|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__4 = 4;
- static doublereal c_b5 = 0.;
- static integer c__1 = 1;
- static integer c__2 = 2;
- static doublereal c_b42 = 1.;
- static doublereal c_b48 = -1.;
- static integer c__0 = 0;
-
- /* > \brief \b DTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogon
- al equivalence transformation. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DTGEX2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgex2.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgex2.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgex2.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, */
- /* LDZ, J1, N1, N2, WORK, LWORK, INFO ) */
-
- /* LOGICAL WANTQ, WANTZ */
- /* INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2 */
- /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
- /* $ WORK( * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) */
- /* > of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair */
- /* > (A, B) by an orthogonal equivalence transformation. */
- /* > */
- /* > (A, B) must be in generalized real Schur canonical form (as returned */
- /* > by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */
- /* > diagonal blocks. B is upper triangular. */
- /* > */
- /* > Optionally, the matrices Q and Z of generalized Schur vectors are */
- /* > updated. */
- /* > */
- /* > Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T */
- /* > Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] WANTQ */
- /* > \verbatim */
- /* > WANTQ is LOGICAL */
- /* > .TRUE. : update the left transformation matrix Q; */
- /* > .FALSE.: do not update Q. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WANTZ */
- /* > \verbatim */
- /* > WANTZ is LOGICAL */
- /* > .TRUE. : update the right transformation matrix Z; */
- /* > .FALSE.: do not update Z. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A and B. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimensions (LDA,N) */
- /* > On entry, the matrix A in the pair (A, B). */
- /* > On exit, the updated matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is DOUBLE PRECISION array, dimensions (LDB,N) */
- /* > On entry, the matrix B in the pair (A, B). */
- /* > On exit, the updated matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
- /* > On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */
- /* > On exit, the updated matrix Q. */
- /* > Not referenced if WANTQ = .FALSE.. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. LDQ >= 1. */
- /* > If WANTQ = .TRUE., LDQ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
- /* > On entry, if WANTZ =.TRUE., the orthogonal matrix Z. */
- /* > On exit, the updated matrix Z. */
- /* > Not referenced if WANTZ = .FALSE.. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDZ >= 1. */
- /* > If WANTZ = .TRUE., LDZ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] J1 */
- /* > \verbatim */
- /* > J1 is INTEGER */
- /* > The index to the first block (A11, B11). 1 <= J1 <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N1 */
- /* > \verbatim */
- /* > N1 is INTEGER */
- /* > The order of the first block (A11, B11). N1 = 0, 1 or 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N2 */
- /* > \verbatim */
- /* > N2 is INTEGER */
- /* > The order of the second block (A22, B22). N2 = 0, 1 or 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 ) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > =0: Successful exit */
- /* > >0: If INFO = 1, the transformed matrix (A, B) would be */
- /* > too far from generalized Schur form; the blocks are */
- /* > not swapped and (A, B) and (Q, Z) are unchanged. */
- /* > The problem of swapping is too ill-conditioned. */
- /* > <0: If INFO = -16: LWORK is too small. Appropriate value */
- /* > for LWORK is returned in WORK(1). */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup doubleGEauxiliary */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > In the current code both weak and strong stability tests are */
- /* > performed. The user can omit the strong stability test by changing */
- /* > the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
- /* > details. */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* > Umea University, S-901 87 Umea, Sweden. */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > \verbatim */
- /* > */
- /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
- /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
- /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
- /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
- /* > */
- /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
- /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
- /* > Estimation: Theory, Algorithms and Software, */
- /* > Report UMINF - 94.04, Department of Computing Science, Umea */
- /* > University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
- /* > Note 87. To appear in Numerical Algorithms, 1996. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dtgex2_(logical *wantq, logical *wantz, integer *n,
- doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
- q, integer *ldq, doublereal *z__, integer *ldz, integer *j1, integer *
- n1, integer *n2, doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
- z_offset, i__1, i__2;
- doublereal d__1;
-
- /* Local variables */
- logical weak;
- doublereal ddum;
- integer idum;
- doublereal taul[4], dsum;
- extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- doublereal taur[4], scpy[16] /* was [4][4] */, tcpy[16] /*
- was [4][4] */, f, g;
- integer i__, m;
- doublereal s[16] /* was [4][4] */, t[16] /* was [4][4] */;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal scale, bqra21, brqa21;
- extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- doublereal licop[16] /* was [4][4] */;
- integer linfo;
- doublereal ircop[16] /* was [4][4] */, dnorm;
- integer iwork[4];
- extern /* Subroutine */ void dlagv2_(doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *
- , doublereal *, doublereal *, doublereal *), dgeqr2_(integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *), dgerq2_(integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), dorg2r_(integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), dorgr2_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *),
- dorm2r_(char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *), dormr2_(char *, char *,
- integer *, integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *);
- doublereal be[2], ai[2];
- extern /* Subroutine */ void dtgsy2_(char *, integer *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *, integer *);
- doublereal ar[2], sa, sb, li[16] /* was [4][4] */;
- extern doublereal dlamch_(char *);
- doublereal dscale, ir[16] /* was [4][4] */, ss, ws;
- extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *), dlassq_(integer *
- , doublereal *, integer *, doublereal *, doublereal *);
- logical dtrong;
- doublereal thresh, smlnum, eps;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
- /* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO */
- /* loops. Sven Hammarling, 1/5/02. */
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- /* Quick return if possible */
-
- if (*n <= 1 || *n1 <= 0 || *n2 <= 0) {
- return;
- }
- if (*n1 > *n || *j1 + *n1 > *n) {
- return;
- }
- m = *n1 + *n2;
- /* Computing MAX */
- i__1 = 1, i__2 = *n * m, i__1 = f2cmax(i__1,i__2), i__2 = m * m << 1;
- if (*lwork < f2cmax(i__1,i__2)) {
- *info = -16;
- /* Computing MAX */
- i__1 = 1, i__2 = *n * m, i__1 = f2cmax(i__1,i__2), i__2 = m * m << 1;
- work[1] = (doublereal) f2cmax(i__1,i__2);
- return;
- }
-
- weak = FALSE_;
- dtrong = FALSE_;
-
- /* Make a local copy of selected block */
-
- dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, li, &c__4);
- dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, ir, &c__4);
- dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__4);
- dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__4);
-
- /* Compute threshold for testing acceptance of swapping. */
-
- eps = dlamch_("P");
- smlnum = dlamch_("S") / eps;
- dscale = 0.;
- dsum = 1.;
- dlacpy_("Full", &m, &m, s, &c__4, &work[1], &m);
- i__1 = m * m;
- dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
- dlacpy_("Full", &m, &m, t, &c__4, &work[1], &m);
- i__1 = m * m;
- dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
- dnorm = dscale * sqrt(dsum);
-
- /* THRES has been changed from */
- /* THRESH = MAX( TEN*EPS*SA, SMLNUM ) */
- /* to */
- /* THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) */
- /* on 04/01/10. */
- /* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by */
- /* Jim Demmel and Guillaume Revy. See forum post 1783. */
-
- /* Computing MAX */
- d__1 = eps * 20. * dnorm;
- thresh = f2cmax(d__1,smlnum);
-
- if (m == 2) {
-
- /* CASE 1: Swap 1-by-1 and 1-by-1 blocks. */
-
- /* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks */
- /* using Givens rotations and perform the swap tentatively. */
-
- f = s[5] * t[0] - t[5] * s[0];
- g = s[5] * t[4] - t[5] * s[4];
- sb = abs(t[5]);
- sa = abs(s[5]);
- dlartg_(&f, &g, &ir[4], ir, &ddum);
- ir[1] = -ir[4];
- ir[5] = ir[0];
- drot_(&c__2, s, &c__1, &s[4], &c__1, ir, &ir[1]);
- drot_(&c__2, t, &c__1, &t[4], &c__1, ir, &ir[1]);
- if (sa >= sb) {
- dlartg_(s, &s[1], li, &li[1], &ddum);
- } else {
- dlartg_(t, &t[1], li, &li[1], &ddum);
- }
- drot_(&c__2, s, &c__4, &s[1], &c__4, li, &li[1]);
- drot_(&c__2, t, &c__4, &t[1], &c__4, li, &li[1]);
- li[5] = li[0];
- li[4] = -li[1];
-
- /* Weak stability test: */
- /* |S21| + |T21| <= O(EPS * F-norm((S, T))) */
-
- ws = abs(s[1]) + abs(t[1]);
- weak = ws <= thresh;
- if (! weak) {
- goto L70;
- }
-
- if (TRUE_) {
-
- /* Strong stability test: */
- /* F-norm((A-QL**T*S*QR, B-QL**T*T*QR)) <= O(EPS*F-norm((A,B))) */
-
- dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
- + 1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
- c_b42, &work[m * m + 1], &m);
- dscale = 0.;
- dsum = 1.;
- i__1 = m * m;
- dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
-
- dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
- + 1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
- c_b42, &work[m * m + 1], &m);
- i__1 = m * m;
- dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
- ss = dscale * sqrt(dsum);
- dtrong = ss <= thresh;
- if (! dtrong) {
- goto L70;
- }
- }
-
- /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
- /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
-
- i__1 = *j1 + 1;
- drot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1],
- &c__1, ir, &ir[1]);
- i__1 = *j1 + 1;
- drot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1],
- &c__1, ir, &ir[1]);
- i__1 = *n - *j1 + 1;
- drot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1],
- lda, li, &li[1]);
- i__1 = *n - *j1 + 1;
- drot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1],
- ldb, li, &li[1]);
-
- /* Set N1-by-N2 (2,1) - blocks to ZERO. */
-
- a[*j1 + 1 + *j1 * a_dim1] = 0.;
- b[*j1 + 1 + *j1 * b_dim1] = 0.;
-
- /* Accumulate transformations into Q and Z if requested. */
-
- if (*wantz) {
- drot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 +
- 1], &c__1, ir, &ir[1]);
- }
- if (*wantq) {
- drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1],
- &c__1, li, &li[1]);
- }
-
- /* Exit with INFO = 0 if swap was successfully performed. */
-
- return;
-
- } else {
-
- /* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 */
- /* and 2-by-2 blocks. */
-
- /* Solve the generalized Sylvester equation */
- /* S11 * R - L * S22 = SCALE * S12 */
- /* T11 * R - L * T22 = SCALE * T12 */
- /* for R and L. Solutions in LI and IR. */
-
- dlacpy_("Full", n1, n2, &t[(*n1 + 1 << 2) - 4], &c__4, li, &c__4);
- dlacpy_("Full", n1, n2, &s[(*n1 + 1 << 2) - 4], &c__4, &ir[*n2 + 1 + (
- *n1 + 1 << 2) - 5], &c__4);
- dtgsy2_("N", &c__0, n1, n2, s, &c__4, &s[*n1 + 1 + (*n1 + 1 << 2) - 5]
- , &c__4, &ir[*n2 + 1 + (*n1 + 1 << 2) - 5], &c__4, t, &c__4, &
- t[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, li, &c__4, &scale, &
- dsum, &dscale, iwork, &idum, &linfo);
-
- /* Compute orthogonal matrix QL: */
-
- /* QL**T * LI = [ TL ] */
- /* [ 0 ] */
- /* where */
- /* LI = [ -L ] */
- /* [ SCALE * identity(N2) ] */
-
- i__1 = *n2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dscal_(n1, &c_b48, &li[(i__ << 2) - 4], &c__1);
- li[*n1 + i__ + (i__ << 2) - 5] = scale;
- /* L10: */
- }
- dgeqr2_(&m, n2, li, &c__4, taul, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
- dorg2r_(&m, &m, n2, li, &c__4, taul, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
-
- /* Compute orthogonal matrix RQ: */
-
- /* IR * RQ**T = [ 0 TR], */
-
- /* where IR = [ SCALE * identity(N1), R ] */
-
- i__1 = *n1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ir[*n2 + i__ + (i__ << 2) - 5] = scale;
- /* L20: */
- }
- dgerq2_(n1, &m, &ir[*n2], &c__4, taur, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
- dorgr2_(&m, &m, n1, ir, &c__4, taur, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
-
- /* Perform the swapping tentatively: */
-
- dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
- s, &c__4);
- dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
- t, &c__4);
- dlacpy_("F", &m, &m, s, &c__4, scpy, &c__4);
- dlacpy_("F", &m, &m, t, &c__4, tcpy, &c__4);
- dlacpy_("F", &m, &m, ir, &c__4, ircop, &c__4);
- dlacpy_("F", &m, &m, li, &c__4, licop, &c__4);
-
- /* Triangularize the B-part by an RQ factorization. */
- /* Apply transformation (from left) to A-part, giving S. */
-
- dgerq2_(&m, &m, t, &c__4, taur, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
- dormr2_("R", "T", &m, &m, &m, t, &c__4, taur, s, &c__4, &work[1], &
- linfo);
- if (linfo != 0) {
- goto L70;
- }
- dormr2_("L", "N", &m, &m, &m, t, &c__4, taur, ir, &c__4, &work[1], &
- linfo);
- if (linfo != 0) {
- goto L70;
- }
-
- /* Compute F-norm(S21) in BRQA21. (T21 is 0.) */
-
- dscale = 0.;
- dsum = 1.;
- i__1 = *n2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlassq_(n1, &s[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &dsum);
- /* L30: */
- }
- brqa21 = dscale * sqrt(dsum);
-
- /* Triangularize the B-part by a QR factorization. */
- /* Apply transformation (from right) to A-part, giving S. */
-
- dgeqr2_(&m, &m, tcpy, &c__4, taul, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
- dorm2r_("L", "T", &m, &m, &m, tcpy, &c__4, taul, scpy, &c__4, &work[1]
- , info);
- dorm2r_("R", "N", &m, &m, &m, tcpy, &c__4, taul, licop, &c__4, &work[
- 1], info);
- if (linfo != 0) {
- goto L70;
- }
-
- /* Compute F-norm(S21) in BQRA21. (T21 is 0.) */
-
- dscale = 0.;
- dsum = 1.;
- i__1 = *n2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlassq_(n1, &scpy[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &
- dsum);
- /* L40: */
- }
- bqra21 = dscale * sqrt(dsum);
-
- /* Decide which method to use. */
- /* Weak stability test: */
- /* F-norm(S21) <= O(EPS * F-norm((S, T))) */
-
- if (bqra21 <= brqa21 && bqra21 <= thresh) {
- dlacpy_("F", &m, &m, scpy, &c__4, s, &c__4);
- dlacpy_("F", &m, &m, tcpy, &c__4, t, &c__4);
- dlacpy_("F", &m, &m, ircop, &c__4, ir, &c__4);
- dlacpy_("F", &m, &m, licop, &c__4, li, &c__4);
- } else if (brqa21 >= thresh) {
- goto L70;
- }
-
- /* Set lower triangle of B-part to zero */
-
- i__1 = m - 1;
- i__2 = m - 1;
- dlaset_("Lower", &i__1, &i__2, &c_b5, &c_b5, &t[1], &c__4);
-
- if (TRUE_) {
-
- /* Strong stability test: */
- /* F-norm((A-QL*S*QR**T, B-QL*T*QR**T)) <= O(EPS*F-norm((A,B))) */
-
- dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
- + 1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
- c_b42, &work[m * m + 1], &m);
- dscale = 0.;
- dsum = 1.;
- i__1 = m * m;
- dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
-
- dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
- + 1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
- c_b42, &work[m * m + 1], &m);
- i__1 = m * m;
- dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
- ss = dscale * sqrt(dsum);
- dtrong = ss <= thresh;
- if (! dtrong) {
- goto L70;
- }
-
- }
-
- /* If the swap is accepted ("weakly" and "strongly"), apply the */
- /* transformations and set N1-by-N2 (2,1)-block to zero. */
-
- dlaset_("Full", n1, n2, &c_b5, &c_b5, &s[*n2], &c__4);
-
- /* copy back M-by-M diagonal block starting at index J1 of (A, B) */
-
- dlacpy_("F", &m, &m, s, &c__4, &a[*j1 + *j1 * a_dim1], lda)
- ;
- dlacpy_("F", &m, &m, t, &c__4, &b[*j1 + *j1 * b_dim1], ldb)
- ;
- dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, t, &c__4);
-
- /* Standardize existing 2-by-2 blocks. */
-
- dlaset_("Full", &m, &m, &c_b5, &c_b5, &work[1], &m);
- work[1] = 1.;
- t[0] = 1.;
- idum = *lwork - m * m - 2;
- if (*n2 > 1) {
- dlagv2_(&a[*j1 + *j1 * a_dim1], lda, &b[*j1 + *j1 * b_dim1], ldb,
- ar, ai, be, &work[1], &work[2], t, &t[1]);
- work[m + 1] = -work[2];
- work[m + 2] = work[1];
- t[*n2 + (*n2 << 2) - 5] = t[0];
- t[4] = -t[1];
- }
- work[m * m] = 1.;
- t[m + (m << 2) - 5] = 1.;
-
- if (*n1 > 1) {
- dlagv2_(&a[*j1 + *n2 + (*j1 + *n2) * a_dim1], lda, &b[*j1 + *n2 +
- (*j1 + *n2) * b_dim1], ldb, taur, taul, &work[m * m + 1],
- &work[*n2 * m + *n2 + 1], &work[*n2 * m + *n2 + 2], &t[*
- n2 + 1 + (*n2 + 1 << 2) - 5], &t[m + (m - 1 << 2) - 5]);
- work[m * m] = work[*n2 * m + *n2 + 1];
- work[m * m - 1] = -work[*n2 * m + *n2 + 2];
- t[m + (m << 2) - 5] = t[*n2 + 1 + (*n2 + 1 << 2) - 5];
- t[m - 1 + (m << 2) - 5] = -t[m + (m - 1 << 2) - 5];
- }
- dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &a[*j1 + (*j1 + *
- n2) * a_dim1], lda, &c_b5, &work[m * m + 1], n2);
- dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &a[*j1 + (*j1 + *n2) *
- a_dim1], lda);
- dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &b[*j1 + (*j1 + *
- n2) * b_dim1], ldb, &c_b5, &work[m * m + 1], n2);
- dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &b[*j1 + (*j1 + *n2) *
- b_dim1], ldb);
- dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, &work[1], &m, &c_b5, &
- work[m * m + 1], &m);
- dlacpy_("Full", &m, &m, &work[m * m + 1], &m, li, &c__4);
- dgemm_("N", "N", n2, n1, n1, &c_b42, &a[*j1 + (*j1 + *n2) * a_dim1],
- lda, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
- n2);
- dlacpy_("Full", n2, n1, &work[1], n2, &a[*j1 + (*j1 + *n2) * a_dim1],
- lda);
- dgemm_("N", "N", n2, n1, n1, &c_b42, &b[*j1 + (*j1 + *n2) * b_dim1],
- ldb, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
- n2);
- dlacpy_("Full", n2, n1, &work[1], n2, &b[*j1 + (*j1 + *n2) * b_dim1],
- ldb);
- dgemm_("T", "N", &m, &m, &m, &c_b42, ir, &c__4, t, &c__4, &c_b5, &
- work[1], &m);
- dlacpy_("Full", &m, &m, &work[1], &m, ir, &c__4);
-
- /* Accumulate transformations into Q and Z if requested. */
-
- if (*wantq) {
- dgemm_("N", "N", n, &m, &m, &c_b42, &q[*j1 * q_dim1 + 1], ldq, li,
- &c__4, &c_b5, &work[1], n);
- dlacpy_("Full", n, &m, &work[1], n, &q[*j1 * q_dim1 + 1], ldq);
-
- }
-
- if (*wantz) {
- dgemm_("N", "N", n, &m, &m, &c_b42, &z__[*j1 * z_dim1 + 1], ldz,
- ir, &c__4, &c_b5, &work[1], n);
- dlacpy_("Full", n, &m, &work[1], n, &z__[*j1 * z_dim1 + 1], ldz);
-
- }
-
- /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
- /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
-
- i__ = *j1 + m;
- if (i__ <= *n) {
- i__1 = *n - i__ + 1;
- dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &a[*j1 + i__ *
- a_dim1], lda, &c_b5, &work[1], &m);
- i__1 = *n - i__ + 1;
- dlacpy_("Full", &m, &i__1, &work[1], &m, &a[*j1 + i__ * a_dim1],
- lda);
- i__1 = *n - i__ + 1;
- dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &b[*j1 + i__ *
- b_dim1], ldb, &c_b5, &work[1], &m);
- i__1 = *n - i__ + 1;
- dlacpy_("Full", &m, &i__1, &work[1], &m, &b[*j1 + i__ * b_dim1],
- ldb);
- }
- i__ = *j1 - 1;
- if (i__ > 0) {
- dgemm_("N", "N", &i__, &m, &m, &c_b42, &a[*j1 * a_dim1 + 1], lda,
- ir, &c__4, &c_b5, &work[1], &i__);
- dlacpy_("Full", &i__, &m, &work[1], &i__, &a[*j1 * a_dim1 + 1],
- lda);
- dgemm_("N", "N", &i__, &m, &m, &c_b42, &b[*j1 * b_dim1 + 1], ldb,
- ir, &c__4, &c_b5, &work[1], &i__);
- dlacpy_("Full", &i__, &m, &work[1], &i__, &b[*j1 * b_dim1 + 1],
- ldb);
- }
-
- /* Exit with INFO = 0 if swap was successfully performed. */
-
- return;
-
- }
-
- /* Exit with INFO = 1 if swap was rejected. */
-
- L70:
-
- *info = 1;
- return;
-
- /* End of DTGEX2 */
-
- } /* dtgex2_ */
|