You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlahilb.c 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #define F2C_proc_par_types 1
  240. /* Table of constant values */
  241. static integer c__2 = 2;
  242. static doublecomplex c_b6 = {0.,0.};
  243. /* > \brief \b ZLAHILB */
  244. /* =========== DOCUMENTATION =========== */
  245. /* Online html documentation available at */
  246. /* http://www.netlib.org/lapack/explore-html/ */
  247. /* Definition: */
  248. /* =========== */
  249. /* SUBROUTINE ZLAHILB( N, NRHS, A, LDA, X, LDX, B, LDB, WORK, */
  250. /* INFO, PATH) */
  251. /* INTEGER N, NRHS, LDA, LDX, LDB, INFO */
  252. /* DOUBLE PRECISION WORK(N) */
  253. /* COMPLEX*16 A(LDA,N), X(LDX, NRHS), B(LDB, NRHS) */
  254. /* CHARACTER*3 PATH */
  255. /* > \par Purpose: */
  256. /* ============= */
  257. /* > */
  258. /* > \verbatim */
  259. /* > */
  260. /* > ZLAHILB generates an N by N scaled Hilbert matrix in A along with */
  261. /* > NRHS right-hand sides in B and solutions in X such that A*X=B. */
  262. /* > */
  263. /* > The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all */
  264. /* > entries are integers. The right-hand sides are the first NRHS */
  265. /* > columns of M * the identity matrix, and the solutions are the */
  266. /* > first NRHS columns of the inverse Hilbert matrix. */
  267. /* > */
  268. /* > The condition number of the Hilbert matrix grows exponentially with */
  269. /* > its size, roughly as O(e ** (3.5*N)). Additionally, the inverse */
  270. /* > Hilbert matrices beyond a relatively small dimension cannot be */
  271. /* > generated exactly without extra precision. Precision is exhausted */
  272. /* > when the largest entry in the inverse Hilbert matrix is greater than */
  273. /* > 2 to the power of the number of bits in the fraction of the data type */
  274. /* > used plus one, which is 24 for single precision. */
  275. /* > */
  276. /* > In single, the generated solution is exact for N <= 6 and has */
  277. /* > small componentwise error for 7 <= N <= 11. */
  278. /* > \endverbatim */
  279. /* Arguments: */
  280. /* ========== */
  281. /* > \param[in] N */
  282. /* > \verbatim */
  283. /* > N is INTEGER */
  284. /* > The dimension of the matrix A. */
  285. /* > \endverbatim */
  286. /* > */
  287. /* > \param[in] NRHS */
  288. /* > \verbatim */
  289. /* > NRHS is INTEGER */
  290. /* > The requested number of right-hand sides. */
  291. /* > \endverbatim */
  292. /* > */
  293. /* > \param[out] A */
  294. /* > \verbatim */
  295. /* > A is COMPLEX array, dimension (LDA, N) */
  296. /* > The generated scaled Hilbert matrix. */
  297. /* > \endverbatim */
  298. /* > */
  299. /* > \param[in] LDA */
  300. /* > \verbatim */
  301. /* > LDA is INTEGER */
  302. /* > The leading dimension of the array A. LDA >= N. */
  303. /* > \endverbatim */
  304. /* > */
  305. /* > \param[out] X */
  306. /* > \verbatim */
  307. /* > X is COMPLEX array, dimension (LDX, NRHS) */
  308. /* > The generated exact solutions. Currently, the first NRHS */
  309. /* > columns of the inverse Hilbert matrix. */
  310. /* > \endverbatim */
  311. /* > */
  312. /* > \param[in] LDX */
  313. /* > \verbatim */
  314. /* > LDX is INTEGER */
  315. /* > The leading dimension of the array X. LDX >= N. */
  316. /* > \endverbatim */
  317. /* > */
  318. /* > \param[out] B */
  319. /* > \verbatim */
  320. /* > B is REAL array, dimension (LDB, NRHS) */
  321. /* > The generated right-hand sides. Currently, the first NRHS */
  322. /* > columns of LCM(1, 2, ..., 2*N-1) * the identity matrix. */
  323. /* > \endverbatim */
  324. /* > */
  325. /* > \param[in] LDB */
  326. /* > \verbatim */
  327. /* > LDB is INTEGER */
  328. /* > The leading dimension of the array B. LDB >= N. */
  329. /* > \endverbatim */
  330. /* > */
  331. /* > \param[out] WORK */
  332. /* > \verbatim */
  333. /* > WORK is REAL array, dimension (N) */
  334. /* > \endverbatim */
  335. /* > */
  336. /* > \param[out] INFO */
  337. /* > \verbatim */
  338. /* > INFO is INTEGER */
  339. /* > = 0: successful exit */
  340. /* > = 1: N is too large; the data is still generated but may not */
  341. /* > be not exact. */
  342. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  343. /* > \endverbatim */
  344. /* > */
  345. /* > \param[in] PATH */
  346. /* > \verbatim */
  347. /* > PATH is CHARACTER*3 */
  348. /* > The LAPACK path name. */
  349. /* > \endverbatim */
  350. /* Authors: */
  351. /* ======== */
  352. /* > \author Univ. of Tennessee */
  353. /* > \author Univ. of California Berkeley */
  354. /* > \author Univ. of Colorado Denver */
  355. /* > \author NAG Ltd. */
  356. /* > \date November 2017 */
  357. /* > \ingroup complex16_matgen */
  358. /* ===================================================================== */
  359. /* Subroutine */ void zlahilb_(integer *n, integer *nrhs, doublecomplex *a,
  360. integer *lda, doublecomplex *x, integer *ldx, doublecomplex *b,
  361. integer *ldb, doublereal *work, integer *info, char *path)
  362. {
  363. /* Initialized data */
  364. static doublecomplex d1[8] = { {-1.,0.},{0.,1.},{-1.,-1.},{0.,-1.},{1.,0.}
  365. ,{-1.,1.},{1.,1.},{1.,-1.} };
  366. static doublecomplex d2[8] = { {-1.,0.},{0.,-1.},{-1.,1.},{0.,1.},{1.,0.},
  367. {-1.,-1.},{1.,-1.},{1.,1.} };
  368. static doublecomplex invd1[8] = { {-1.,0.},{0.,-1.},{-.5,.5},{0.,1.},{1.,
  369. 0.},{-.5,-.5},{.5,-.5},{.5,.5} };
  370. static doublecomplex invd2[8] = { {-1.,0.},{0.,1.},{-.5,-.5},{0.,-1.},{1.,
  371. 0.},{-.5,.5},{.5,.5},{.5,-.5} };
  372. /* System generated locals */
  373. integer a_dim1, a_offset, x_dim1, x_offset, b_dim1, b_offset, i__1, i__2,
  374. i__3, i__4, i__5;
  375. doublereal d__1;
  376. doublecomplex z__1, z__2;
  377. /* Local variables */
  378. integer i__, j, m, r__;
  379. char c2[2];
  380. integer ti, tm;
  381. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  382. extern logical lsamen_(integer *, char *, char *);
  383. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  384. doublecomplex *, doublecomplex *, doublecomplex *, integer *);
  385. doublecomplex tmp;
  386. /* -- LAPACK test routine (version 3.8.0) -- */
  387. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  388. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  389. /* November 2017 */
  390. /* ===================================================================== */
  391. /* NMAX_EXACT the largest dimension where the generated data is */
  392. /* exact. */
  393. /* NMAX_APPROX the largest dimension where the generated data has */
  394. /* a small componentwise relative error. */
  395. /* ??? complex uses how many bits ??? */
  396. /* d's are generated from random permutation of those eight elements. */
  397. /* Parameter adjustments */
  398. --work;
  399. a_dim1 = *lda;
  400. a_offset = 1 + a_dim1 * 1;
  401. a -= a_offset;
  402. x_dim1 = *ldx;
  403. x_offset = 1 + x_dim1 * 1;
  404. x -= x_offset;
  405. b_dim1 = *ldb;
  406. b_offset = 1 + b_dim1 * 1;
  407. b -= b_offset;
  408. /* Function Body */
  409. s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);
  410. /* Test the input arguments */
  411. *info = 0;
  412. if (*n < 0 || *n > 11) {
  413. *info = -1;
  414. } else if (*nrhs < 0) {
  415. *info = -2;
  416. } else if (*lda < *n) {
  417. *info = -4;
  418. } else if (*ldx < *n) {
  419. *info = -6;
  420. } else if (*ldb < *n) {
  421. *info = -8;
  422. }
  423. if (*info < 0) {
  424. i__1 = -(*info);
  425. xerbla_("ZLAHILB", &i__1, 7);
  426. return;
  427. }
  428. if (*n > 6) {
  429. *info = 1;
  430. }
  431. /* Compute M = the LCM of the integers [1, 2*N-1]. The largest */
  432. /* reasonable N is small enough that integers suffice (up to N = 11). */
  433. m = 1;
  434. i__1 = (*n << 1) - 1;
  435. for (i__ = 2; i__ <= i__1; ++i__) {
  436. tm = m;
  437. ti = i__;
  438. r__ = tm % ti;
  439. while(r__ != 0) {
  440. tm = ti;
  441. ti = r__;
  442. r__ = tm % ti;
  443. }
  444. m = m / ti * i__;
  445. }
  446. /* Generate the scaled Hilbert matrix in A */
  447. /* If we are testing SY routines, */
  448. /* take D1_i = D2_i, else, D1_i = D2_i* */
  449. if (lsamen_(&c__2, c2, "SY")) {
  450. i__1 = *n;
  451. for (j = 1; j <= i__1; ++j) {
  452. i__2 = *n;
  453. for (i__ = 1; i__ <= i__2; ++i__) {
  454. i__3 = i__ + j * a_dim1;
  455. i__4 = j % 8;
  456. d__1 = (doublereal) m / (i__ + j - 1);
  457. z__2.r = d__1 * d1[i__4].r, z__2.i = d__1 * d1[i__4].i;
  458. i__5 = i__ % 8;
  459. z__1.r = z__2.r * d1[i__5].r - z__2.i * d1[i__5].i, z__1.i =
  460. z__2.r * d1[i__5].i + z__2.i * d1[i__5].r;
  461. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  462. }
  463. }
  464. } else {
  465. i__1 = *n;
  466. for (j = 1; j <= i__1; ++j) {
  467. i__2 = *n;
  468. for (i__ = 1; i__ <= i__2; ++i__) {
  469. i__3 = i__ + j * a_dim1;
  470. i__4 = j % 8;
  471. d__1 = (doublereal) m / (i__ + j - 1);
  472. z__2.r = d__1 * d1[i__4].r, z__2.i = d__1 * d1[i__4].i;
  473. i__5 = i__ % 8;
  474. z__1.r = z__2.r * d2[i__5].r - z__2.i * d2[i__5].i, z__1.i =
  475. z__2.r * d2[i__5].i + z__2.i * d2[i__5].r;
  476. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  477. }
  478. }
  479. }
  480. /* Generate matrix B as simply the first NRHS columns of M * the */
  481. /* identity. */
  482. d__1 = (doublereal) m;
  483. tmp.r = d__1, tmp.i = 0.;
  484. zlaset_("Full", n, nrhs, &c_b6, &tmp, &b[b_offset], ldb);
  485. /* Generate the true solutions in X. Because B = the first NRHS */
  486. /* columns of M*I, the true solutions are just the first NRHS columns */
  487. /* of the inverse Hilbert matrix. */
  488. work[1] = (doublereal) (*n);
  489. i__1 = *n;
  490. for (j = 2; j <= i__1; ++j) {
  491. work[j] = work[j - 1] / (j - 1) * (j - 1 - *n) / (j - 1) * (*n + j -
  492. 1);
  493. }
  494. /* If we are testing SY routines, */
  495. /* take D1_i = D2_i, else, D1_i = D2_i* */
  496. if (lsamen_(&c__2, c2, "SY")) {
  497. i__1 = *nrhs;
  498. for (j = 1; j <= i__1; ++j) {
  499. i__2 = *n;
  500. for (i__ = 1; i__ <= i__2; ++i__) {
  501. i__3 = i__ + j * x_dim1;
  502. i__4 = j % 8;
  503. d__1 = work[i__] * work[j] / (i__ + j - 1);
  504. z__2.r = d__1 * invd1[i__4].r, z__2.i = d__1 * invd1[i__4].i;
  505. i__5 = i__ % 8;
  506. z__1.r = z__2.r * invd1[i__5].r - z__2.i * invd1[i__5].i,
  507. z__1.i = z__2.r * invd1[i__5].i + z__2.i * invd1[i__5]
  508. .r;
  509. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  510. }
  511. }
  512. } else {
  513. i__1 = *nrhs;
  514. for (j = 1; j <= i__1; ++j) {
  515. i__2 = *n;
  516. for (i__ = 1; i__ <= i__2; ++i__) {
  517. i__3 = i__ + j * x_dim1;
  518. i__4 = j % 8;
  519. d__1 = work[i__] * work[j] / (i__ + j - 1);
  520. z__2.r = d__1 * invd2[i__4].r, z__2.i = d__1 * invd2[i__4].i;
  521. i__5 = i__ % 8;
  522. z__1.r = z__2.r * invd1[i__5].r - z__2.i * invd1[i__5].i,
  523. z__1.i = z__2.r * invd1[i__5].i + z__2.i * invd1[i__5]
  524. .r;
  525. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  526. }
  527. }
  528. }
  529. return;
  530. } /* zlahilb_ */