904. claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
  905. }
  906. }
  907. itauq = 1;
  908. itaup = itauq + *n;
  909. nwork = itaup + *n;
  910. ie = 1;
  911. nrwork = ie + *n;
  912. /* Bidiagonalize R in A. */
  913. /* (RWorkspace: need N) */
  914. /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
  915. i__1 = *lwork - nwork + 1;
  916. cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
  917. work[itaup], &work[nwork], &i__1, info);
  918. /* Multiply B by transpose of left bidiagonalizing vectors of R. */
  919. /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
  920. i__1 = *lwork - nwork + 1;
  921. cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
  922. &b[b_offset], ldb, &work[nwork], &i__1, info);
  923. /* Solve the bidiagonal least squares problem. */
  924. clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb,
  925. rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
  926. if (*info != 0) {
  927. goto L10;
  928. }
  929. /* Multiply B by right bidiagonalizing vectors of R. */
  930. i__1 = *lwork - nwork + 1;
  931. cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
  932. b[b_offset], ldb, &work[nwork], &i__1, info);
  933. } else /* if(complicated condition) */ {
  934. /* Computing MAX */
  935. i__1 = *m, i__2 = (*m << 1) - 4, i__1 = f2cmax(i__1,i__2), i__1 = f2cmax(
  936. i__1,*nrhs), i__2 = *n - *m * 3;
  937. if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__1,i__2)) {
  938. /* Path 2a - underdetermined, with many more columns than rows */
  939. /* and sufficient workspace for an efficient algorithm. */
  940. ldwork = *m;
  941. /* Computing MAX */
  942. /* Computing MAX */
  943. i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 =
  944. f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
  945. i__1 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__2 = *m * *lda +
  946. *m + *m * *nrhs;
  947. if (*lwork >= f2cmax(i__1,i__2)) {
  948. ldwork = *lda;
  949. }
  950. itau = 1;
  951. nwork = *m + 1;
  952. /* Compute A=L*Q. */
  953. /* (CWorkspace: need 2*M, prefer M+M*NB) */
  954. i__1 = *lwork - nwork + 1;
  955. cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
  956. info);
  957. il = nwork;
  958. /* Copy L to WORK(IL), zeroing out above its diagonal. */
  959. clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
  960. i__1 = *m - 1;
  961. i__2 = *m - 1;
  962. claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], &
  963. ldwork);
  964. itauq = il + ldwork * *m;
  965. itaup = itauq + *m;
  966. nwork = itaup + *m;
  967. ie = 1;
  968. nrwork = ie + *m;
  969. /* Bidiagonalize L in WORK(IL). */
  970. /* (RWorkspace: need M) */
  971. /* (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */
  972. i__1 = *lwork - nwork + 1;
  973. cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
  974. &work[itaup], &work[nwork], &i__1, info);
  975. /* Multiply B by transpose of left bidiagonalizing vectors of L. */
  976. /* (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
  977. i__1 = *lwork - nwork + 1;
  978. cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
  979. itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
  980. /* Solve the bidiagonal least squares problem. */
  981. clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
  982. ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
  983. info);
  984. if (*info != 0) {
  985. goto L10;
  986. }
  987. /* Multiply B by right bidiagonalizing vectors of L. */
  988. i__1 = *lwork - nwork + 1;
  989. cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
  990. itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
  991. /* Zero out below first M rows of B. */
  992. i__1 = *n - *m;
  993. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
  994. nwork = itau + *m;
  995. /* Multiply transpose(Q) by B. */
  996. /* (CWorkspace: need NRHS, prefer NRHS*NB) */
  997. i__1 = *lwork - nwork + 1;
  998. cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
  999. b_offset], ldb, &work[nwork], &i__1, info);
  1000. } else {
  1001. /* Path 2 - remaining underdetermined cases. */
  1002. itauq = 1;
  1003. itaup = itauq + *m;
  1004. nwork = itaup + *m;
  1005. ie = 1;
  1006. nrwork = ie + *m;
  1007. /* Bidiagonalize A. */
  1008. /* (RWorkspace: need M) */
  1009. /* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
  1010. i__1 = *lwork - nwork + 1;
  1011. cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  1012. &work[itaup], &work[nwork], &i__1, info);
  1013. /* Multiply B by transpose of left bidiagonalizing vectors. */
  1014. /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
  1015. i__1 = *lwork - nwork + 1;
  1016. cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
  1017. , &b[b_offset], ldb, &work[nwork], &i__1, info);
  1018. /* Solve the bidiagonal least squares problem. */
  1019. clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
  1020. ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
  1021. info);
  1022. if (*info != 0) {
  1023. goto L10;
  1024. }
  1025. /* Multiply B by right bidiagonalizing vectors of A. */
  1026. i__1 = *lwork - nwork + 1;
  1027. cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
  1028. , &b[b_offset], ldb, &work[nwork], &i__1, info);
  1029. }
  1030. }
  1031. /* Undo scaling. */
  1032. if (iascl == 1) {
  1033. clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  1034. info);
  1035. slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1036. minmn, info);
  1037. } else if (iascl == 2) {
  1038. clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  1039. info);
  1040. slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1041. minmn, info);
  1042. }
  1043. if (ibscl == 1) {
  1044. clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1045. info);
  1046. } else if (ibscl == 2) {
  1047. clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1048. info);
  1049. }
  1050. L10:
  1051. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1052. iwork[1] = liwork;
  1053. rwork[1] = (real) lrwork;
  1054. return 0;
  1055. /* End of CGELSD */
  1056. } /* cgelsd_ */