|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
-
- /* > \brief \b DLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse
- iteration. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLAEIN + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaein.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaein.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaein.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B, */
- /* LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO ) */
-
- /* LOGICAL NOINIT, RIGHTV */
- /* INTEGER INFO, LDB, LDH, N */
- /* DOUBLE PRECISION BIGNUM, EPS3, SMLNUM, WI, WR */
- /* DOUBLE PRECISION B( LDB, * ), H( LDH, * ), VI( * ), VR( * ), */
- /* $ WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLAEIN uses inverse iteration to find a right or left eigenvector */
- /* > corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg */
- /* > matrix H. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] RIGHTV */
- /* > \verbatim */
- /* > RIGHTV is LOGICAL */
- /* > = .TRUE. : compute right eigenvector; */
- /* > = .FALSE.: compute left eigenvector. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NOINIT */
- /* > \verbatim */
- /* > NOINIT is LOGICAL */
- /* > = .TRUE. : no initial vector supplied in (VR,VI). */
- /* > = .FALSE.: initial vector supplied in (VR,VI). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix H. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] H */
- /* > \verbatim */
- /* > H is DOUBLE PRECISION array, dimension (LDH,N) */
- /* > The upper Hessenberg matrix H. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WR */
- /* > \verbatim */
- /* > WR is DOUBLE PRECISION */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WI */
- /* > \verbatim */
- /* > WI is DOUBLE PRECISION */
- /* > The real and imaginary parts of the eigenvalue of H whose */
- /* > corresponding right or left eigenvector is to be computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VR */
- /* > \verbatim */
- /* > VR is DOUBLE PRECISION array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VI */
- /* > \verbatim */
- /* > VI is DOUBLE PRECISION array, dimension (N) */
- /* > On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain */
- /* > a real starting vector for inverse iteration using the real */
- /* > eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI */
- /* > must contain the real and imaginary parts of a complex */
- /* > starting vector for inverse iteration using the complex */
- /* > eigenvalue (WR,WI); otherwise VR and VI need not be set. */
- /* > On exit, if WI = 0.0 (real eigenvalue), VR contains the */
- /* > computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), */
- /* > VR and VI contain the real and imaginary parts of the */
- /* > computed complex eigenvector. The eigenvector is normalized */
- /* > so that the component of largest magnitude has magnitude 1; */
- /* > here the magnitude of a complex number (x,y) is taken to be */
- /* > |x| + |y|. */
- /* > VI is not referenced if WI = 0.0. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B */
- /* > \verbatim */
- /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= N+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] EPS3 */
- /* > \verbatim */
- /* > EPS3 is DOUBLE PRECISION */
- /* > A small machine-dependent value which is used to perturb */
- /* > close eigenvalues, and to replace zero pivots. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SMLNUM */
- /* > \verbatim */
- /* > SMLNUM is DOUBLE PRECISION */
- /* > A machine-dependent value close to the underflow threshold. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] BIGNUM */
- /* > \verbatim */
- /* > BIGNUM is DOUBLE PRECISION */
- /* > A machine-dependent value close to the overflow threshold. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > = 1: inverse iteration did not converge; VR is set to the */
- /* > last iterate, and so is VI if WI.ne.0.0. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup doubleOTHERauxiliary */
-
- /* ===================================================================== */
- /* Subroutine */ void dlaein_(logical *rightv, logical *noinit, integer *n,
- doublereal *h__, integer *ldh, doublereal *wr, doublereal *wi,
- doublereal *vr, doublereal *vi, doublereal *b, integer *ldb,
- doublereal *work, doublereal *eps3, doublereal *smlnum, doublereal *
- bignum, integer *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;
- doublereal d__1, d__2, d__3, d__4;
-
- /* Local variables */
- integer ierr;
- doublereal temp, norm, vmax;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- integer i__, j;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal scale, w, x, y;
- extern doublereal dasum_(integer *, doublereal *, integer *);
- char trans[1];
- doublereal vcrit;
- integer i1, i2, i3;
- doublereal rootn, vnorm, w1;
- extern doublereal dlapy2_(doublereal *, doublereal *);
- doublereal ei, ej, absbii, absbjj, xi;
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ void dladiv_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *);
- doublereal xr;
- extern /* Subroutine */ void dlatrs_(char *, char *, char *, char *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, integer *);
- char normin[1];
- doublereal nrmsml, growto, rec;
- integer its;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --vr;
- --vi;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- /* GROWTO is the threshold used in the acceptance test for an */
- /* eigenvector. */
-
- rootn = sqrt((doublereal) (*n));
- growto = .1 / rootn;
- /* Computing MAX */
- d__1 = 1., d__2 = *eps3 * rootn;
- nrmsml = f2cmax(d__1,d__2) * *smlnum;
-
- /* Form B = H - (WR,WI)*I (except that the subdiagonal elements and */
- /* the imaginary parts of the diagonal elements are not stored). */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];
- /* L10: */
- }
- b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;
- /* L20: */
- }
-
- if (*wi == 0.) {
-
- /* Real eigenvalue. */
-
- if (*noinit) {
-
- /* Set initial vector. */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- vr[i__] = *eps3;
- /* L30: */
- }
- } else {
-
- /* Scale supplied initial vector. */
-
- vnorm = dnrm2_(n, &vr[1], &c__1);
- d__1 = *eps3 * rootn / f2cmax(vnorm,nrmsml);
- dscal_(n, &d__1, &vr[1], &c__1);
- }
-
- if (*rightv) {
-
- /* LU decomposition with partial pivoting of B, replacing zero */
- /* pivots by EPS3. */
-
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ei = h__[i__ + 1 + i__ * h_dim1];
- if ((d__1 = b[i__ + i__ * b_dim1], abs(d__1)) < abs(ei)) {
-
- /* Interchange rows and eliminate. */
-
- x = b[i__ + i__ * b_dim1] / ei;
- b[i__ + i__ * b_dim1] = ei;
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- temp = b[i__ + 1 + j * b_dim1];
- b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x *
- temp;
- b[i__ + j * b_dim1] = temp;
- /* L40: */
- }
- } else {
-
- /* Eliminate without interchange. */
-
- if (b[i__ + i__ * b_dim1] == 0.) {
- b[i__ + i__ * b_dim1] = *eps3;
- }
- x = ei / b[i__ + i__ * b_dim1];
- if (x != 0.) {
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1]
- ;
- /* L50: */
- }
- }
- }
- /* L60: */
- }
- if (b[*n + *n * b_dim1] == 0.) {
- b[*n + *n * b_dim1] = *eps3;
- }
-
- *(unsigned char *)trans = 'N';
-
- } else {
-
- /* UL decomposition with partial pivoting of B, replacing zero */
- /* pivots by EPS3. */
-
- for (j = *n; j >= 2; --j) {
- ej = h__[j + (j - 1) * h_dim1];
- if ((d__1 = b[j + j * b_dim1], abs(d__1)) < abs(ej)) {
-
- /* Interchange columns and eliminate. */
-
- x = b[j + j * b_dim1] / ej;
- b[j + j * b_dim1] = ej;
- i__1 = j - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = b[i__ + (j - 1) * b_dim1];
- b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x *
- temp;
- b[i__ + j * b_dim1] = temp;
- /* L70: */
- }
- } else {
-
- /* Eliminate without interchange. */
-
- if (b[j + j * b_dim1] == 0.) {
- b[j + j * b_dim1] = *eps3;
- }
- x = ej / b[j + j * b_dim1];
- if (x != 0.) {
- i__1 = j - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j *
- b_dim1];
- /* L80: */
- }
- }
- }
- /* L90: */
- }
- if (b[b_dim1 + 1] == 0.) {
- b[b_dim1 + 1] = *eps3;
- }
-
- *(unsigned char *)trans = 'T';
-
- }
-
- *(unsigned char *)normin = 'N';
- i__1 = *n;
- for (its = 1; its <= i__1; ++its) {
-
- /* Solve U*x = scale*v for a right eigenvector */
- /* or U**T*x = scale*v for a left eigenvector, */
- /* overwriting x on v. */
-
- dlatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, &
- vr[1], &scale, &work[1], &ierr);
- *(unsigned char *)normin = 'Y';
-
- /* Test for sufficient growth in the norm of v. */
-
- vnorm = dasum_(n, &vr[1], &c__1);
- if (vnorm >= growto * scale) {
- goto L120;
- }
-
- /* Choose new orthogonal starting vector and try again. */
-
- temp = *eps3 / (rootn + 1.);
- vr[1] = *eps3;
- i__2 = *n;
- for (i__ = 2; i__ <= i__2; ++i__) {
- vr[i__] = temp;
- /* L100: */
- }
- vr[*n - its + 1] -= *eps3 * rootn;
- /* L110: */
- }
-
- /* Failure to find eigenvector in N iterations. */
-
- *info = 1;
-
- L120:
-
- /* Normalize eigenvector. */
-
- i__ = idamax_(n, &vr[1], &c__1);
- d__2 = 1. / (d__1 = vr[i__], abs(d__1));
- dscal_(n, &d__2, &vr[1], &c__1);
- } else {
-
- /* Complex eigenvalue. */
-
- if (*noinit) {
-
- /* Set initial vector. */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- vr[i__] = *eps3;
- vi[i__] = 0.;
- /* L130: */
- }
- } else {
-
- /* Scale supplied initial vector. */
-
- d__1 = dnrm2_(n, &vr[1], &c__1);
- d__2 = dnrm2_(n, &vi[1], &c__1);
- norm = dlapy2_(&d__1, &d__2);
- rec = *eps3 * rootn / f2cmax(norm,nrmsml);
- dscal_(n, &rec, &vr[1], &c__1);
- dscal_(n, &rec, &vi[1], &c__1);
- }
-
- if (*rightv) {
-
- /* LU decomposition with partial pivoting of B, replacing zero */
- /* pivots by EPS3. */
-
- /* The imaginary part of the (i,j)-th element of U is stored in */
- /* B(j+1,i). */
-
- b[b_dim1 + 2] = -(*wi);
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- b[i__ + 1 + b_dim1] = 0.;
- /* L140: */
- }
-
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- absbii = dlapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ *
- b_dim1]);
- ei = h__[i__ + 1 + i__ * h_dim1];
- if (absbii < abs(ei)) {
-
- /* Interchange rows and eliminate. */
-
- xr = b[i__ + i__ * b_dim1] / ei;
- xi = b[i__ + 1 + i__ * b_dim1] / ei;
- b[i__ + i__ * b_dim1] = ei;
- b[i__ + 1 + i__ * b_dim1] = 0.;
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- temp = b[i__ + 1 + j * b_dim1];
- b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr *
- temp;
- b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ *
- b_dim1] - xi * temp;
- b[i__ + j * b_dim1] = temp;
- b[j + 1 + i__ * b_dim1] = 0.;
- /* L150: */
- }
- b[i__ + 2 + i__ * b_dim1] = -(*wi);
- b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;
- b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;
- } else {
-
- /* Eliminate without interchanging rows. */
-
- if (absbii == 0.) {
- b[i__ + i__ * b_dim1] = *eps3;
- b[i__ + 1 + i__ * b_dim1] = 0.;
- absbii = *eps3;
- }
- ei = ei / absbii / absbii;
- xr = b[i__ + i__ * b_dim1] * ei;
- xi = -b[i__ + 1 + i__ * b_dim1] * ei;
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] -
- xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__
- * b_dim1];
- b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ *
- b_dim1] - xi * b[i__ + j * b_dim1];
- /* L160: */
- }
- b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;
- }
-
- /* Compute 1-norm of offdiagonal elements of i-th row. */
-
- i__2 = *n - i__;
- i__3 = *n - i__;
- work[i__] = dasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb)
- + dasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);
- /* L170: */
- }
- if (b[*n + *n * b_dim1] == 0. && b[*n + 1 + *n * b_dim1] == 0.) {
- b[*n + *n * b_dim1] = *eps3;
- }
- work[*n] = 0.;
-
- i1 = *n;
- i2 = 1;
- i3 = -1;
- } else {
-
- /* UL decomposition with partial pivoting of conjg(B), */
- /* replacing zero pivots by EPS3. */
-
- /* The imaginary part of the (i,j)-th element of U is stored in */
- /* B(j+1,i). */
-
- b[*n + 1 + *n * b_dim1] = *wi;
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- b[*n + 1 + j * b_dim1] = 0.;
- /* L180: */
- }
-
- for (j = *n; j >= 2; --j) {
- ej = h__[j + (j - 1) * h_dim1];
- absbjj = dlapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);
- if (absbjj < abs(ej)) {
-
- /* Interchange columns and eliminate */
-
- xr = b[j + j * b_dim1] / ej;
- xi = b[j + 1 + j * b_dim1] / ej;
- b[j + j * b_dim1] = ej;
- b[j + 1 + j * b_dim1] = 0.;
- i__1 = j - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = b[i__ + (j - 1) * b_dim1];
- b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr *
- temp;
- b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi *
- temp;
- b[i__ + j * b_dim1] = temp;
- b[j + 1 + i__ * b_dim1] = 0.;
- /* L190: */
- }
- b[j + 1 + (j - 1) * b_dim1] = *wi;
- b[j - 1 + (j - 1) * b_dim1] += xi * *wi;
- b[j + (j - 1) * b_dim1] -= xr * *wi;
- } else {
-
- /* Eliminate without interchange. */
-
- if (absbjj == 0.) {
- b[j + j * b_dim1] = *eps3;
- b[j + 1 + j * b_dim1] = 0.;
- absbjj = *eps3;
- }
- ej = ej / absbjj / absbjj;
- xr = b[j + j * b_dim1] * ej;
- xi = -b[j + 1 + j * b_dim1] * ej;
- i__1 = j - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1]
- - xr * b[i__ + j * b_dim1] + xi * b[j + 1 +
- i__ * b_dim1];
- b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] -
- xi * b[i__ + j * b_dim1];
- /* L200: */
- }
- b[j + (j - 1) * b_dim1] += *wi;
- }
-
- /* Compute 1-norm of offdiagonal elements of j-th column. */
-
- i__1 = j - 1;
- i__2 = j - 1;
- work[j] = dasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + dasum_(&
- i__2, &b[j + 1 + b_dim1], ldb);
- /* L210: */
- }
- if (b[b_dim1 + 1] == 0. && b[b_dim1 + 2] == 0.) {
- b[b_dim1 + 1] = *eps3;
- }
- work[1] = 0.;
-
- i1 = 1;
- i2 = *n;
- i3 = 1;
- }
-
- i__1 = *n;
- for (its = 1; its <= i__1; ++its) {
- scale = 1.;
- vmax = 1.;
- vcrit = *bignum;
-
- /* Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */
- /* or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector, */
- /* overwriting (xr,xi) on (vr,vi). */
-
- i__2 = i2;
- i__3 = i3;
- for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
- {
-
- if (work[i__] > vcrit) {
- rec = 1. / vmax;
- dscal_(n, &rec, &vr[1], &c__1);
- dscal_(n, &rec, &vi[1], &c__1);
- scale *= rec;
- vmax = 1.;
- vcrit = *bignum;
- }
-
- xr = vr[i__];
- xi = vi[i__];
- if (*rightv) {
- i__4 = *n;
- for (j = i__ + 1; j <= i__4; ++j) {
- xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__
- * b_dim1] * vi[j];
- xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__
- * b_dim1] * vr[j];
- /* L220: */
- }
- } else {
- i__4 = i__ - 1;
- for (j = 1; j <= i__4; ++j) {
- xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j
- * b_dim1] * vi[j];
- xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j
- * b_dim1] * vr[j];
- /* L230: */
- }
- }
-
- w = (d__1 = b[i__ + i__ * b_dim1], abs(d__1)) + (d__2 = b[i__
- + 1 + i__ * b_dim1], abs(d__2));
- if (w > *smlnum) {
- if (w < 1.) {
- w1 = abs(xr) + abs(xi);
- if (w1 > w * *bignum) {
- rec = 1. / w1;
- dscal_(n, &rec, &vr[1], &c__1);
- dscal_(n, &rec, &vi[1], &c__1);
- xr = vr[i__];
- xi = vi[i__];
- scale *= rec;
- vmax *= rec;
- }
- }
-
- /* Divide by diagonal element of B. */
-
- dladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 +
- i__ * b_dim1], &vr[i__], &vi[i__]);
- /* Computing MAX */
- d__3 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__], abs(
- d__2));
- vmax = f2cmax(d__3,vmax);
- vcrit = *bignum / vmax;
- } else {
- i__4 = *n;
- for (j = 1; j <= i__4; ++j) {
- vr[j] = 0.;
- vi[j] = 0.;
- /* L240: */
- }
- vr[i__] = 1.;
- vi[i__] = 1.;
- scale = 0.;
- vmax = 1.;
- vcrit = *bignum;
- }
- /* L250: */
- }
-
- /* Test for sufficient growth in the norm of (VR,VI). */
-
- vnorm = dasum_(n, &vr[1], &c__1) + dasum_(n, &vi[1], &c__1);
- if (vnorm >= growto * scale) {
- goto L280;
- }
-
- /* Choose a new orthogonal starting vector and try again. */
-
- y = *eps3 / (rootn + 1.);
- vr[1] = *eps3;
- vi[1] = 0.;
-
- i__3 = *n;
- for (i__ = 2; i__ <= i__3; ++i__) {
- vr[i__] = y;
- vi[i__] = 0.;
- /* L260: */
- }
- vr[*n - its + 1] -= *eps3 * rootn;
- /* L270: */
- }
-
- /* Failure to find eigenvector in N iterations */
-
- *info = 1;
-
- L280:
-
- /* Normalize eigenvector. */
-
- vnorm = 0.;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__3 = vnorm, d__4 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__]
- , abs(d__2));
- vnorm = f2cmax(d__3,d__4);
- /* L290: */
- }
- d__1 = 1. / vnorm;
- dscal_(n, &d__1, &vr[1], &c__1);
- d__1 = 1. / vnorm;
- dscal_(n, &d__1, &vi[1], &c__1);
-
- }
-
- return;
-
- /* End of DLAEIN */
-
- } /* dlaein_ */
|