You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtgex2.c 40 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__4 = 4;
  485. static doublereal c_b5 = 0.;
  486. static integer c__1 = 1;
  487. static integer c__2 = 2;
  488. static doublereal c_b42 = 1.;
  489. static doublereal c_b48 = -1.;
  490. static integer c__0 = 0;
  491. /* > \brief \b DTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogon
  492. al equivalence transformation. */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download DTGEX2 + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgex2.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgex2.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgex2.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, */
  511. /* LDZ, J1, N1, N2, WORK, LWORK, INFO ) */
  512. /* LOGICAL WANTQ, WANTZ */
  513. /* INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2 */
  514. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  515. /* $ WORK( * ), Z( LDZ, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) */
  522. /* > of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair */
  523. /* > (A, B) by an orthogonal equivalence transformation. */
  524. /* > */
  525. /* > (A, B) must be in generalized real Schur canonical form (as returned */
  526. /* > by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */
  527. /* > diagonal blocks. B is upper triangular. */
  528. /* > */
  529. /* > Optionally, the matrices Q and Z of generalized Schur vectors are */
  530. /* > updated. */
  531. /* > */
  532. /* > Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T */
  533. /* > Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T */
  534. /* > */
  535. /* > \endverbatim */
  536. /* Arguments: */
  537. /* ========== */
  538. /* > \param[in] WANTQ */
  539. /* > \verbatim */
  540. /* > WANTQ is LOGICAL */
  541. /* > .TRUE. : update the left transformation matrix Q; */
  542. /* > .FALSE.: do not update Q. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] WANTZ */
  546. /* > \verbatim */
  547. /* > WANTZ is LOGICAL */
  548. /* > .TRUE. : update the right transformation matrix Z; */
  549. /* > .FALSE.: do not update Z. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] N */
  553. /* > \verbatim */
  554. /* > N is INTEGER */
  555. /* > The order of the matrices A and B. N >= 0. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in,out] A */
  559. /* > \verbatim */
  560. /* > A is DOUBLE PRECISION array, dimensions (LDA,N) */
  561. /* > On entry, the matrix A in the pair (A, B). */
  562. /* > On exit, the updated matrix A. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] LDA */
  566. /* > \verbatim */
  567. /* > LDA is INTEGER */
  568. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in,out] B */
  572. /* > \verbatim */
  573. /* > B is DOUBLE PRECISION array, dimensions (LDB,N) */
  574. /* > On entry, the matrix B in the pair (A, B). */
  575. /* > On exit, the updated matrix B. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDB */
  579. /* > \verbatim */
  580. /* > LDB is INTEGER */
  581. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] Q */
  585. /* > \verbatim */
  586. /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
  587. /* > On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */
  588. /* > On exit, the updated matrix Q. */
  589. /* > Not referenced if WANTQ = .FALSE.. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDQ */
  593. /* > \verbatim */
  594. /* > LDQ is INTEGER */
  595. /* > The leading dimension of the array Q. LDQ >= 1. */
  596. /* > If WANTQ = .TRUE., LDQ >= N. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in,out] Z */
  600. /* > \verbatim */
  601. /* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
  602. /* > On entry, if WANTZ =.TRUE., the orthogonal matrix Z. */
  603. /* > On exit, the updated matrix Z. */
  604. /* > Not referenced if WANTZ = .FALSE.. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] LDZ */
  608. /* > \verbatim */
  609. /* > LDZ is INTEGER */
  610. /* > The leading dimension of the array Z. LDZ >= 1. */
  611. /* > If WANTZ = .TRUE., LDZ >= N. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] J1 */
  615. /* > \verbatim */
  616. /* > J1 is INTEGER */
  617. /* > The index to the first block (A11, B11). 1 <= J1 <= N. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] N1 */
  621. /* > \verbatim */
  622. /* > N1 is INTEGER */
  623. /* > The order of the first block (A11, B11). N1 = 0, 1 or 2. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] N2 */
  627. /* > \verbatim */
  628. /* > N2 is INTEGER */
  629. /* > The order of the second block (A22, B22). N2 = 0, 1 or 2. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] WORK */
  633. /* > \verbatim */
  634. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)). */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[in] LWORK */
  638. /* > \verbatim */
  639. /* > LWORK is INTEGER */
  640. /* > The dimension of the array WORK. */
  641. /* > LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 ) */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] INFO */
  645. /* > \verbatim */
  646. /* > INFO is INTEGER */
  647. /* > =0: Successful exit */
  648. /* > >0: If INFO = 1, the transformed matrix (A, B) would be */
  649. /* > too far from generalized Schur form; the blocks are */
  650. /* > not swapped and (A, B) and (Q, Z) are unchanged. */
  651. /* > The problem of swapping is too ill-conditioned. */
  652. /* > <0: If INFO = -16: LWORK is too small. Appropriate value */
  653. /* > for LWORK is returned in WORK(1). */
  654. /* > \endverbatim */
  655. /* Authors: */
  656. /* ======== */
  657. /* > \author Univ. of Tennessee */
  658. /* > \author Univ. of California Berkeley */
  659. /* > \author Univ. of Colorado Denver */
  660. /* > \author NAG Ltd. */
  661. /* > \date December 2016 */
  662. /* > \ingroup doubleGEauxiliary */
  663. /* > \par Further Details: */
  664. /* ===================== */
  665. /* > */
  666. /* > In the current code both weak and strong stability tests are */
  667. /* > performed. The user can omit the strong stability test by changing */
  668. /* > the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
  669. /* > details. */
  670. /* > \par Contributors: */
  671. /* ================== */
  672. /* > */
  673. /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
  674. /* > Umea University, S-901 87 Umea, Sweden. */
  675. /* > \par References: */
  676. /* ================ */
  677. /* > */
  678. /* > \verbatim */
  679. /* > */
  680. /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
  681. /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
  682. /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
  683. /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
  684. /* > */
  685. /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
  686. /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
  687. /* > Estimation: Theory, Algorithms and Software, */
  688. /* > Report UMINF - 94.04, Department of Computing Science, Umea */
  689. /* > University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
  690. /* > Note 87. To appear in Numerical Algorithms, 1996. */
  691. /* > \endverbatim */
  692. /* > */
  693. /* ===================================================================== */
  694. /* Subroutine */ void dtgex2_(logical *wantq, logical *wantz, integer *n,
  695. doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
  696. q, integer *ldq, doublereal *z__, integer *ldz, integer *j1, integer *
  697. n1, integer *n2, doublereal *work, integer *lwork, integer *info)
  698. {
  699. /* System generated locals */
  700. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
  701. z_offset, i__1, i__2;
  702. doublereal d__1;
  703. /* Local variables */
  704. logical weak;
  705. doublereal ddum;
  706. integer idum;
  707. doublereal taul[4], dsum;
  708. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  709. doublereal *, integer *, doublereal *, doublereal *);
  710. doublereal taur[4], scpy[16] /* was [4][4] */, tcpy[16] /*
  711. was [4][4] */, f, g;
  712. integer i__, m;
  713. doublereal s[16] /* was [4][4] */, t[16] /* was [4][4] */;
  714. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  715. integer *);
  716. doublereal scale, bqra21, brqa21;
  717. extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
  718. integer *, doublereal *, doublereal *, integer *, doublereal *,
  719. integer *, doublereal *, doublereal *, integer *);
  720. doublereal licop[16] /* was [4][4] */;
  721. integer linfo;
  722. doublereal ircop[16] /* was [4][4] */, dnorm;
  723. integer iwork[4];
  724. extern /* Subroutine */ void dlagv2_(doublereal *, integer *, doublereal *,
  725. integer *, doublereal *, doublereal *, doublereal *, doublereal *
  726. , doublereal *, doublereal *, doublereal *), dgeqr2_(integer *,
  727. integer *, doublereal *, integer *, doublereal *, doublereal *,
  728. integer *), dgerq2_(integer *, integer *, doublereal *, integer *,
  729. doublereal *, doublereal *, integer *), dorg2r_(integer *,
  730. integer *, integer *, doublereal *, integer *, doublereal *,
  731. doublereal *, integer *), dorgr2_(integer *, integer *, integer *,
  732. doublereal *, integer *, doublereal *, doublereal *, integer *),
  733. dorm2r_(char *, char *, integer *, integer *, integer *,
  734. doublereal *, integer *, doublereal *, doublereal *, integer *,
  735. doublereal *, integer *), dormr2_(char *, char *,
  736. integer *, integer *, integer *, doublereal *, integer *,
  737. doublereal *, doublereal *, integer *, doublereal *, integer *);
  738. doublereal be[2], ai[2];
  739. extern /* Subroutine */ void dtgsy2_(char *, integer *, integer *, integer
  740. *, doublereal *, integer *, doublereal *, integer *, doublereal *,
  741. integer *, doublereal *, integer *, doublereal *, integer *,
  742. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  743. integer *, integer *, integer *);
  744. doublereal ar[2], sa, sb, li[16] /* was [4][4] */;
  745. extern doublereal dlamch_(char *);
  746. doublereal dscale, ir[16] /* was [4][4] */, ss, ws;
  747. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  748. doublereal *, integer *, doublereal *, integer *),
  749. dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  750. doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
  751. doublereal *, doublereal *, integer *), dlassq_(integer *
  752. , doublereal *, integer *, doublereal *, doublereal *);
  753. logical dtrong;
  754. doublereal thresh, smlnum, eps;
  755. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  756. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  757. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  758. /* December 2016 */
  759. /* ===================================================================== */
  760. /* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO */
  761. /* loops. Sven Hammarling, 1/5/02. */
  762. /* Parameter adjustments */
  763. a_dim1 = *lda;
  764. a_offset = 1 + a_dim1 * 1;
  765. a -= a_offset;
  766. b_dim1 = *ldb;
  767. b_offset = 1 + b_dim1 * 1;
  768. b -= b_offset;
  769. q_dim1 = *ldq;
  770. q_offset = 1 + q_dim1 * 1;
  771. q -= q_offset;
  772. z_dim1 = *ldz;
  773. z_offset = 1 + z_dim1 * 1;
  774. z__ -= z_offset;
  775. --work;
  776. /* Function Body */
  777. *info = 0;
  778. /* Quick return if possible */
  779. if (*n <= 1 || *n1 <= 0 || *n2 <= 0) {
  780. return;
  781. }
  782. if (*n1 > *n || *j1 + *n1 > *n) {
  783. return;
  784. }
  785. m = *n1 + *n2;
  786. /* Computing MAX */
  787. i__1 = 1, i__2 = *n * m, i__1 = f2cmax(i__1,i__2), i__2 = m * m << 1;
  788. if (*lwork < f2cmax(i__1,i__2)) {
  789. *info = -16;
  790. /* Computing MAX */
  791. i__1 = 1, i__2 = *n * m, i__1 = f2cmax(i__1,i__2), i__2 = m * m << 1;
  792. work[1] = (doublereal) f2cmax(i__1,i__2);
  793. return;
  794. }
  795. weak = FALSE_;
  796. dtrong = FALSE_;
  797. /* Make a local copy of selected block */
  798. dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, li, &c__4);
  799. dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, ir, &c__4);
  800. dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__4);
  801. dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__4);
  802. /* Compute threshold for testing acceptance of swapping. */
  803. eps = dlamch_("P");
  804. smlnum = dlamch_("S") / eps;
  805. dscale = 0.;
  806. dsum = 1.;
  807. dlacpy_("Full", &m, &m, s, &c__4, &work[1], &m);
  808. i__1 = m * m;
  809. dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
  810. dlacpy_("Full", &m, &m, t, &c__4, &work[1], &m);
  811. i__1 = m * m;
  812. dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
  813. dnorm = dscale * sqrt(dsum);
  814. /* THRES has been changed from */
  815. /* THRESH = MAX( TEN*EPS*SA, SMLNUM ) */
  816. /* to */
  817. /* THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) */
  818. /* on 04/01/10. */
  819. /* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by */
  820. /* Jim Demmel and Guillaume Revy. See forum post 1783. */
  821. /* Computing MAX */
  822. d__1 = eps * 20. * dnorm;
  823. thresh = f2cmax(d__1,smlnum);
  824. if (m == 2) {
  825. /* CASE 1: Swap 1-by-1 and 1-by-1 blocks. */
  826. /* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks */
  827. /* using Givens rotations and perform the swap tentatively. */
  828. f = s[5] * t[0] - t[5] * s[0];
  829. g = s[5] * t[4] - t[5] * s[4];
  830. sb = abs(t[5]);
  831. sa = abs(s[5]);
  832. dlartg_(&f, &g, &ir[4], ir, &ddum);
  833. ir[1] = -ir[4];
  834. ir[5] = ir[0];
  835. drot_(&c__2, s, &c__1, &s[4], &c__1, ir, &ir[1]);
  836. drot_(&c__2, t, &c__1, &t[4], &c__1, ir, &ir[1]);
  837. if (sa >= sb) {
  838. dlartg_(s, &s[1], li, &li[1], &ddum);
  839. } else {
  840. dlartg_(t, &t[1], li, &li[1], &ddum);
  841. }
  842. drot_(&c__2, s, &c__4, &s[1], &c__4, li, &li[1]);
  843. drot_(&c__2, t, &c__4, &t[1], &c__4, li, &li[1]);
  844. li[5] = li[0];
  845. li[4] = -li[1];
  846. /* Weak stability test: */
  847. /* |S21| + |T21| <= O(EPS * F-norm((S, T))) */
  848. ws = abs(s[1]) + abs(t[1]);
  849. weak = ws <= thresh;
  850. if (! weak) {
  851. goto L70;
  852. }
  853. if (TRUE_) {
  854. /* Strong stability test: */
  855. /* F-norm((A-QL**T*S*QR, B-QL**T*T*QR)) <= O(EPS*F-norm((A,B))) */
  856. dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
  857. + 1], &m);
  858. dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  859. work[1], &m);
  860. dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  861. c_b42, &work[m * m + 1], &m);
  862. dscale = 0.;
  863. dsum = 1.;
  864. i__1 = m * m;
  865. dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  866. dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
  867. + 1], &m);
  868. dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  869. work[1], &m);
  870. dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  871. c_b42, &work[m * m + 1], &m);
  872. i__1 = m * m;
  873. dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  874. ss = dscale * sqrt(dsum);
  875. dtrong = ss <= thresh;
  876. if (! dtrong) {
  877. goto L70;
  878. }
  879. }
  880. /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
  881. /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
  882. i__1 = *j1 + 1;
  883. drot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1],
  884. &c__1, ir, &ir[1]);
  885. i__1 = *j1 + 1;
  886. drot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1],
  887. &c__1, ir, &ir[1]);
  888. i__1 = *n - *j1 + 1;
  889. drot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1],
  890. lda, li, &li[1]);
  891. i__1 = *n - *j1 + 1;
  892. drot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1],
  893. ldb, li, &li[1]);
  894. /* Set N1-by-N2 (2,1) - blocks to ZERO. */
  895. a[*j1 + 1 + *j1 * a_dim1] = 0.;
  896. b[*j1 + 1 + *j1 * b_dim1] = 0.;
  897. /* Accumulate transformations into Q and Z if requested. */
  898. if (*wantz) {
  899. drot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 +
  900. 1], &c__1, ir, &ir[1]);
  901. }
  902. if (*wantq) {
  903. drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1],
  904. &c__1, li, &li[1]);
  905. }
  906. /* Exit with INFO = 0 if swap was successfully performed. */
  907. return;
  908. } else {
  909. /* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 */
  910. /* and 2-by-2 blocks. */
  911. /* Solve the generalized Sylvester equation */
  912. /* S11 * R - L * S22 = SCALE * S12 */
  913. /* T11 * R - L * T22 = SCALE * T12 */
  914. /* for R and L. Solutions in LI and IR. */
  915. dlacpy_("Full", n1, n2, &t[(*n1 + 1 << 2) - 4], &c__4, li, &c__4);
  916. dlacpy_("Full", n1, n2, &s[(*n1 + 1 << 2) - 4], &c__4, &ir[*n2 + 1 + (
  917. *n1 + 1 << 2) - 5], &c__4);
  918. dtgsy2_("N", &c__0, n1, n2, s, &c__4, &s[*n1 + 1 + (*n1 + 1 << 2) - 5]
  919. , &c__4, &ir[*n2 + 1 + (*n1 + 1 << 2) - 5], &c__4, t, &c__4, &
  920. t[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, li, &c__4, &scale, &
  921. dsum, &dscale, iwork, &idum, &linfo);
  922. /* Compute orthogonal matrix QL: */
  923. /* QL**T * LI = [ TL ] */
  924. /* [ 0 ] */
  925. /* where */
  926. /* LI = [ -L ] */
  927. /* [ SCALE * identity(N2) ] */
  928. i__1 = *n2;
  929. for (i__ = 1; i__ <= i__1; ++i__) {
  930. dscal_(n1, &c_b48, &li[(i__ << 2) - 4], &c__1);
  931. li[*n1 + i__ + (i__ << 2) - 5] = scale;
  932. /* L10: */
  933. }
  934. dgeqr2_(&m, n2, li, &c__4, taul, &work[1], &linfo);
  935. if (linfo != 0) {
  936. goto L70;
  937. }
  938. dorg2r_(&m, &m, n2, li, &c__4, taul, &work[1], &linfo);
  939. if (linfo != 0) {
  940. goto L70;
  941. }
  942. /* Compute orthogonal matrix RQ: */
  943. /* IR * RQ**T = [ 0 TR], */
  944. /* where IR = [ SCALE * identity(N1), R ] */
  945. i__1 = *n1;
  946. for (i__ = 1; i__ <= i__1; ++i__) {
  947. ir[*n2 + i__ + (i__ << 2) - 5] = scale;
  948. /* L20: */
  949. }
  950. dgerq2_(n1, &m, &ir[*n2], &c__4, taur, &work[1], &linfo);
  951. if (linfo != 0) {
  952. goto L70;
  953. }
  954. dorgr2_(&m, &m, n1, ir, &c__4, taur, &work[1], &linfo);
  955. if (linfo != 0) {
  956. goto L70;
  957. }
  958. /* Perform the swapping tentatively: */
  959. dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  960. work[1], &m);
  961. dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
  962. s, &c__4);
  963. dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  964. work[1], &m);
  965. dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
  966. t, &c__4);
  967. dlacpy_("F", &m, &m, s, &c__4, scpy, &c__4);
  968. dlacpy_("F", &m, &m, t, &c__4, tcpy, &c__4);
  969. dlacpy_("F", &m, &m, ir, &c__4, ircop, &c__4);
  970. dlacpy_("F", &m, &m, li, &c__4, licop, &c__4);
  971. /* Triangularize the B-part by an RQ factorization. */
  972. /* Apply transformation (from left) to A-part, giving S. */
  973. dgerq2_(&m, &m, t, &c__4, taur, &work[1], &linfo);
  974. if (linfo != 0) {
  975. goto L70;
  976. }
  977. dormr2_("R", "T", &m, &m, &m, t, &c__4, taur, s, &c__4, &work[1], &
  978. linfo);
  979. if (linfo != 0) {
  980. goto L70;
  981. }
  982. dormr2_("L", "N", &m, &m, &m, t, &c__4, taur, ir, &c__4, &work[1], &
  983. linfo);
  984. if (linfo != 0) {
  985. goto L70;
  986. }
  987. /* Compute F-norm(S21) in BRQA21. (T21 is 0.) */
  988. dscale = 0.;
  989. dsum = 1.;
  990. i__1 = *n2;
  991. for (i__ = 1; i__ <= i__1; ++i__) {
  992. dlassq_(n1, &s[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &dsum);
  993. /* L30: */
  994. }
  995. brqa21 = dscale * sqrt(dsum);
  996. /* Triangularize the B-part by a QR factorization. */
  997. /* Apply transformation (from right) to A-part, giving S. */
  998. dgeqr2_(&m, &m, tcpy, &c__4, taul, &work[1], &linfo);
  999. if (linfo != 0) {
  1000. goto L70;
  1001. }
  1002. dorm2r_("L", "T", &m, &m, &m, tcpy, &c__4, taul, scpy, &c__4, &work[1]
  1003. , info);
  1004. dorm2r_("R", "N", &m, &m, &m, tcpy, &c__4, taul, licop, &c__4, &work[
  1005. 1], info);
  1006. if (linfo != 0) {
  1007. goto L70;
  1008. }
  1009. /* Compute F-norm(S21) in BQRA21. (T21 is 0.) */
  1010. dscale = 0.;
  1011. dsum = 1.;
  1012. i__1 = *n2;
  1013. for (i__ = 1; i__ <= i__1; ++i__) {
  1014. dlassq_(n1, &scpy[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &
  1015. dsum);
  1016. /* L40: */
  1017. }
  1018. bqra21 = dscale * sqrt(dsum);
  1019. /* Decide which method to use. */
  1020. /* Weak stability test: */
  1021. /* F-norm(S21) <= O(EPS * F-norm((S, T))) */
  1022. if (bqra21 <= brqa21 && bqra21 <= thresh) {
  1023. dlacpy_("F", &m, &m, scpy, &c__4, s, &c__4);
  1024. dlacpy_("F", &m, &m, tcpy, &c__4, t, &c__4);
  1025. dlacpy_("F", &m, &m, ircop, &c__4, ir, &c__4);
  1026. dlacpy_("F", &m, &m, licop, &c__4, li, &c__4);
  1027. } else if (brqa21 >= thresh) {
  1028. goto L70;
  1029. }
  1030. /* Set lower triangle of B-part to zero */
  1031. i__1 = m - 1;
  1032. i__2 = m - 1;
  1033. dlaset_("Lower", &i__1, &i__2, &c_b5, &c_b5, &t[1], &c__4);
  1034. if (TRUE_) {
  1035. /* Strong stability test: */
  1036. /* F-norm((A-QL*S*QR**T, B-QL*T*QR**T)) <= O(EPS*F-norm((A,B))) */
  1037. dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
  1038. + 1], &m);
  1039. dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  1040. work[1], &m);
  1041. dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  1042. c_b42, &work[m * m + 1], &m);
  1043. dscale = 0.;
  1044. dsum = 1.;
  1045. i__1 = m * m;
  1046. dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  1047. dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
  1048. + 1], &m);
  1049. dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  1050. work[1], &m);
  1051. dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  1052. c_b42, &work[m * m + 1], &m);
  1053. i__1 = m * m;
  1054. dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  1055. ss = dscale * sqrt(dsum);
  1056. dtrong = ss <= thresh;
  1057. if (! dtrong) {
  1058. goto L70;
  1059. }
  1060. }
  1061. /* If the swap is accepted ("weakly" and "strongly"), apply the */
  1062. /* transformations and set N1-by-N2 (2,1)-block to zero. */
  1063. dlaset_("Full", n1, n2, &c_b5, &c_b5, &s[*n2], &c__4);
  1064. /* copy back M-by-M diagonal block starting at index J1 of (A, B) */
  1065. dlacpy_("F", &m, &m, s, &c__4, &a[*j1 + *j1 * a_dim1], lda)
  1066. ;
  1067. dlacpy_("F", &m, &m, t, &c__4, &b[*j1 + *j1 * b_dim1], ldb)
  1068. ;
  1069. dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, t, &c__4);
  1070. /* Standardize existing 2-by-2 blocks. */
  1071. dlaset_("Full", &m, &m, &c_b5, &c_b5, &work[1], &m);
  1072. work[1] = 1.;
  1073. t[0] = 1.;
  1074. idum = *lwork - m * m - 2;
  1075. if (*n2 > 1) {
  1076. dlagv2_(&a[*j1 + *j1 * a_dim1], lda, &b[*j1 + *j1 * b_dim1], ldb,
  1077. ar, ai, be, &work[1], &work[2], t, &t[1]);
  1078. work[m + 1] = -work[2];
  1079. work[m + 2] = work[1];
  1080. t[*n2 + (*n2 << 2) - 5] = t[0];
  1081. t[4] = -t[1];
  1082. }
  1083. work[m * m] = 1.;
  1084. t[m + (m << 2) - 5] = 1.;
  1085. if (*n1 > 1) {
  1086. dlagv2_(&a[*j1 + *n2 + (*j1 + *n2) * a_dim1], lda, &b[*j1 + *n2 +
  1087. (*j1 + *n2) * b_dim1], ldb, taur, taul, &work[m * m + 1],
  1088. &work[*n2 * m + *n2 + 1], &work[*n2 * m + *n2 + 2], &t[*
  1089. n2 + 1 + (*n2 + 1 << 2) - 5], &t[m + (m - 1 << 2) - 5]);
  1090. work[m * m] = work[*n2 * m + *n2 + 1];
  1091. work[m * m - 1] = -work[*n2 * m + *n2 + 2];
  1092. t[m + (m << 2) - 5] = t[*n2 + 1 + (*n2 + 1 << 2) - 5];
  1093. t[m - 1 + (m << 2) - 5] = -t[m + (m - 1 << 2) - 5];
  1094. }
  1095. dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &a[*j1 + (*j1 + *
  1096. n2) * a_dim1], lda, &c_b5, &work[m * m + 1], n2);
  1097. dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &a[*j1 + (*j1 + *n2) *
  1098. a_dim1], lda);
  1099. dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &b[*j1 + (*j1 + *
  1100. n2) * b_dim1], ldb, &c_b5, &work[m * m + 1], n2);
  1101. dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &b[*j1 + (*j1 + *n2) *
  1102. b_dim1], ldb);
  1103. dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, &work[1], &m, &c_b5, &
  1104. work[m * m + 1], &m);
  1105. dlacpy_("Full", &m, &m, &work[m * m + 1], &m, li, &c__4);
  1106. dgemm_("N", "N", n2, n1, n1, &c_b42, &a[*j1 + (*j1 + *n2) * a_dim1],
  1107. lda, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
  1108. n2);
  1109. dlacpy_("Full", n2, n1, &work[1], n2, &a[*j1 + (*j1 + *n2) * a_dim1],
  1110. lda);
  1111. dgemm_("N", "N", n2, n1, n1, &c_b42, &b[*j1 + (*j1 + *n2) * b_dim1],
  1112. ldb, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
  1113. n2);
  1114. dlacpy_("Full", n2, n1, &work[1], n2, &b[*j1 + (*j1 + *n2) * b_dim1],
  1115. ldb);
  1116. dgemm_("T", "N", &m, &m, &m, &c_b42, ir, &c__4, t, &c__4, &c_b5, &
  1117. work[1], &m);
  1118. dlacpy_("Full", &m, &m, &work[1], &m, ir, &c__4);
  1119. /* Accumulate transformations into Q and Z if requested. */
  1120. if (*wantq) {
  1121. dgemm_("N", "N", n, &m, &m, &c_b42, &q[*j1 * q_dim1 + 1], ldq, li,
  1122. &c__4, &c_b5, &work[1], n);
  1123. dlacpy_("Full", n, &m, &work[1], n, &q[*j1 * q_dim1 + 1], ldq);
  1124. }
  1125. if (*wantz) {
  1126. dgemm_("N", "N", n, &m, &m, &c_b42, &z__[*j1 * z_dim1 + 1], ldz,
  1127. ir, &c__4, &c_b5, &work[1], n);
  1128. dlacpy_("Full", n, &m, &work[1], n, &z__[*j1 * z_dim1 + 1], ldz);
  1129. }
  1130. /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
  1131. /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
  1132. i__ = *j1 + m;
  1133. if (i__ <= *n) {
  1134. i__1 = *n - i__ + 1;
  1135. dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &a[*j1 + i__ *
  1136. a_dim1], lda, &c_b5, &work[1], &m);
  1137. i__1 = *n - i__ + 1;
  1138. dlacpy_("Full", &m, &i__1, &work[1], &m, &a[*j1 + i__ * a_dim1],
  1139. lda);
  1140. i__1 = *n - i__ + 1;
  1141. dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &b[*j1 + i__ *
  1142. b_dim1], ldb, &c_b5, &work[1], &m);
  1143. i__1 = *n - i__ + 1;
  1144. dlacpy_("Full", &m, &i__1, &work[1], &m, &b[*j1 + i__ * b_dim1],
  1145. ldb);
  1146. }
  1147. i__ = *j1 - 1;
  1148. if (i__ > 0) {
  1149. dgemm_("N", "N", &i__, &m, &m, &c_b42, &a[*j1 * a_dim1 + 1], lda,
  1150. ir, &c__4, &c_b5, &work[1], &i__);
  1151. dlacpy_("Full", &i__, &m, &work[1], &i__, &a[*j1 * a_dim1 + 1],
  1152. lda);
  1153. dgemm_("N", "N", &i__, &m, &m, &c_b42, &b[*j1 * b_dim1 + 1], ldb,
  1154. ir, &c__4, &c_b5, &work[1], &i__);
  1155. dlacpy_("Full", &i__, &m, &work[1], &i__, &b[*j1 * b_dim1 + 1],
  1156. ldb);
  1157. }
  1158. /* Exit with INFO = 0 if swap was successfully performed. */
  1159. return;
  1160. }
  1161. /* Exit with INFO = 1 if swap was rejected. */
  1162. L70:
  1163. *info = 1;
  1164. return;
  1165. /* End of DTGEX2 */
  1166. } /* dtgex2_ */