You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlalsd.c 39 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {0.,0.};
  485. static integer c__1 = 1;
  486. static integer c__0 = 0;
  487. static doublereal c_b10 = 1.;
  488. static doublereal c_b35 = 0.;
  489. /* > \brief \b ZLALSD uses the singular value decomposition of A to solve the least squares problem. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZLALSD + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlalsd.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlalsd.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlalsd.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, */
  508. /* RANK, WORK, RWORK, IWORK, INFO ) */
  509. /* CHARACTER UPLO */
  510. /* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ */
  511. /* DOUBLE PRECISION RCOND */
  512. /* INTEGER IWORK( * ) */
  513. /* DOUBLE PRECISION D( * ), E( * ), RWORK( * ) */
  514. /* COMPLEX*16 B( LDB, * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > ZLALSD uses the singular value decomposition of A to solve the least */
  521. /* > squares problem of finding X to minimize the Euclidean norm of each */
  522. /* > column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
  523. /* > are N-by-NRHS. The solution X overwrites B. */
  524. /* > */
  525. /* > The singular values of A smaller than RCOND times the largest */
  526. /* > singular value are treated as zero in solving the least squares */
  527. /* > problem; in this case a minimum norm solution is returned. */
  528. /* > The actual singular values are returned in D in ascending order. */
  529. /* > */
  530. /* > This code makes very mild assumptions about floating point */
  531. /* > arithmetic. It will work on machines with a guard digit in */
  532. /* > add/subtract, or on those binary machines without guard digits */
  533. /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
  534. /* > It could conceivably fail on hexadecimal or decimal machines */
  535. /* > without guard digits, but we know of none. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] UPLO */
  540. /* > \verbatim */
  541. /* > UPLO is CHARACTER*1 */
  542. /* > = 'U': D and E define an upper bidiagonal matrix. */
  543. /* > = 'L': D and E define a lower bidiagonal matrix. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] SMLSIZ */
  547. /* > \verbatim */
  548. /* > SMLSIZ is INTEGER */
  549. /* > The maximum size of the subproblems at the bottom of the */
  550. /* > computation tree. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] N */
  554. /* > \verbatim */
  555. /* > N is INTEGER */
  556. /* > The dimension of the bidiagonal matrix. N >= 0. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] NRHS */
  560. /* > \verbatim */
  561. /* > NRHS is INTEGER */
  562. /* > The number of columns of B. NRHS must be at least 1. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] D */
  566. /* > \verbatim */
  567. /* > D is DOUBLE PRECISION array, dimension (N) */
  568. /* > On entry D contains the main diagonal of the bidiagonal */
  569. /* > matrix. On exit, if INFO = 0, D contains its singular values. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] E */
  573. /* > \verbatim */
  574. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  575. /* > Contains the super-diagonal entries of the bidiagonal matrix. */
  576. /* > On exit, E has been destroyed. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in,out] B */
  580. /* > \verbatim */
  581. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  582. /* > On input, B contains the right hand sides of the least */
  583. /* > squares problem. On output, B contains the solution X. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] LDB */
  587. /* > \verbatim */
  588. /* > LDB is INTEGER */
  589. /* > The leading dimension of B in the calling subprogram. */
  590. /* > LDB must be at least f2cmax(1,N). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] RCOND */
  594. /* > \verbatim */
  595. /* > RCOND is DOUBLE PRECISION */
  596. /* > The singular values of A less than or equal to RCOND times */
  597. /* > the largest singular value are treated as zero in solving */
  598. /* > the least squares problem. If RCOND is negative, */
  599. /* > machine precision is used instead. */
  600. /* > For example, if diag(S)*X=B were the least squares problem, */
  601. /* > where diag(S) is a diagonal matrix of singular values, the */
  602. /* > solution would be X(i) = B(i) / S(i) if S(i) is greater than */
  603. /* > RCOND*f2cmax(S), and X(i) = 0 if S(i) is less than or equal to */
  604. /* > RCOND*f2cmax(S). */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] RANK */
  608. /* > \verbatim */
  609. /* > RANK is INTEGER */
  610. /* > The number of singular values of A greater than RCOND times */
  611. /* > the largest singular value. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] WORK */
  615. /* > \verbatim */
  616. /* > WORK is COMPLEX*16 array, dimension (N * NRHS) */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] RWORK */
  620. /* > \verbatim */
  621. /* > RWORK is DOUBLE PRECISION array, dimension at least */
  622. /* > (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */
  623. /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ), */
  624. /* > where */
  625. /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] IWORK */
  629. /* > \verbatim */
  630. /* > IWORK is INTEGER array, dimension at least */
  631. /* > (3*N*NLVL + 11*N). */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] INFO */
  635. /* > \verbatim */
  636. /* > INFO is INTEGER */
  637. /* > = 0: successful exit. */
  638. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  639. /* > > 0: The algorithm failed to compute a singular value while */
  640. /* > working on the submatrix lying in rows and columns */
  641. /* > INFO/(N+1) through MOD(INFO,N+1). */
  642. /* > \endverbatim */
  643. /* Authors: */
  644. /* ======== */
  645. /* > \author Univ. of Tennessee */
  646. /* > \author Univ. of California Berkeley */
  647. /* > \author Univ. of Colorado Denver */
  648. /* > \author NAG Ltd. */
  649. /* > \date June 2017 */
  650. /* > \ingroup complex16OTHERcomputational */
  651. /* > \par Contributors: */
  652. /* ================== */
  653. /* > */
  654. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  655. /* > California at Berkeley, USA \n */
  656. /* > Osni Marques, LBNL/NERSC, USA \n */
  657. /* ===================================================================== */
  658. /* Subroutine */ void zlalsd_(char *uplo, integer *smlsiz, integer *n, integer
  659. *nrhs, doublereal *d__, doublereal *e, doublecomplex *b, integer *ldb,
  660. doublereal *rcond, integer *rank, doublecomplex *work, doublereal *
  661. rwork, integer *iwork, integer *info)
  662. {
  663. /* System generated locals */
  664. integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  665. doublereal d__1;
  666. doublecomplex z__1;
  667. /* Local variables */
  668. integer difl, difr;
  669. doublereal rcnd;
  670. integer jcol, irwb, perm, nsub, nlvl, sqre, bxst, jrow, irwu, c__, i__, j,
  671. k;
  672. doublereal r__;
  673. integer s, u, jimag;
  674. extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
  675. integer *, doublereal *, doublereal *, integer *, doublereal *,
  676. integer *, doublereal *, doublereal *, integer *);
  677. integer z__, jreal, irwib, poles, sizei, irwrb, nsize;
  678. extern /* Subroutine */ void zdrot_(integer *, doublecomplex *, integer *,
  679. doublecomplex *, integer *, doublereal *, doublereal *), zcopy_(
  680. integer *, doublecomplex *, integer *, doublecomplex *, integer *)
  681. ;
  682. integer irwvt, icmpq1, icmpq2;
  683. doublereal cs;
  684. extern doublereal dlamch_(char *);
  685. extern /* Subroutine */ void dlasda_(integer *, integer *, integer *,
  686. integer *, doublereal *, doublereal *, doublereal *, integer *,
  687. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  688. doublereal *, integer *, integer *, integer *, integer *,
  689. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  690. integer *);
  691. integer bx;
  692. doublereal sn;
  693. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  694. doublereal *, doublereal *, integer *, integer *, doublereal *,
  695. integer *, integer *);
  696. extern integer idamax_(integer *, doublereal *, integer *);
  697. integer st;
  698. extern /* Subroutine */ void dlasdq_(char *, integer *, integer *, integer
  699. *, integer *, integer *, doublereal *, doublereal *, doublereal *,
  700. integer *, doublereal *, integer *, doublereal *, integer *,
  701. doublereal *, integer *);
  702. integer vt;
  703. extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
  704. doublereal *, doublereal *, doublereal *, integer *),
  705. dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  706. doublereal *);
  707. extern int xerbla_(char *, integer *, ftnlen);
  708. integer givcol;
  709. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  710. extern /* Subroutine */ void zlalsa_(integer *, integer *, integer *,
  711. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  712. doublereal *, integer *, doublereal *, integer *, doublereal *,
  713. doublereal *, doublereal *, doublereal *, integer *, integer *,
  714. integer *, integer *, doublereal *, doublereal *, doublereal *,
  715. doublereal *, integer *, integer *), zlascl_(char *, integer *,
  716. integer *, doublereal *, doublereal *, integer *, integer *,
  717. doublecomplex *, integer *, integer *), dlasrt_(char *,
  718. integer *, doublereal *, integer *), zlacpy_(char *,
  719. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  720. integer *), zlaset_(char *, integer *, integer *,
  721. doublecomplex *, doublecomplex *, doublecomplex *, integer *);
  722. doublereal orgnrm;
  723. integer givnum, givptr, nm1, nrwork, irwwrk, smlszp, st1;
  724. doublereal eps;
  725. integer iwk;
  726. doublereal tol;
  727. /* -- LAPACK computational routine (version 3.7.1) -- */
  728. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  729. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  730. /* June 2017 */
  731. /* ===================================================================== */
  732. /* Test the input parameters. */
  733. /* Parameter adjustments */
  734. --d__;
  735. --e;
  736. b_dim1 = *ldb;
  737. b_offset = 1 + b_dim1 * 1;
  738. b -= b_offset;
  739. --work;
  740. --rwork;
  741. --iwork;
  742. /* Function Body */
  743. *info = 0;
  744. if (*n < 0) {
  745. *info = -3;
  746. } else if (*nrhs < 1) {
  747. *info = -4;
  748. } else if (*ldb < 1 || *ldb < *n) {
  749. *info = -8;
  750. }
  751. if (*info != 0) {
  752. i__1 = -(*info);
  753. xerbla_("ZLALSD", &i__1, (ftnlen)6);
  754. return;
  755. }
  756. eps = dlamch_("Epsilon");
  757. /* Set up the tolerance. */
  758. if (*rcond <= 0. || *rcond >= 1.) {
  759. rcnd = eps;
  760. } else {
  761. rcnd = *rcond;
  762. }
  763. *rank = 0;
  764. /* Quick return if possible. */
  765. if (*n == 0) {
  766. return;
  767. } else if (*n == 1) {
  768. if (d__[1] == 0.) {
  769. zlaset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  770. } else {
  771. *rank = 1;
  772. zlascl_("G", &c__0, &c__0, &d__[1], &c_b10, &c__1, nrhs, &b[
  773. b_offset], ldb, info);
  774. d__[1] = abs(d__[1]);
  775. }
  776. return;
  777. }
  778. /* Rotate the matrix if it is lower bidiagonal. */
  779. if (*(unsigned char *)uplo == 'L') {
  780. i__1 = *n - 1;
  781. for (i__ = 1; i__ <= i__1; ++i__) {
  782. dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  783. d__[i__] = r__;
  784. e[i__] = sn * d__[i__ + 1];
  785. d__[i__ + 1] = cs * d__[i__ + 1];
  786. if (*nrhs == 1) {
  787. zdrot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
  788. c__1, &cs, &sn);
  789. } else {
  790. rwork[(i__ << 1) - 1] = cs;
  791. rwork[i__ * 2] = sn;
  792. }
  793. /* L10: */
  794. }
  795. if (*nrhs > 1) {
  796. i__1 = *nrhs;
  797. for (i__ = 1; i__ <= i__1; ++i__) {
  798. i__2 = *n - 1;
  799. for (j = 1; j <= i__2; ++j) {
  800. cs = rwork[(j << 1) - 1];
  801. sn = rwork[j * 2];
  802. zdrot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__
  803. * b_dim1], &c__1, &cs, &sn);
  804. /* L20: */
  805. }
  806. /* L30: */
  807. }
  808. }
  809. }
  810. /* Scale. */
  811. nm1 = *n - 1;
  812. orgnrm = dlanst_("M", n, &d__[1], &e[1]);
  813. if (orgnrm == 0.) {
  814. zlaset_("A", n, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  815. return;
  816. }
  817. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, &c__1, &d__[1], n, info);
  818. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, &nm1, &c__1, &e[1], &nm1,
  819. info);
  820. /* If N is smaller than the minimum divide size SMLSIZ, then solve */
  821. /* the problem with another solver. */
  822. if (*n <= *smlsiz) {
  823. irwu = 1;
  824. irwvt = irwu + *n * *n;
  825. irwwrk = irwvt + *n * *n;
  826. irwrb = irwwrk;
  827. irwib = irwrb + *n * *nrhs;
  828. irwb = irwib + *n * *nrhs;
  829. dlaset_("A", n, n, &c_b35, &c_b10, &rwork[irwu], n);
  830. dlaset_("A", n, n, &c_b35, &c_b10, &rwork[irwvt], n);
  831. dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &rwork[irwvt], n,
  832. &rwork[irwu], n, &rwork[irwwrk], &c__1, &rwork[irwwrk], info);
  833. if (*info != 0) {
  834. return;
  835. }
  836. /* In the real version, B is passed to DLASDQ and multiplied */
  837. /* internally by Q**H. Here B is complex and that product is */
  838. /* computed below in two steps (real and imaginary parts). */
  839. j = irwb - 1;
  840. i__1 = *nrhs;
  841. for (jcol = 1; jcol <= i__1; ++jcol) {
  842. i__2 = *n;
  843. for (jrow = 1; jrow <= i__2; ++jrow) {
  844. ++j;
  845. i__3 = jrow + jcol * b_dim1;
  846. rwork[j] = b[i__3].r;
  847. /* L40: */
  848. }
  849. /* L50: */
  850. }
  851. dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n,
  852. &c_b35, &rwork[irwrb], n);
  853. j = irwb - 1;
  854. i__1 = *nrhs;
  855. for (jcol = 1; jcol <= i__1; ++jcol) {
  856. i__2 = *n;
  857. for (jrow = 1; jrow <= i__2; ++jrow) {
  858. ++j;
  859. rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
  860. /* L60: */
  861. }
  862. /* L70: */
  863. }
  864. dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n,
  865. &c_b35, &rwork[irwib], n);
  866. jreal = irwrb - 1;
  867. jimag = irwib - 1;
  868. i__1 = *nrhs;
  869. for (jcol = 1; jcol <= i__1; ++jcol) {
  870. i__2 = *n;
  871. for (jrow = 1; jrow <= i__2; ++jrow) {
  872. ++jreal;
  873. ++jimag;
  874. i__3 = jrow + jcol * b_dim1;
  875. i__4 = jreal;
  876. i__5 = jimag;
  877. z__1.r = rwork[i__4], z__1.i = rwork[i__5];
  878. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  879. /* L80: */
  880. }
  881. /* L90: */
  882. }
  883. tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
  884. i__1 = *n;
  885. for (i__ = 1; i__ <= i__1; ++i__) {
  886. if (d__[i__] <= tol) {
  887. zlaset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
  888. } else {
  889. zlascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &b[
  890. i__ + b_dim1], ldb, info);
  891. ++(*rank);
  892. }
  893. /* L100: */
  894. }
  895. /* Since B is complex, the following call to DGEMM is performed */
  896. /* in two steps (real and imaginary parts). That is for V * B */
  897. /* (in the real version of the code V**H is stored in WORK). */
  898. /* CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO, */
  899. /* $ WORK( NWORK ), N ) */
  900. j = irwb - 1;
  901. i__1 = *nrhs;
  902. for (jcol = 1; jcol <= i__1; ++jcol) {
  903. i__2 = *n;
  904. for (jrow = 1; jrow <= i__2; ++jrow) {
  905. ++j;
  906. i__3 = jrow + jcol * b_dim1;
  907. rwork[j] = b[i__3].r;
  908. /* L110: */
  909. }
  910. /* L120: */
  911. }
  912. dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwvt], n, &rwork[irwb],
  913. n, &c_b35, &rwork[irwrb], n);
  914. j = irwb - 1;
  915. i__1 = *nrhs;
  916. for (jcol = 1; jcol <= i__1; ++jcol) {
  917. i__2 = *n;
  918. for (jrow = 1; jrow <= i__2; ++jrow) {
  919. ++j;
  920. rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
  921. /* L130: */
  922. }
  923. /* L140: */
  924. }
  925. dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwvt], n, &rwork[irwb],
  926. n, &c_b35, &rwork[irwib], n);
  927. jreal = irwrb - 1;
  928. jimag = irwib - 1;
  929. i__1 = *nrhs;
  930. for (jcol = 1; jcol <= i__1; ++jcol) {
  931. i__2 = *n;
  932. for (jrow = 1; jrow <= i__2; ++jrow) {
  933. ++jreal;
  934. ++jimag;
  935. i__3 = jrow + jcol * b_dim1;
  936. i__4 = jreal;
  937. i__5 = jimag;
  938. z__1.r = rwork[i__4], z__1.i = rwork[i__5];
  939. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  940. /* L150: */
  941. }
  942. /* L160: */
  943. }
  944. /* Unscale. */
  945. dlascl_("G", &c__0, &c__0, &c_b10, &orgnrm, n, &c__1, &d__[1], n,
  946. info);
  947. dlasrt_("D", n, &d__[1], info);
  948. zlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, nrhs, &b[b_offset],
  949. ldb, info);
  950. return;
  951. }
  952. /* Book-keeping and setting up some constants. */
  953. nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) /
  954. log(2.)) + 1;
  955. smlszp = *smlsiz + 1;
  956. u = 1;
  957. vt = *smlsiz * *n + 1;
  958. difl = vt + smlszp * *n;
  959. difr = difl + nlvl * *n;
  960. z__ = difr + (nlvl * *n << 1);
  961. c__ = z__ + nlvl * *n;
  962. s = c__ + *n;
  963. poles = s + *n;
  964. givnum = poles + (nlvl << 1) * *n;
  965. nrwork = givnum + (nlvl << 1) * *n;
  966. bx = 1;
  967. irwrb = nrwork;
  968. irwib = irwrb + *smlsiz * *nrhs;
  969. irwb = irwib + *smlsiz * *nrhs;
  970. sizei = *n + 1;
  971. k = sizei + *n;
  972. givptr = k + *n;
  973. perm = givptr + *n;
  974. givcol = perm + nlvl * *n;
  975. iwk = givcol + (nlvl * *n << 1);
  976. st = 1;
  977. sqre = 0;
  978. icmpq1 = 1;
  979. icmpq2 = 0;
  980. nsub = 0;
  981. i__1 = *n;
  982. for (i__ = 1; i__ <= i__1; ++i__) {
  983. if ((d__1 = d__[i__], abs(d__1)) < eps) {
  984. d__[i__] = d_sign(&eps, &d__[i__]);
  985. }
  986. /* L170: */
  987. }
  988. i__1 = nm1;
  989. for (i__ = 1; i__ <= i__1; ++i__) {
  990. if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
  991. ++nsub;
  992. iwork[nsub] = st;
  993. /* Subproblem found. First determine its size and then */
  994. /* apply divide and conquer on it. */
  995. if (i__ < nm1) {
  996. /* A subproblem with E(I) small for I < NM1. */
  997. nsize = i__ - st + 1;
  998. iwork[sizei + nsub - 1] = nsize;
  999. } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
  1000. /* A subproblem with E(NM1) not too small but I = NM1. */
  1001. nsize = *n - st + 1;
  1002. iwork[sizei + nsub - 1] = nsize;
  1003. } else {
  1004. /* A subproblem with E(NM1) small. This implies an */
  1005. /* 1-by-1 subproblem at D(N), which is not solved */
  1006. /* explicitly. */
  1007. nsize = i__ - st + 1;
  1008. iwork[sizei + nsub - 1] = nsize;
  1009. ++nsub;
  1010. iwork[nsub] = *n;
  1011. iwork[sizei + nsub - 1] = 1;
  1012. zcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
  1013. }
  1014. st1 = st - 1;
  1015. if (nsize == 1) {
  1016. /* This is a 1-by-1 subproblem and is not solved */
  1017. /* explicitly. */
  1018. zcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
  1019. } else if (nsize <= *smlsiz) {
  1020. /* This is a small subproblem and is solved by DLASDQ. */
  1021. dlaset_("A", &nsize, &nsize, &c_b35, &c_b10, &rwork[vt + st1],
  1022. n);
  1023. dlaset_("A", &nsize, &nsize, &c_b35, &c_b10, &rwork[u + st1],
  1024. n);
  1025. dlasdq_("U", &c__0, &nsize, &nsize, &nsize, &c__0, &d__[st], &
  1026. e[st], &rwork[vt + st1], n, &rwork[u + st1], n, &
  1027. rwork[nrwork], &c__1, &rwork[nrwork], info)
  1028. ;
  1029. if (*info != 0) {
  1030. return;
  1031. }
  1032. /* In the real version, B is passed to DLASDQ and multiplied */
  1033. /* internally by Q**H. Here B is complex and that product is */
  1034. /* computed below in two steps (real and imaginary parts). */
  1035. j = irwb - 1;
  1036. i__2 = *nrhs;
  1037. for (jcol = 1; jcol <= i__2; ++jcol) {
  1038. i__3 = st + nsize - 1;
  1039. for (jrow = st; jrow <= i__3; ++jrow) {
  1040. ++j;
  1041. i__4 = jrow + jcol * b_dim1;
  1042. rwork[j] = b[i__4].r;
  1043. /* L180: */
  1044. }
  1045. /* L190: */
  1046. }
  1047. dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[u + st1]
  1048. , n, &rwork[irwb], &nsize, &c_b35, &rwork[irwrb], &
  1049. nsize);
  1050. j = irwb - 1;
  1051. i__2 = *nrhs;
  1052. for (jcol = 1; jcol <= i__2; ++jcol) {
  1053. i__3 = st + nsize - 1;
  1054. for (jrow = st; jrow <= i__3; ++jrow) {
  1055. ++j;
  1056. rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
  1057. /* L200: */
  1058. }
  1059. /* L210: */
  1060. }
  1061. dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[u + st1]
  1062. , n, &rwork[irwb], &nsize, &c_b35, &rwork[irwib], &
  1063. nsize);
  1064. jreal = irwrb - 1;
  1065. jimag = irwib - 1;
  1066. i__2 = *nrhs;
  1067. for (jcol = 1; jcol <= i__2; ++jcol) {
  1068. i__3 = st + nsize - 1;
  1069. for (jrow = st; jrow <= i__3; ++jrow) {
  1070. ++jreal;
  1071. ++jimag;
  1072. i__4 = jrow + jcol * b_dim1;
  1073. i__5 = jreal;
  1074. i__6 = jimag;
  1075. z__1.r = rwork[i__5], z__1.i = rwork[i__6];
  1076. b[i__4].r = z__1.r, b[i__4].i = z__1.i;
  1077. /* L220: */
  1078. }
  1079. /* L230: */
  1080. }
  1081. zlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
  1082. st1], n);
  1083. } else {
  1084. /* A large problem. Solve it using divide and conquer. */
  1085. dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
  1086. rwork[u + st1], n, &rwork[vt + st1], &iwork[k + st1],
  1087. &rwork[difl + st1], &rwork[difr + st1], &rwork[z__ +
  1088. st1], &rwork[poles + st1], &iwork[givptr + st1], &
  1089. iwork[givcol + st1], n, &iwork[perm + st1], &rwork[
  1090. givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &
  1091. rwork[nrwork], &iwork[iwk], info);
  1092. if (*info != 0) {
  1093. return;
  1094. }
  1095. bxst = bx + st1;
  1096. zlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
  1097. work[bxst], n, &rwork[u + st1], n, &rwork[vt + st1], &
  1098. iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1]
  1099. , &rwork[z__ + st1], &rwork[poles + st1], &iwork[
  1100. givptr + st1], &iwork[givcol + st1], n, &iwork[perm +
  1101. st1], &rwork[givnum + st1], &rwork[c__ + st1], &rwork[
  1102. s + st1], &rwork[nrwork], &iwork[iwk], info);
  1103. if (*info != 0) {
  1104. return;
  1105. }
  1106. }
  1107. st = i__ + 1;
  1108. }
  1109. /* L240: */
  1110. }
  1111. /* Apply the singular values and treat the tiny ones as zero. */
  1112. tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
  1113. i__1 = *n;
  1114. for (i__ = 1; i__ <= i__1; ++i__) {
  1115. /* Some of the elements in D can be negative because 1-by-1 */
  1116. /* subproblems were not solved explicitly. */
  1117. if ((d__1 = d__[i__], abs(d__1)) <= tol) {
  1118. zlaset_("A", &c__1, nrhs, &c_b1, &c_b1, &work[bx + i__ - 1], n);
  1119. } else {
  1120. ++(*rank);
  1121. zlascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &work[
  1122. bx + i__ - 1], n, info);
  1123. }
  1124. d__[i__] = (d__1 = d__[i__], abs(d__1));
  1125. /* L250: */
  1126. }
  1127. /* Now apply back the right singular vectors. */
  1128. icmpq2 = 1;
  1129. i__1 = nsub;
  1130. for (i__ = 1; i__ <= i__1; ++i__) {
  1131. st = iwork[i__];
  1132. st1 = st - 1;
  1133. nsize = iwork[sizei + i__ - 1];
  1134. bxst = bx + st1;
  1135. if (nsize == 1) {
  1136. zcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
  1137. } else if (nsize <= *smlsiz) {
  1138. /* Since B and BX are complex, the following call to DGEMM */
  1139. /* is performed in two steps (real and imaginary parts). */
  1140. /* CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE, */
  1141. /* $ RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO, */
  1142. /* $ B( ST, 1 ), LDB ) */
  1143. j = bxst - *n - 1;
  1144. jreal = irwb - 1;
  1145. i__2 = *nrhs;
  1146. for (jcol = 1; jcol <= i__2; ++jcol) {
  1147. j += *n;
  1148. i__3 = nsize;
  1149. for (jrow = 1; jrow <= i__3; ++jrow) {
  1150. ++jreal;
  1151. i__4 = j + jrow;
  1152. rwork[jreal] = work[i__4].r;
  1153. /* L260: */
  1154. }
  1155. /* L270: */
  1156. }
  1157. dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[vt + st1],
  1158. n, &rwork[irwb], &nsize, &c_b35, &rwork[irwrb], &nsize);
  1159. j = bxst - *n - 1;
  1160. jimag = irwb - 1;
  1161. i__2 = *nrhs;
  1162. for (jcol = 1; jcol <= i__2; ++jcol) {
  1163. j += *n;
  1164. i__3 = nsize;
  1165. for (jrow = 1; jrow <= i__3; ++jrow) {
  1166. ++jimag;
  1167. rwork[jimag] = d_imag(&work[j + jrow]);
  1168. /* L280: */
  1169. }
  1170. /* L290: */
  1171. }
  1172. dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[vt + st1],
  1173. n, &rwork[irwb], &nsize, &c_b35, &rwork[irwib], &nsize);
  1174. jreal = irwrb - 1;
  1175. jimag = irwib - 1;
  1176. i__2 = *nrhs;
  1177. for (jcol = 1; jcol <= i__2; ++jcol) {
  1178. i__3 = st + nsize - 1;
  1179. for (jrow = st; jrow <= i__3; ++jrow) {
  1180. ++jreal;
  1181. ++jimag;
  1182. i__4 = jrow + jcol * b_dim1;
  1183. i__5 = jreal;
  1184. i__6 = jimag;
  1185. z__1.r = rwork[i__5], z__1.i = rwork[i__6];
  1186. b[i__4].r = z__1.r, b[i__4].i = z__1.i;
  1187. /* L300: */
  1188. }
  1189. /* L310: */
  1190. }
  1191. } else {
  1192. zlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
  1193. b_dim1], ldb, &rwork[u + st1], n, &rwork[vt + st1], &
  1194. iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1], &
  1195. rwork[z__ + st1], &rwork[poles + st1], &iwork[givptr +
  1196. st1], &iwork[givcol + st1], n, &iwork[perm + st1], &rwork[
  1197. givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &rwork[
  1198. nrwork], &iwork[iwk], info);
  1199. if (*info != 0) {
  1200. return;
  1201. }
  1202. }
  1203. /* L320: */
  1204. }
  1205. /* Unscale and sort the singular values. */
  1206. dlascl_("G", &c__0, &c__0, &c_b10, &orgnrm, n, &c__1, &d__[1], n, info);
  1207. dlasrt_("D", n, &d__[1], info);
  1208. zlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, nrhs, &b[b_offset], ldb,
  1209. info);
  1210. return;
  1211. /* End of ZLALSD */
  1212. } /* zlalsd_ */