|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static integer c__1 = 1;
- static integer c__0 = 0;
- static doublereal c_b10 = 1.;
- static doublereal c_b35 = 0.;
-
- /* > \brief \b ZLALSD uses the singular value decomposition of A to solve the least squares problem. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZLALSD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlalsd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlalsd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlalsd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, */
- /* RANK, WORK, RWORK, IWORK, INFO ) */
-
- /* CHARACTER UPLO */
- /* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ */
- /* DOUBLE PRECISION RCOND */
- /* INTEGER IWORK( * ) */
- /* DOUBLE PRECISION D( * ), E( * ), RWORK( * ) */
- /* COMPLEX*16 B( LDB, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLALSD uses the singular value decomposition of A to solve the least */
- /* > squares problem of finding X to minimize the Euclidean norm of each */
- /* > column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
- /* > are N-by-NRHS. The solution X overwrites B. */
- /* > */
- /* > The singular values of A smaller than RCOND times the largest */
- /* > singular value are treated as zero in solving the least squares */
- /* > problem; in this case a minimum norm solution is returned. */
- /* > The actual singular values are returned in D in ascending order. */
- /* > */
- /* > This code makes very mild assumptions about floating point */
- /* > arithmetic. It will work on machines with a guard digit in */
- /* > add/subtract, or on those binary machines without guard digits */
- /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
- /* > It could conceivably fail on hexadecimal or decimal machines */
- /* > without guard digits, but we know of none. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': D and E define an upper bidiagonal matrix. */
- /* > = 'L': D and E define a lower bidiagonal matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SMLSIZ */
- /* > \verbatim */
- /* > SMLSIZ is INTEGER */
- /* > The maximum size of the subproblems at the bottom of the */
- /* > computation tree. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The dimension of the bidiagonal matrix. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of columns of B. NRHS must be at least 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (N) */
- /* > On entry D contains the main diagonal of the bidiagonal */
- /* > matrix. On exit, if INFO = 0, D contains its singular values. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] E */
- /* > \verbatim */
- /* > E is DOUBLE PRECISION array, dimension (N-1) */
- /* > Contains the super-diagonal entries of the bidiagonal matrix. */
- /* > On exit, E has been destroyed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
- /* > On input, B contains the right hand sides of the least */
- /* > squares problem. On output, B contains the solution X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B in the calling subprogram. */
- /* > LDB must be at least f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RCOND */
- /* > \verbatim */
- /* > RCOND is DOUBLE PRECISION */
- /* > The singular values of A less than or equal to RCOND times */
- /* > the largest singular value are treated as zero in solving */
- /* > the least squares problem. If RCOND is negative, */
- /* > machine precision is used instead. */
- /* > For example, if diag(S)*X=B were the least squares problem, */
- /* > where diag(S) is a diagonal matrix of singular values, the */
- /* > solution would be X(i) = B(i) / S(i) if S(i) is greater than */
- /* > RCOND*f2cmax(S), and X(i) = 0 if S(i) is less than or equal to */
- /* > RCOND*f2cmax(S). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RANK */
- /* > \verbatim */
- /* > RANK is INTEGER */
- /* > The number of singular values of A greater than RCOND times */
- /* > the largest singular value. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension (N * NRHS) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is DOUBLE PRECISION array, dimension at least */
- /* > (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */
- /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ), */
- /* > where */
- /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension at least */
- /* > (3*N*NLVL + 11*N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: The algorithm failed to compute a singular value while */
- /* > working on the submatrix lying in rows and columns */
- /* > INFO/(N+1) through MOD(INFO,N+1). */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup complex16OTHERcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
- /* > California at Berkeley, USA \n */
- /* > Osni Marques, LBNL/NERSC, USA \n */
-
- /* ===================================================================== */
- /* Subroutine */ void zlalsd_(char *uplo, integer *smlsiz, integer *n, integer
- *nrhs, doublereal *d__, doublereal *e, doublecomplex *b, integer *ldb,
- doublereal *rcond, integer *rank, doublecomplex *work, doublereal *
- rwork, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6;
- doublereal d__1;
- doublecomplex z__1;
-
- /* Local variables */
- integer difl, difr;
- doublereal rcnd;
- integer jcol, irwb, perm, nsub, nlvl, sqre, bxst, jrow, irwu, c__, i__, j,
- k;
- doublereal r__;
- integer s, u, jimag;
- extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer z__, jreal, irwib, poles, sizei, irwrb, nsize;
- extern /* Subroutine */ void zdrot_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublereal *, doublereal *), zcopy_(
- integer *, doublecomplex *, integer *, doublecomplex *, integer *)
- ;
- integer irwvt, icmpq1, icmpq2;
- doublereal cs;
- extern doublereal dlamch_(char *);
- extern /* Subroutine */ void dlasda_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *);
- integer bx;
- doublereal sn;
- extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- extern integer idamax_(integer *, doublereal *, integer *);
- integer st;
- extern /* Subroutine */ void dlasdq_(char *, integer *, integer *, integer
- *, integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer vt;
- extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *),
- dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *);
- extern int xerbla_(char *, integer *, ftnlen);
- integer givcol;
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ void zlalsa_(integer *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *), zlascl_(char *, integer *,
- integer *, doublereal *, doublereal *, integer *, integer *,
- doublecomplex *, integer *, integer *), dlasrt_(char *,
- integer *, doublereal *, integer *), zlacpy_(char *,
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- integer *), zlaset_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *);
- doublereal orgnrm;
- integer givnum, givptr, nm1, nrwork, irwwrk, smlszp, st1;
- doublereal eps;
- integer iwk;
- doublereal tol;
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --d__;
- --e;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --work;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 1) {
- *info = -4;
- } else if (*ldb < 1 || *ldb < *n) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLALSD", &i__1, (ftnlen)6);
- return;
- }
-
- eps = dlamch_("Epsilon");
-
- /* Set up the tolerance. */
-
- if (*rcond <= 0. || *rcond >= 1.) {
- rcnd = eps;
- } else {
- rcnd = *rcond;
- }
-
- *rank = 0;
-
- /* Quick return if possible. */
-
- if (*n == 0) {
- return;
- } else if (*n == 1) {
- if (d__[1] == 0.) {
- zlaset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
- } else {
- *rank = 1;
- zlascl_("G", &c__0, &c__0, &d__[1], &c_b10, &c__1, nrhs, &b[
- b_offset], ldb, info);
- d__[1] = abs(d__[1]);
- }
- return;
- }
-
- /* Rotate the matrix if it is lower bidiagonal. */
-
- if (*(unsigned char *)uplo == 'L') {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (*nrhs == 1) {
- zdrot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
- c__1, &cs, &sn);
- } else {
- rwork[(i__ << 1) - 1] = cs;
- rwork[i__ * 2] = sn;
- }
- /* L10: */
- }
- if (*nrhs > 1) {
- i__1 = *nrhs;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n - 1;
- for (j = 1; j <= i__2; ++j) {
- cs = rwork[(j << 1) - 1];
- sn = rwork[j * 2];
- zdrot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__
- * b_dim1], &c__1, &cs, &sn);
- /* L20: */
- }
- /* L30: */
- }
- }
- }
-
- /* Scale. */
-
- nm1 = *n - 1;
- orgnrm = dlanst_("M", n, &d__[1], &e[1]);
- if (orgnrm == 0.) {
- zlaset_("A", n, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
- return;
- }
-
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, &c__1, &d__[1], n, info);
- dlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, &nm1, &c__1, &e[1], &nm1,
- info);
-
- /* If N is smaller than the minimum divide size SMLSIZ, then solve */
- /* the problem with another solver. */
-
- if (*n <= *smlsiz) {
- irwu = 1;
- irwvt = irwu + *n * *n;
- irwwrk = irwvt + *n * *n;
- irwrb = irwwrk;
- irwib = irwrb + *n * *nrhs;
- irwb = irwib + *n * *nrhs;
- dlaset_("A", n, n, &c_b35, &c_b10, &rwork[irwu], n);
- dlaset_("A", n, n, &c_b35, &c_b10, &rwork[irwvt], n);
- dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &rwork[irwvt], n,
- &rwork[irwu], n, &rwork[irwwrk], &c__1, &rwork[irwwrk], info);
- if (*info != 0) {
- return;
- }
-
- /* In the real version, B is passed to DLASDQ and multiplied */
- /* internally by Q**H. Here B is complex and that product is */
- /* computed below in two steps (real and imaginary parts). */
-
- j = irwb - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++j;
- i__3 = jrow + jcol * b_dim1;
- rwork[j] = b[i__3].r;
- /* L40: */
- }
- /* L50: */
- }
- dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n,
- &c_b35, &rwork[irwrb], n);
- j = irwb - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
- /* L60: */
- }
- /* L70: */
- }
- dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n,
- &c_b35, &rwork[irwib], n);
- jreal = irwrb - 1;
- jimag = irwib - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++jreal;
- ++jimag;
- i__3 = jrow + jcol * b_dim1;
- i__4 = jreal;
- i__5 = jimag;
- z__1.r = rwork[i__4], z__1.i = rwork[i__5];
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L80: */
- }
- /* L90: */
- }
-
- tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (d__[i__] <= tol) {
- zlaset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
- } else {
- zlascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &b[
- i__ + b_dim1], ldb, info);
- ++(*rank);
- }
- /* L100: */
- }
-
- /* Since B is complex, the following call to DGEMM is performed */
- /* in two steps (real and imaginary parts). That is for V * B */
- /* (in the real version of the code V**H is stored in WORK). */
-
- /* CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO, */
- /* $ WORK( NWORK ), N ) */
-
- j = irwb - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++j;
- i__3 = jrow + jcol * b_dim1;
- rwork[j] = b[i__3].r;
- /* L110: */
- }
- /* L120: */
- }
- dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwvt], n, &rwork[irwb],
- n, &c_b35, &rwork[irwrb], n);
- j = irwb - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
- /* L130: */
- }
- /* L140: */
- }
- dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwvt], n, &rwork[irwb],
- n, &c_b35, &rwork[irwib], n);
- jreal = irwrb - 1;
- jimag = irwib - 1;
- i__1 = *nrhs;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = 1; jrow <= i__2; ++jrow) {
- ++jreal;
- ++jimag;
- i__3 = jrow + jcol * b_dim1;
- i__4 = jreal;
- i__5 = jimag;
- z__1.r = rwork[i__4], z__1.i = rwork[i__5];
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L150: */
- }
- /* L160: */
- }
-
- /* Unscale. */
-
- dlascl_("G", &c__0, &c__0, &c_b10, &orgnrm, n, &c__1, &d__[1], n,
- info);
- dlasrt_("D", n, &d__[1], info);
- zlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, nrhs, &b[b_offset],
- ldb, info);
-
- return;
- }
-
- /* Book-keeping and setting up some constants. */
-
- nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) /
- log(2.)) + 1;
-
- smlszp = *smlsiz + 1;
-
- u = 1;
- vt = *smlsiz * *n + 1;
- difl = vt + smlszp * *n;
- difr = difl + nlvl * *n;
- z__ = difr + (nlvl * *n << 1);
- c__ = z__ + nlvl * *n;
- s = c__ + *n;
- poles = s + *n;
- givnum = poles + (nlvl << 1) * *n;
- nrwork = givnum + (nlvl << 1) * *n;
- bx = 1;
-
- irwrb = nrwork;
- irwib = irwrb + *smlsiz * *nrhs;
- irwb = irwib + *smlsiz * *nrhs;
-
- sizei = *n + 1;
- k = sizei + *n;
- givptr = k + *n;
- perm = givptr + *n;
- givcol = perm + nlvl * *n;
- iwk = givcol + (nlvl * *n << 1);
-
- st = 1;
- sqre = 0;
- icmpq1 = 1;
- icmpq2 = 0;
- nsub = 0;
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) < eps) {
- d__[i__] = d_sign(&eps, &d__[i__]);
- }
- /* L170: */
- }
-
- i__1 = nm1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
- ++nsub;
- iwork[nsub] = st;
-
- /* Subproblem found. First determine its size and then */
- /* apply divide and conquer on it. */
-
- if (i__ < nm1) {
-
- /* A subproblem with E(I) small for I < NM1. */
-
- nsize = i__ - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
-
- /* A subproblem with E(NM1) not too small but I = NM1. */
-
- nsize = *n - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- } else {
-
- /* A subproblem with E(NM1) small. This implies an */
- /* 1-by-1 subproblem at D(N), which is not solved */
- /* explicitly. */
-
- nsize = i__ - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- ++nsub;
- iwork[nsub] = *n;
- iwork[sizei + nsub - 1] = 1;
- zcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
- }
- st1 = st - 1;
- if (nsize == 1) {
-
- /* This is a 1-by-1 subproblem and is not solved */
- /* explicitly. */
-
- zcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
- } else if (nsize <= *smlsiz) {
-
- /* This is a small subproblem and is solved by DLASDQ. */
-
- dlaset_("A", &nsize, &nsize, &c_b35, &c_b10, &rwork[vt + st1],
- n);
- dlaset_("A", &nsize, &nsize, &c_b35, &c_b10, &rwork[u + st1],
- n);
- dlasdq_("U", &c__0, &nsize, &nsize, &nsize, &c__0, &d__[st], &
- e[st], &rwork[vt + st1], n, &rwork[u + st1], n, &
- rwork[nrwork], &c__1, &rwork[nrwork], info)
- ;
- if (*info != 0) {
- return;
- }
-
- /* In the real version, B is passed to DLASDQ and multiplied */
- /* internally by Q**H. Here B is complex and that product is */
- /* computed below in two steps (real and imaginary parts). */
-
- j = irwb - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = st + nsize - 1;
- for (jrow = st; jrow <= i__3; ++jrow) {
- ++j;
- i__4 = jrow + jcol * b_dim1;
- rwork[j] = b[i__4].r;
- /* L180: */
- }
- /* L190: */
- }
- dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[u + st1]
- , n, &rwork[irwb], &nsize, &c_b35, &rwork[irwrb], &
- nsize);
- j = irwb - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = st + nsize - 1;
- for (jrow = st; jrow <= i__3; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
- /* L200: */
- }
- /* L210: */
- }
- dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[u + st1]
- , n, &rwork[irwb], &nsize, &c_b35, &rwork[irwib], &
- nsize);
- jreal = irwrb - 1;
- jimag = irwib - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = st + nsize - 1;
- for (jrow = st; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * b_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
- /* L220: */
- }
- /* L230: */
- }
-
- zlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
- st1], n);
- } else {
-
- /* A large problem. Solve it using divide and conquer. */
-
- dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
- rwork[u + st1], n, &rwork[vt + st1], &iwork[k + st1],
- &rwork[difl + st1], &rwork[difr + st1], &rwork[z__ +
- st1], &rwork[poles + st1], &iwork[givptr + st1], &
- iwork[givcol + st1], n, &iwork[perm + st1], &rwork[
- givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &
- rwork[nrwork], &iwork[iwk], info);
- if (*info != 0) {
- return;
- }
- bxst = bx + st1;
- zlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
- work[bxst], n, &rwork[u + st1], n, &rwork[vt + st1], &
- iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1]
- , &rwork[z__ + st1], &rwork[poles + st1], &iwork[
- givptr + st1], &iwork[givcol + st1], n, &iwork[perm +
- st1], &rwork[givnum + st1], &rwork[c__ + st1], &rwork[
- s + st1], &rwork[nrwork], &iwork[iwk], info);
- if (*info != 0) {
- return;
- }
- }
- st = i__ + 1;
- }
- /* L240: */
- }
-
- /* Apply the singular values and treat the tiny ones as zero. */
-
- tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- /* Some of the elements in D can be negative because 1-by-1 */
- /* subproblems were not solved explicitly. */
-
- if ((d__1 = d__[i__], abs(d__1)) <= tol) {
- zlaset_("A", &c__1, nrhs, &c_b1, &c_b1, &work[bx + i__ - 1], n);
- } else {
- ++(*rank);
- zlascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &work[
- bx + i__ - 1], n, info);
- }
- d__[i__] = (d__1 = d__[i__], abs(d__1));
- /* L250: */
- }
-
- /* Now apply back the right singular vectors. */
-
- icmpq2 = 1;
- i__1 = nsub;
- for (i__ = 1; i__ <= i__1; ++i__) {
- st = iwork[i__];
- st1 = st - 1;
- nsize = iwork[sizei + i__ - 1];
- bxst = bx + st1;
- if (nsize == 1) {
- zcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
- } else if (nsize <= *smlsiz) {
-
- /* Since B and BX are complex, the following call to DGEMM */
- /* is performed in two steps (real and imaginary parts). */
-
- /* CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE, */
- /* $ RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO, */
- /* $ B( ST, 1 ), LDB ) */
-
- j = bxst - *n - 1;
- jreal = irwb - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- j += *n;
- i__3 = nsize;
- for (jrow = 1; jrow <= i__3; ++jrow) {
- ++jreal;
- i__4 = j + jrow;
- rwork[jreal] = work[i__4].r;
- /* L260: */
- }
- /* L270: */
- }
- dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[vt + st1],
- n, &rwork[irwb], &nsize, &c_b35, &rwork[irwrb], &nsize);
- j = bxst - *n - 1;
- jimag = irwb - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- j += *n;
- i__3 = nsize;
- for (jrow = 1; jrow <= i__3; ++jrow) {
- ++jimag;
- rwork[jimag] = d_imag(&work[j + jrow]);
- /* L280: */
- }
- /* L290: */
- }
- dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[vt + st1],
- n, &rwork[irwb], &nsize, &c_b35, &rwork[irwib], &nsize);
- jreal = irwrb - 1;
- jimag = irwib - 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = st + nsize - 1;
- for (jrow = st; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * b_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
- /* L300: */
- }
- /* L310: */
- }
- } else {
- zlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
- b_dim1], ldb, &rwork[u + st1], n, &rwork[vt + st1], &
- iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1], &
- rwork[z__ + st1], &rwork[poles + st1], &iwork[givptr +
- st1], &iwork[givcol + st1], n, &iwork[perm + st1], &rwork[
- givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &rwork[
- nrwork], &iwork[iwk], info);
- if (*info != 0) {
- return;
- }
- }
- /* L320: */
- }
-
- /* Unscale and sort the singular values. */
-
- dlascl_("G", &c__0, &c__0, &c_b10, &orgnrm, n, &c__1, &d__[1], n, info);
- dlasrt_("D", n, &d__[1], info);
- zlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, nrhs, &b[b_offset], ldb,
- info);
-
- return;
-
- /* End of ZLALSD */
-
- } /* zlalsd_ */
|