You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaein.c 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b DLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse
  486. iteration. */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download DLAEIN + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaein.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaein.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaein.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B, */
  505. /* LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO ) */
  506. /* LOGICAL NOINIT, RIGHTV */
  507. /* INTEGER INFO, LDB, LDH, N */
  508. /* DOUBLE PRECISION BIGNUM, EPS3, SMLNUM, WI, WR */
  509. /* DOUBLE PRECISION B( LDB, * ), H( LDH, * ), VI( * ), VR( * ), */
  510. /* $ WORK( * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > DLAEIN uses inverse iteration to find a right or left eigenvector */
  517. /* > corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg */
  518. /* > matrix H. */
  519. /* > \endverbatim */
  520. /* Arguments: */
  521. /* ========== */
  522. /* > \param[in] RIGHTV */
  523. /* > \verbatim */
  524. /* > RIGHTV is LOGICAL */
  525. /* > = .TRUE. : compute right eigenvector; */
  526. /* > = .FALSE.: compute left eigenvector. */
  527. /* > \endverbatim */
  528. /* > */
  529. /* > \param[in] NOINIT */
  530. /* > \verbatim */
  531. /* > NOINIT is LOGICAL */
  532. /* > = .TRUE. : no initial vector supplied in (VR,VI). */
  533. /* > = .FALSE.: initial vector supplied in (VR,VI). */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The order of the matrix H. N >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] H */
  543. /* > \verbatim */
  544. /* > H is DOUBLE PRECISION array, dimension (LDH,N) */
  545. /* > The upper Hessenberg matrix H. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] LDH */
  549. /* > \verbatim */
  550. /* > LDH is INTEGER */
  551. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] WR */
  555. /* > \verbatim */
  556. /* > WR is DOUBLE PRECISION */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] WI */
  560. /* > \verbatim */
  561. /* > WI is DOUBLE PRECISION */
  562. /* > The real and imaginary parts of the eigenvalue of H whose */
  563. /* > corresponding right or left eigenvector is to be computed. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in,out] VR */
  567. /* > \verbatim */
  568. /* > VR is DOUBLE PRECISION array, dimension (N) */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in,out] VI */
  572. /* > \verbatim */
  573. /* > VI is DOUBLE PRECISION array, dimension (N) */
  574. /* > On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain */
  575. /* > a real starting vector for inverse iteration using the real */
  576. /* > eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI */
  577. /* > must contain the real and imaginary parts of a complex */
  578. /* > starting vector for inverse iteration using the complex */
  579. /* > eigenvalue (WR,WI); otherwise VR and VI need not be set. */
  580. /* > On exit, if WI = 0.0 (real eigenvalue), VR contains the */
  581. /* > computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), */
  582. /* > VR and VI contain the real and imaginary parts of the */
  583. /* > computed complex eigenvector. The eigenvector is normalized */
  584. /* > so that the component of largest magnitude has magnitude 1; */
  585. /* > here the magnitude of a complex number (x,y) is taken to be */
  586. /* > |x| + |y|. */
  587. /* > VI is not referenced if WI = 0.0. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] B */
  591. /* > \verbatim */
  592. /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDB */
  596. /* > \verbatim */
  597. /* > LDB is INTEGER */
  598. /* > The leading dimension of the array B. LDB >= N+1. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] WORK */
  602. /* > \verbatim */
  603. /* > WORK is DOUBLE PRECISION array, dimension (N) */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] EPS3 */
  607. /* > \verbatim */
  608. /* > EPS3 is DOUBLE PRECISION */
  609. /* > A small machine-dependent value which is used to perturb */
  610. /* > close eigenvalues, and to replace zero pivots. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] SMLNUM */
  614. /* > \verbatim */
  615. /* > SMLNUM is DOUBLE PRECISION */
  616. /* > A machine-dependent value close to the underflow threshold. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] BIGNUM */
  620. /* > \verbatim */
  621. /* > BIGNUM is DOUBLE PRECISION */
  622. /* > A machine-dependent value close to the overflow threshold. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INFO */
  626. /* > \verbatim */
  627. /* > INFO is INTEGER */
  628. /* > = 0: successful exit */
  629. /* > = 1: inverse iteration did not converge; VR is set to the */
  630. /* > last iterate, and so is VI if WI.ne.0.0. */
  631. /* > \endverbatim */
  632. /* Authors: */
  633. /* ======== */
  634. /* > \author Univ. of Tennessee */
  635. /* > \author Univ. of California Berkeley */
  636. /* > \author Univ. of Colorado Denver */
  637. /* > \author NAG Ltd. */
  638. /* > \date December 2016 */
  639. /* > \ingroup doubleOTHERauxiliary */
  640. /* ===================================================================== */
  641. /* Subroutine */ void dlaein_(logical *rightv, logical *noinit, integer *n,
  642. doublereal *h__, integer *ldh, doublereal *wr, doublereal *wi,
  643. doublereal *vr, doublereal *vi, doublereal *b, integer *ldb,
  644. doublereal *work, doublereal *eps3, doublereal *smlnum, doublereal *
  645. bignum, integer *info)
  646. {
  647. /* System generated locals */
  648. integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;
  649. doublereal d__1, d__2, d__3, d__4;
  650. /* Local variables */
  651. integer ierr;
  652. doublereal temp, norm, vmax;
  653. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  654. integer i__, j;
  655. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  656. integer *);
  657. doublereal scale, w, x, y;
  658. extern doublereal dasum_(integer *, doublereal *, integer *);
  659. char trans[1];
  660. doublereal vcrit;
  661. integer i1, i2, i3;
  662. doublereal rootn, vnorm, w1;
  663. extern doublereal dlapy2_(doublereal *, doublereal *);
  664. doublereal ei, ej, absbii, absbjj, xi;
  665. extern integer idamax_(integer *, doublereal *, integer *);
  666. extern /* Subroutine */ void dladiv_(doublereal *, doublereal *,
  667. doublereal *, doublereal *, doublereal *, doublereal *);
  668. doublereal xr;
  669. extern /* Subroutine */ void dlatrs_(char *, char *, char *, char *,
  670. integer *, doublereal *, integer *, doublereal *, doublereal *,
  671. doublereal *, integer *);
  672. char normin[1];
  673. doublereal nrmsml, growto, rec;
  674. integer its;
  675. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  676. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  677. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  678. /* December 2016 */
  679. /* ===================================================================== */
  680. /* Parameter adjustments */
  681. h_dim1 = *ldh;
  682. h_offset = 1 + h_dim1 * 1;
  683. h__ -= h_offset;
  684. --vr;
  685. --vi;
  686. b_dim1 = *ldb;
  687. b_offset = 1 + b_dim1 * 1;
  688. b -= b_offset;
  689. --work;
  690. /* Function Body */
  691. *info = 0;
  692. /* GROWTO is the threshold used in the acceptance test for an */
  693. /* eigenvector. */
  694. rootn = sqrt((doublereal) (*n));
  695. growto = .1 / rootn;
  696. /* Computing MAX */
  697. d__1 = 1., d__2 = *eps3 * rootn;
  698. nrmsml = f2cmax(d__1,d__2) * *smlnum;
  699. /* Form B = H - (WR,WI)*I (except that the subdiagonal elements and */
  700. /* the imaginary parts of the diagonal elements are not stored). */
  701. i__1 = *n;
  702. for (j = 1; j <= i__1; ++j) {
  703. i__2 = j - 1;
  704. for (i__ = 1; i__ <= i__2; ++i__) {
  705. b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];
  706. /* L10: */
  707. }
  708. b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;
  709. /* L20: */
  710. }
  711. if (*wi == 0.) {
  712. /* Real eigenvalue. */
  713. if (*noinit) {
  714. /* Set initial vector. */
  715. i__1 = *n;
  716. for (i__ = 1; i__ <= i__1; ++i__) {
  717. vr[i__] = *eps3;
  718. /* L30: */
  719. }
  720. } else {
  721. /* Scale supplied initial vector. */
  722. vnorm = dnrm2_(n, &vr[1], &c__1);
  723. d__1 = *eps3 * rootn / f2cmax(vnorm,nrmsml);
  724. dscal_(n, &d__1, &vr[1], &c__1);
  725. }
  726. if (*rightv) {
  727. /* LU decomposition with partial pivoting of B, replacing zero */
  728. /* pivots by EPS3. */
  729. i__1 = *n - 1;
  730. for (i__ = 1; i__ <= i__1; ++i__) {
  731. ei = h__[i__ + 1 + i__ * h_dim1];
  732. if ((d__1 = b[i__ + i__ * b_dim1], abs(d__1)) < abs(ei)) {
  733. /* Interchange rows and eliminate. */
  734. x = b[i__ + i__ * b_dim1] / ei;
  735. b[i__ + i__ * b_dim1] = ei;
  736. i__2 = *n;
  737. for (j = i__ + 1; j <= i__2; ++j) {
  738. temp = b[i__ + 1 + j * b_dim1];
  739. b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x *
  740. temp;
  741. b[i__ + j * b_dim1] = temp;
  742. /* L40: */
  743. }
  744. } else {
  745. /* Eliminate without interchange. */
  746. if (b[i__ + i__ * b_dim1] == 0.) {
  747. b[i__ + i__ * b_dim1] = *eps3;
  748. }
  749. x = ei / b[i__ + i__ * b_dim1];
  750. if (x != 0.) {
  751. i__2 = *n;
  752. for (j = i__ + 1; j <= i__2; ++j) {
  753. b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1]
  754. ;
  755. /* L50: */
  756. }
  757. }
  758. }
  759. /* L60: */
  760. }
  761. if (b[*n + *n * b_dim1] == 0.) {
  762. b[*n + *n * b_dim1] = *eps3;
  763. }
  764. *(unsigned char *)trans = 'N';
  765. } else {
  766. /* UL decomposition with partial pivoting of B, replacing zero */
  767. /* pivots by EPS3. */
  768. for (j = *n; j >= 2; --j) {
  769. ej = h__[j + (j - 1) * h_dim1];
  770. if ((d__1 = b[j + j * b_dim1], abs(d__1)) < abs(ej)) {
  771. /* Interchange columns and eliminate. */
  772. x = b[j + j * b_dim1] / ej;
  773. b[j + j * b_dim1] = ej;
  774. i__1 = j - 1;
  775. for (i__ = 1; i__ <= i__1; ++i__) {
  776. temp = b[i__ + (j - 1) * b_dim1];
  777. b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x *
  778. temp;
  779. b[i__ + j * b_dim1] = temp;
  780. /* L70: */
  781. }
  782. } else {
  783. /* Eliminate without interchange. */
  784. if (b[j + j * b_dim1] == 0.) {
  785. b[j + j * b_dim1] = *eps3;
  786. }
  787. x = ej / b[j + j * b_dim1];
  788. if (x != 0.) {
  789. i__1 = j - 1;
  790. for (i__ = 1; i__ <= i__1; ++i__) {
  791. b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j *
  792. b_dim1];
  793. /* L80: */
  794. }
  795. }
  796. }
  797. /* L90: */
  798. }
  799. if (b[b_dim1 + 1] == 0.) {
  800. b[b_dim1 + 1] = *eps3;
  801. }
  802. *(unsigned char *)trans = 'T';
  803. }
  804. *(unsigned char *)normin = 'N';
  805. i__1 = *n;
  806. for (its = 1; its <= i__1; ++its) {
  807. /* Solve U*x = scale*v for a right eigenvector */
  808. /* or U**T*x = scale*v for a left eigenvector, */
  809. /* overwriting x on v. */
  810. dlatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, &
  811. vr[1], &scale, &work[1], &ierr);
  812. *(unsigned char *)normin = 'Y';
  813. /* Test for sufficient growth in the norm of v. */
  814. vnorm = dasum_(n, &vr[1], &c__1);
  815. if (vnorm >= growto * scale) {
  816. goto L120;
  817. }
  818. /* Choose new orthogonal starting vector and try again. */
  819. temp = *eps3 / (rootn + 1.);
  820. vr[1] = *eps3;
  821. i__2 = *n;
  822. for (i__ = 2; i__ <= i__2; ++i__) {
  823. vr[i__] = temp;
  824. /* L100: */
  825. }
  826. vr[*n - its + 1] -= *eps3 * rootn;
  827. /* L110: */
  828. }
  829. /* Failure to find eigenvector in N iterations. */
  830. *info = 1;
  831. L120:
  832. /* Normalize eigenvector. */
  833. i__ = idamax_(n, &vr[1], &c__1);
  834. d__2 = 1. / (d__1 = vr[i__], abs(d__1));
  835. dscal_(n, &d__2, &vr[1], &c__1);
  836. } else {
  837. /* Complex eigenvalue. */
  838. if (*noinit) {
  839. /* Set initial vector. */
  840. i__1 = *n;
  841. for (i__ = 1; i__ <= i__1; ++i__) {
  842. vr[i__] = *eps3;
  843. vi[i__] = 0.;
  844. /* L130: */
  845. }
  846. } else {
  847. /* Scale supplied initial vector. */
  848. d__1 = dnrm2_(n, &vr[1], &c__1);
  849. d__2 = dnrm2_(n, &vi[1], &c__1);
  850. norm = dlapy2_(&d__1, &d__2);
  851. rec = *eps3 * rootn / f2cmax(norm,nrmsml);
  852. dscal_(n, &rec, &vr[1], &c__1);
  853. dscal_(n, &rec, &vi[1], &c__1);
  854. }
  855. if (*rightv) {
  856. /* LU decomposition with partial pivoting of B, replacing zero */
  857. /* pivots by EPS3. */
  858. /* The imaginary part of the (i,j)-th element of U is stored in */
  859. /* B(j+1,i). */
  860. b[b_dim1 + 2] = -(*wi);
  861. i__1 = *n;
  862. for (i__ = 2; i__ <= i__1; ++i__) {
  863. b[i__ + 1 + b_dim1] = 0.;
  864. /* L140: */
  865. }
  866. i__1 = *n - 1;
  867. for (i__ = 1; i__ <= i__1; ++i__) {
  868. absbii = dlapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ *
  869. b_dim1]);
  870. ei = h__[i__ + 1 + i__ * h_dim1];
  871. if (absbii < abs(ei)) {
  872. /* Interchange rows and eliminate. */
  873. xr = b[i__ + i__ * b_dim1] / ei;
  874. xi = b[i__ + 1 + i__ * b_dim1] / ei;
  875. b[i__ + i__ * b_dim1] = ei;
  876. b[i__ + 1 + i__ * b_dim1] = 0.;
  877. i__2 = *n;
  878. for (j = i__ + 1; j <= i__2; ++j) {
  879. temp = b[i__ + 1 + j * b_dim1];
  880. b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr *
  881. temp;
  882. b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ *
  883. b_dim1] - xi * temp;
  884. b[i__ + j * b_dim1] = temp;
  885. b[j + 1 + i__ * b_dim1] = 0.;
  886. /* L150: */
  887. }
  888. b[i__ + 2 + i__ * b_dim1] = -(*wi);
  889. b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;
  890. b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;
  891. } else {
  892. /* Eliminate without interchanging rows. */
  893. if (absbii == 0.) {
  894. b[i__ + i__ * b_dim1] = *eps3;
  895. b[i__ + 1 + i__ * b_dim1] = 0.;
  896. absbii = *eps3;
  897. }
  898. ei = ei / absbii / absbii;
  899. xr = b[i__ + i__ * b_dim1] * ei;
  900. xi = -b[i__ + 1 + i__ * b_dim1] * ei;
  901. i__2 = *n;
  902. for (j = i__ + 1; j <= i__2; ++j) {
  903. b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] -
  904. xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__
  905. * b_dim1];
  906. b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ *
  907. b_dim1] - xi * b[i__ + j * b_dim1];
  908. /* L160: */
  909. }
  910. b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;
  911. }
  912. /* Compute 1-norm of offdiagonal elements of i-th row. */
  913. i__2 = *n - i__;
  914. i__3 = *n - i__;
  915. work[i__] = dasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb)
  916. + dasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);
  917. /* L170: */
  918. }
  919. if (b[*n + *n * b_dim1] == 0. && b[*n + 1 + *n * b_dim1] == 0.) {
  920. b[*n + *n * b_dim1] = *eps3;
  921. }
  922. work[*n] = 0.;
  923. i1 = *n;
  924. i2 = 1;
  925. i3 = -1;
  926. } else {
  927. /* UL decomposition with partial pivoting of conjg(B), */
  928. /* replacing zero pivots by EPS3. */
  929. /* The imaginary part of the (i,j)-th element of U is stored in */
  930. /* B(j+1,i). */
  931. b[*n + 1 + *n * b_dim1] = *wi;
  932. i__1 = *n - 1;
  933. for (j = 1; j <= i__1; ++j) {
  934. b[*n + 1 + j * b_dim1] = 0.;
  935. /* L180: */
  936. }
  937. for (j = *n; j >= 2; --j) {
  938. ej = h__[j + (j - 1) * h_dim1];
  939. absbjj = dlapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);
  940. if (absbjj < abs(ej)) {
  941. /* Interchange columns and eliminate */
  942. xr = b[j + j * b_dim1] / ej;
  943. xi = b[j + 1 + j * b_dim1] / ej;
  944. b[j + j * b_dim1] = ej;
  945. b[j + 1 + j * b_dim1] = 0.;
  946. i__1 = j - 1;
  947. for (i__ = 1; i__ <= i__1; ++i__) {
  948. temp = b[i__ + (j - 1) * b_dim1];
  949. b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr *
  950. temp;
  951. b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi *
  952. temp;
  953. b[i__ + j * b_dim1] = temp;
  954. b[j + 1 + i__ * b_dim1] = 0.;
  955. /* L190: */
  956. }
  957. b[j + 1 + (j - 1) * b_dim1] = *wi;
  958. b[j - 1 + (j - 1) * b_dim1] += xi * *wi;
  959. b[j + (j - 1) * b_dim1] -= xr * *wi;
  960. } else {
  961. /* Eliminate without interchange. */
  962. if (absbjj == 0.) {
  963. b[j + j * b_dim1] = *eps3;
  964. b[j + 1 + j * b_dim1] = 0.;
  965. absbjj = *eps3;
  966. }
  967. ej = ej / absbjj / absbjj;
  968. xr = b[j + j * b_dim1] * ej;
  969. xi = -b[j + 1 + j * b_dim1] * ej;
  970. i__1 = j - 1;
  971. for (i__ = 1; i__ <= i__1; ++i__) {
  972. b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1]
  973. - xr * b[i__ + j * b_dim1] + xi * b[j + 1 +
  974. i__ * b_dim1];
  975. b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] -
  976. xi * b[i__ + j * b_dim1];
  977. /* L200: */
  978. }
  979. b[j + (j - 1) * b_dim1] += *wi;
  980. }
  981. /* Compute 1-norm of offdiagonal elements of j-th column. */
  982. i__1 = j - 1;
  983. i__2 = j - 1;
  984. work[j] = dasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + dasum_(&
  985. i__2, &b[j + 1 + b_dim1], ldb);
  986. /* L210: */
  987. }
  988. if (b[b_dim1 + 1] == 0. && b[b_dim1 + 2] == 0.) {
  989. b[b_dim1 + 1] = *eps3;
  990. }
  991. work[1] = 0.;
  992. i1 = 1;
  993. i2 = *n;
  994. i3 = 1;
  995. }
  996. i__1 = *n;
  997. for (its = 1; its <= i__1; ++its) {
  998. scale = 1.;
  999. vmax = 1.;
  1000. vcrit = *bignum;
  1001. /* Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */
  1002. /* or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector, */
  1003. /* overwriting (xr,xi) on (vr,vi). */
  1004. i__2 = i2;
  1005. i__3 = i3;
  1006. for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
  1007. {
  1008. if (work[i__] > vcrit) {
  1009. rec = 1. / vmax;
  1010. dscal_(n, &rec, &vr[1], &c__1);
  1011. dscal_(n, &rec, &vi[1], &c__1);
  1012. scale *= rec;
  1013. vmax = 1.;
  1014. vcrit = *bignum;
  1015. }
  1016. xr = vr[i__];
  1017. xi = vi[i__];
  1018. if (*rightv) {
  1019. i__4 = *n;
  1020. for (j = i__ + 1; j <= i__4; ++j) {
  1021. xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__
  1022. * b_dim1] * vi[j];
  1023. xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__
  1024. * b_dim1] * vr[j];
  1025. /* L220: */
  1026. }
  1027. } else {
  1028. i__4 = i__ - 1;
  1029. for (j = 1; j <= i__4; ++j) {
  1030. xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j
  1031. * b_dim1] * vi[j];
  1032. xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j
  1033. * b_dim1] * vr[j];
  1034. /* L230: */
  1035. }
  1036. }
  1037. w = (d__1 = b[i__ + i__ * b_dim1], abs(d__1)) + (d__2 = b[i__
  1038. + 1 + i__ * b_dim1], abs(d__2));
  1039. if (w > *smlnum) {
  1040. if (w < 1.) {
  1041. w1 = abs(xr) + abs(xi);
  1042. if (w1 > w * *bignum) {
  1043. rec = 1. / w1;
  1044. dscal_(n, &rec, &vr[1], &c__1);
  1045. dscal_(n, &rec, &vi[1], &c__1);
  1046. xr = vr[i__];
  1047. xi = vi[i__];
  1048. scale *= rec;
  1049. vmax *= rec;
  1050. }
  1051. }
  1052. /* Divide by diagonal element of B. */
  1053. dladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 +
  1054. i__ * b_dim1], &vr[i__], &vi[i__]);
  1055. /* Computing MAX */
  1056. d__3 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__], abs(
  1057. d__2));
  1058. vmax = f2cmax(d__3,vmax);
  1059. vcrit = *bignum / vmax;
  1060. } else {
  1061. i__4 = *n;
  1062. for (j = 1; j <= i__4; ++j) {
  1063. vr[j] = 0.;
  1064. vi[j] = 0.;
  1065. /* L240: */
  1066. }
  1067. vr[i__] = 1.;
  1068. vi[i__] = 1.;
  1069. scale = 0.;
  1070. vmax = 1.;
  1071. vcrit = *bignum;
  1072. }
  1073. /* L250: */
  1074. }
  1075. /* Test for sufficient growth in the norm of (VR,VI). */
  1076. vnorm = dasum_(n, &vr[1], &c__1) + dasum_(n, &vi[1], &c__1);
  1077. if (vnorm >= growto * scale) {
  1078. goto L280;
  1079. }
  1080. /* Choose a new orthogonal starting vector and try again. */
  1081. y = *eps3 / (rootn + 1.);
  1082. vr[1] = *eps3;
  1083. vi[1] = 0.;
  1084. i__3 = *n;
  1085. for (i__ = 2; i__ <= i__3; ++i__) {
  1086. vr[i__] = y;
  1087. vi[i__] = 0.;
  1088. /* L260: */
  1089. }
  1090. vr[*n - its + 1] -= *eps3 * rootn;
  1091. /* L270: */
  1092. }
  1093. /* Failure to find eigenvector in N iterations */
  1094. *info = 1;
  1095. L280:
  1096. /* Normalize eigenvector. */
  1097. vnorm = 0.;
  1098. i__1 = *n;
  1099. for (i__ = 1; i__ <= i__1; ++i__) {
  1100. /* Computing MAX */
  1101. d__3 = vnorm, d__4 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__]
  1102. , abs(d__2));
  1103. vnorm = f2cmax(d__3,d__4);
  1104. /* L290: */
  1105. }
  1106. d__1 = 1. / vnorm;
  1107. dscal_(n, &d__1, &vr[1], &c__1);
  1108. d__1 = 1. / vnorm;
  1109. dscal_(n, &d__1, &vi[1], &c__1);
  1110. }
  1111. return;
  1112. /* End of DLAEIN */
  1113. } /* dlaein_ */