|
- /* f2c.h -- Standard Fortran to C header file */
-
- /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
-
- - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
-
- #ifndef F2C_INCLUDE
- #define F2C_INCLUDE
-
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimag(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- #define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static doublecomplex c_b2 = {1.,0.};
- static integer c__0 = 0;
- static integer c__2 = 2;
- static integer c__1 = 1;
-
- /* > \brief <b> ZGELSX solves overdetermined or underdetermined systems for GE matrices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZGELSX + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsx.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsx.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsx.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
- /* WORK, RWORK, INFO ) */
-
- /* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK */
- /* DOUBLE PRECISION RCOND */
- /* INTEGER JPVT( * ) */
- /* DOUBLE PRECISION RWORK( * ) */
- /* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > This routine is deprecated and has been replaced by routine ZGELSY. */
- /* > */
- /* > ZGELSX computes the minimum-norm solution to a complex linear least */
- /* > squares problem: */
- /* > minimize || A * X - B || */
- /* > using a complete orthogonal factorization of A. A is an M-by-N */
- /* > matrix which may be rank-deficient. */
- /* > */
- /* > Several right hand side vectors b and solution vectors x can be */
- /* > handled in a single call; they are stored as the columns of the */
- /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
- /* > matrix X. */
- /* > */
- /* > The routine first computes a QR factorization with column pivoting: */
- /* > A * P = Q * [ R11 R12 ] */
- /* > [ 0 R22 ] */
- /* > with R11 defined as the largest leading submatrix whose estimated */
- /* > condition number is less than 1/RCOND. The order of R11, RANK, */
- /* > is the effective rank of A. */
- /* > */
- /* > Then, R22 is considered to be negligible, and R12 is annihilated */
- /* > by unitary transformations from the right, arriving at the */
- /* > complete orthogonal factorization: */
- /* > A * P = Q * [ T11 0 ] * Z */
- /* > [ 0 0 ] */
- /* > The minimum-norm solution is then */
- /* > X = P * Z**H [ inv(T11)*Q1**H*B ] */
- /* > [ 0 ] */
- /* > where Q1 consists of the first RANK columns of Q. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right hand sides, i.e., the number of */
- /* > columns of matrices B and X. NRHS >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,N) */
- /* > On entry, the M-by-N matrix A. */
- /* > On exit, A has been overwritten by details of its */
- /* > complete orthogonal factorization. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
- /* > On entry, the M-by-NRHS right hand side matrix B. */
- /* > On exit, the N-by-NRHS solution matrix X. */
- /* > If m >= n and RANK = n, the residual sum-of-squares for */
- /* > the solution in the i-th column is given by the sum of */
- /* > squares of elements N+1:M in that column. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] JPVT */
- /* > \verbatim */
- /* > JPVT is INTEGER array, dimension (N) */
- /* > On entry, if JPVT(i) .ne. 0, the i-th column of A is an */
- /* > initial column, otherwise it is a free column. Before */
- /* > the QR factorization of A, all initial columns are */
- /* > permuted to the leading positions; only the remaining */
- /* > free columns are moved as a result of column pivoting */
- /* > during the factorization. */
- /* > On exit, if JPVT(i) = k, then the i-th column of A*P */
- /* > was the k-th column of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RCOND */
- /* > \verbatim */
- /* > RCOND is DOUBLE PRECISION */
- /* > RCOND is used to determine the effective rank of A, which */
- /* > is defined as the order of the largest leading triangular */
- /* > submatrix R11 in the QR factorization with pivoting of A, */
- /* > whose estimated condition number < 1/RCOND. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RANK */
- /* > \verbatim */
- /* > RANK is INTEGER */
- /* > The effective rank of A, i.e., the order of the submatrix */
- /* > R11. This is the same as the order of the submatrix T11 */
- /* > in the complete orthogonal factorization of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension */
- /* > (f2cmin(M,N) + f2cmax( N, 2*f2cmin(M,N)+NRHS )), */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is DOUBLE PRECISION array, dimension (2*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16GEsolve */
-
- /* ===================================================================== */
- /* Subroutine */ int zgelsx_(integer *m, integer *n, integer *nrhs,
- doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
- integer *jpvt, doublereal *rcond, integer *rank, doublecomplex *work,
- doublereal *rwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
- doublecomplex z__1;
-
- /* Local variables */
- doublereal anrm, bnrm, smin, smax;
- integer i__, j, k, iascl, ibscl, ismin, ismax;
- doublecomplex c1, c2, s1, s2, t1, t2;
- extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *,
- integer *, integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *),
- zlaic1_(integer *, integer *, doublecomplex *, doublereal *,
- doublecomplex *, doublecomplex *, doublereal *, doublecomplex *,
- doublecomplex *), dlabad_(doublereal *, doublereal *);
- extern doublereal dlamch_(char *);
- integer mn;
- extern /* Subroutine */ int zunm2r_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(char *, integer *);
- extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
- integer *, doublereal *);
- doublereal bignum;
- extern /* Subroutine */ int zlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublecomplex *,
- integer *, integer *), zgeqpf_(integer *, integer *,
- doublecomplex *, integer *, integer *, doublecomplex *,
- doublecomplex *, doublereal *, integer *), zlaset_(char *,
- integer *, integer *, doublecomplex *, doublecomplex *,
- doublecomplex *, integer *);
- doublereal sminpr, smaxpr, smlnum;
- extern /* Subroutine */ int zlatzm_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *), ztzrqf_(
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- integer *);
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --jpvt;
- --work;
- --rwork;
-
- /* Function Body */
- mn = f2cmin(*m,*n);
- ismin = mn + 1;
- ismax = (mn << 1) + 1;
-
- /* Test the input arguments. */
-
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -5;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = f2cmax(1,*m);
- if (*ldb < f2cmax(i__1,*n)) {
- *info = -7;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGELSX", &i__1);
- return 0;
- }
-
- /* Quick return if possible */
-
- /* Computing MIN */
- i__1 = f2cmin(*m,*n);
- if (f2cmin(i__1,*nrhs) == 0) {
- *rank = 0;
- return 0;
- }
-
- /* Get machine parameters */
-
- smlnum = dlamch_("S") / dlamch_("P");
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
-
- /* Scale A, B if f2cmax elements outside range [SMLNUM,BIGNUM] */
-
- anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1]);
- iascl = 0;
- if (anrm > 0. && anrm < smlnum) {
-
- /* Scale matrix norm up to SMLNUM */
-
- zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
- info);
- iascl = 1;
- } else if (anrm > bignum) {
-
- /* Scale matrix norm down to BIGNUM */
-
- zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
- info);
- iascl = 2;
- } else if (anrm == 0.) {
-
- /* Matrix all zero. Return zero solution. */
-
- i__1 = f2cmax(*m,*n);
- zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
- *rank = 0;
- goto L100;
- }
-
- bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
- ibscl = 0;
- if (bnrm > 0. && bnrm < smlnum) {
-
- /* Scale matrix norm up to SMLNUM */
-
- zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 1;
- } else if (bnrm > bignum) {
-
- /* Scale matrix norm down to BIGNUM */
-
- zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 2;
- }
-
- /* Compute QR factorization with column pivoting of A: */
- /* A * P = Q * R */
-
- zgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &
- rwork[1], info);
-
- /* complex workspace MN+N. Real workspace 2*N. Details of Householder */
- /* rotations stored in WORK(1:MN). */
-
- /* Determine RANK using incremental condition estimation */
-
- i__1 = ismin;
- work[i__1].r = 1., work[i__1].i = 0.;
- i__1 = ismax;
- work[i__1].r = 1., work[i__1].i = 0.;
- smax = z_abs(&a[a_dim1 + 1]);
- smin = smax;
- if (z_abs(&a[a_dim1 + 1]) == 0.) {
- *rank = 0;
- i__1 = f2cmax(*m,*n);
- zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
- goto L100;
- } else {
- *rank = 1;
- }
-
- L10:
- if (*rank < mn) {
- i__ = *rank + 1;
- zlaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
- i__ + i__ * a_dim1], &sminpr, &s1, &c1);
- zlaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
- i__ + i__ * a_dim1], &smaxpr, &s2, &c2);
-
- if (smaxpr * *rcond <= sminpr) {
- i__1 = *rank;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = ismin + i__ - 1;
- i__3 = ismin + i__ - 1;
- z__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, z__1.i =
- s1.r * work[i__3].i + s1.i * work[i__3].r;
- work[i__2].r = z__1.r, work[i__2].i = z__1.i;
- i__2 = ismax + i__ - 1;
- i__3 = ismax + i__ - 1;
- z__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, z__1.i =
- s2.r * work[i__3].i + s2.i * work[i__3].r;
- work[i__2].r = z__1.r, work[i__2].i = z__1.i;
- /* L20: */
- }
- i__1 = ismin + *rank;
- work[i__1].r = c1.r, work[i__1].i = c1.i;
- i__1 = ismax + *rank;
- work[i__1].r = c2.r, work[i__1].i = c2.i;
- smin = sminpr;
- smax = smaxpr;
- ++(*rank);
- goto L10;
- }
- }
-
- /* Logically partition R = [ R11 R12 ] */
- /* [ 0 R22 ] */
- /* where R11 = R(1:RANK,1:RANK) */
-
- /* [R11,R12] = [ T11, 0 ] * Y */
-
- if (*rank < *n) {
- ztzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
- }
-
- /* Details of Householder rotations stored in WORK(MN+1:2*MN) */
-
- /* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS) */
-
- zunm2r_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, &
- work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], info);
-
- /* workspace NRHS */
-
- /* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */
-
- ztrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[
- a_offset], lda, &b[b_offset], ldb);
-
- i__1 = *n;
- for (i__ = *rank + 1; i__ <= i__1; ++i__) {
- i__2 = *nrhs;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + j * b_dim1;
- b[i__3].r = 0., b[i__3].i = 0.;
- /* L30: */
- }
- /* L40: */
- }
-
- /* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS) */
-
- if (*rank < *n) {
- i__1 = *rank;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n - *rank + 1;
- d_cnjg(&z__1, &work[mn + i__]);
- zlatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda,
- &z__1, &b[i__ + b_dim1], &b[*rank + 1 + b_dim1], ldb, &
- work[(mn << 1) + 1]);
- /* L50: */
- }
- }
-
- /* workspace NRHS */
-
- /* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */
-
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = (mn << 1) + i__;
- work[i__3].r = 1., work[i__3].i = 0.;
- /* L60: */
- }
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = (mn << 1) + i__;
- if (work[i__3].r == 1. && work[i__3].i == 0.) {
- if (jpvt[i__] != i__) {
- k = i__;
- i__3 = k + j * b_dim1;
- t1.r = b[i__3].r, t1.i = b[i__3].i;
- i__3 = jpvt[k] + j * b_dim1;
- t2.r = b[i__3].r, t2.i = b[i__3].i;
- L70:
- i__3 = jpvt[k] + j * b_dim1;
- b[i__3].r = t1.r, b[i__3].i = t1.i;
- i__3 = (mn << 1) + k;
- work[i__3].r = 0., work[i__3].i = 0.;
- t1.r = t2.r, t1.i = t2.i;
- k = jpvt[k];
- i__3 = jpvt[k] + j * b_dim1;
- t2.r = b[i__3].r, t2.i = b[i__3].i;
- if (jpvt[k] != i__) {
- goto L70;
- }
- i__3 = i__ + j * b_dim1;
- b[i__3].r = t1.r, b[i__3].i = t1.i;
- i__3 = (mn << 1) + k;
- work[i__3].r = 0., work[i__3].i = 0.;
- }
- }
- /* L80: */
- }
- /* L90: */
- }
-
- /* Undo scaling */
-
- if (iascl == 1) {
- zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
- info);
- zlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
- lda, info);
- } else if (iascl == 2) {
- zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
- info);
- zlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
- lda, info);
- }
- if (ibscl == 1) {
- zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- } else if (ibscl == 2) {
- zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- }
-
- L100:
-
- return 0;
-
- /* End of ZGELSX */
-
- } /* zgelsx_ */
|