|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
-
-
- /* Table of constant values */
-
- static integer c__2 = 2;
- static doublecomplex c_b6 = {0.,0.};
-
- /* > \brief \b ZLAHILB */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLAHILB( N, NRHS, A, LDA, X, LDX, B, LDB, WORK, */
- /* INFO, PATH) */
-
- /* INTEGER N, NRHS, LDA, LDX, LDB, INFO */
- /* DOUBLE PRECISION WORK(N) */
- /* COMPLEX*16 A(LDA,N), X(LDX, NRHS), B(LDB, NRHS) */
- /* CHARACTER*3 PATH */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLAHILB generates an N by N scaled Hilbert matrix in A along with */
- /* > NRHS right-hand sides in B and solutions in X such that A*X=B. */
- /* > */
- /* > The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all */
- /* > entries are integers. The right-hand sides are the first NRHS */
- /* > columns of M * the identity matrix, and the solutions are the */
- /* > first NRHS columns of the inverse Hilbert matrix. */
- /* > */
- /* > The condition number of the Hilbert matrix grows exponentially with */
- /* > its size, roughly as O(e ** (3.5*N)). Additionally, the inverse */
- /* > Hilbert matrices beyond a relatively small dimension cannot be */
- /* > generated exactly without extra precision. Precision is exhausted */
- /* > when the largest entry in the inverse Hilbert matrix is greater than */
- /* > 2 to the power of the number of bits in the fraction of the data type */
- /* > used plus one, which is 24 for single precision. */
- /* > */
- /* > In single, the generated solution is exact for N <= 6 and has */
- /* > small componentwise error for 7 <= N <= 11. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The dimension of the matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The requested number of right-hand sides. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA, N) */
- /* > The generated scaled Hilbert matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] X */
- /* > \verbatim */
- /* > X is COMPLEX array, dimension (LDX, NRHS) */
- /* > The generated exact solutions. Currently, the first NRHS */
- /* > columns of the inverse Hilbert matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX */
- /* > \verbatim */
- /* > LDX is INTEGER */
- /* > The leading dimension of the array X. LDX >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB, NRHS) */
- /* > The generated right-hand sides. Currently, the first NRHS */
- /* > columns of LCM(1, 2, ..., 2*N-1) * the identity matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > = 1: N is too large; the data is still generated but may not */
- /* > be not exact. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PATH */
- /* > \verbatim */
- /* > PATH is CHARACTER*3 */
- /* > The LAPACK path name. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2017 */
-
- /* > \ingroup complex16_matgen */
-
- /* ===================================================================== */
- /* Subroutine */ void zlahilb_(integer *n, integer *nrhs, doublecomplex *a,
- integer *lda, doublecomplex *x, integer *ldx, doublecomplex *b,
- integer *ldb, doublereal *work, integer *info, char *path)
- {
- /* Initialized data */
-
- static doublecomplex d1[8] = { {-1.,0.},{0.,1.},{-1.,-1.},{0.,-1.},{1.,0.}
- ,{-1.,1.},{1.,1.},{1.,-1.} };
- static doublecomplex d2[8] = { {-1.,0.},{0.,-1.},{-1.,1.},{0.,1.},{1.,0.},
- {-1.,-1.},{1.,-1.},{1.,1.} };
- static doublecomplex invd1[8] = { {-1.,0.},{0.,-1.},{-.5,.5},{0.,1.},{1.,
- 0.},{-.5,-.5},{.5,-.5},{.5,.5} };
- static doublecomplex invd2[8] = { {-1.,0.},{0.,1.},{-.5,-.5},{0.,-1.},{1.,
- 0.},{-.5,.5},{.5,.5},{.5,-.5} };
-
- /* System generated locals */
- integer a_dim1, a_offset, x_dim1, x_offset, b_dim1, b_offset, i__1, i__2,
- i__3, i__4, i__5;
- doublereal d__1;
- doublecomplex z__1, z__2;
-
- /* Local variables */
- integer i__, j, m, r__;
- char c2[2];
- integer ti, tm;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern logical lsamen_(integer *, char *, char *);
- extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *);
- doublecomplex tmp;
-
-
- /* -- LAPACK test routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2017 */
-
-
- /* ===================================================================== */
- /* NMAX_EXACT the largest dimension where the generated data is */
- /* exact. */
- /* NMAX_APPROX the largest dimension where the generated data has */
- /* a small componentwise relative error. */
- /* ??? complex uses how many bits ??? */
-
- /* d's are generated from random permutation of those eight elements. */
- /* Parameter adjustments */
- --work;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);
-
- /* Test the input arguments */
-
- *info = 0;
- if (*n < 0 || *n > 11) {
- *info = -1;
- } else if (*nrhs < 0) {
- *info = -2;
- } else if (*lda < *n) {
- *info = -4;
- } else if (*ldx < *n) {
- *info = -6;
- } else if (*ldb < *n) {
- *info = -8;
- }
- if (*info < 0) {
- i__1 = -(*info);
- xerbla_("ZLAHILB", &i__1, 7);
- return;
- }
- if (*n > 6) {
- *info = 1;
- }
-
- /* Compute M = the LCM of the integers [1, 2*N-1]. The largest */
- /* reasonable N is small enough that integers suffice (up to N = 11). */
- m = 1;
- i__1 = (*n << 1) - 1;
- for (i__ = 2; i__ <= i__1; ++i__) {
- tm = m;
- ti = i__;
- r__ = tm % ti;
- while(r__ != 0) {
- tm = ti;
- ti = r__;
- r__ = tm % ti;
- }
- m = m / ti * i__;
- }
-
- /* Generate the scaled Hilbert matrix in A */
- /* If we are testing SY routines, */
- /* take D1_i = D2_i, else, D1_i = D2_i* */
- if (lsamen_(&c__2, c2, "SY")) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = j % 8;
- d__1 = (doublereal) m / (i__ + j - 1);
- z__2.r = d__1 * d1[i__4].r, z__2.i = d__1 * d1[i__4].i;
- i__5 = i__ % 8;
- z__1.r = z__2.r * d1[i__5].r - z__2.i * d1[i__5].i, z__1.i =
- z__2.r * d1[i__5].i + z__2.i * d1[i__5].r;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- }
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = j % 8;
- d__1 = (doublereal) m / (i__ + j - 1);
- z__2.r = d__1 * d1[i__4].r, z__2.i = d__1 * d1[i__4].i;
- i__5 = i__ % 8;
- z__1.r = z__2.r * d2[i__5].r - z__2.i * d2[i__5].i, z__1.i =
- z__2.r * d2[i__5].i + z__2.i * d2[i__5].r;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- }
- }
- }
-
- /* Generate matrix B as simply the first NRHS columns of M * the */
- /* identity. */
- d__1 = (doublereal) m;
- tmp.r = d__1, tmp.i = 0.;
- zlaset_("Full", n, nrhs, &c_b6, &tmp, &b[b_offset], ldb);
-
- /* Generate the true solutions in X. Because B = the first NRHS */
- /* columns of M*I, the true solutions are just the first NRHS columns */
- /* of the inverse Hilbert matrix. */
- work[1] = (doublereal) (*n);
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- work[j] = work[j - 1] / (j - 1) * (j - 1 - *n) / (j - 1) * (*n + j -
- 1);
- }
- /* If we are testing SY routines, */
- /* take D1_i = D2_i, else, D1_i = D2_i* */
- if (lsamen_(&c__2, c2, "SY")) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * x_dim1;
- i__4 = j % 8;
- d__1 = work[i__] * work[j] / (i__ + j - 1);
- z__2.r = d__1 * invd1[i__4].r, z__2.i = d__1 * invd1[i__4].i;
- i__5 = i__ % 8;
- z__1.r = z__2.r * invd1[i__5].r - z__2.i * invd1[i__5].i,
- z__1.i = z__2.r * invd1[i__5].i + z__2.i * invd1[i__5]
- .r;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- }
- }
- } else {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * x_dim1;
- i__4 = j % 8;
- d__1 = work[i__] * work[j] / (i__ + j - 1);
- z__2.r = d__1 * invd2[i__4].r, z__2.i = d__1 * invd2[i__4].i;
- i__5 = i__ % 8;
- z__1.r = z__2.r * invd1[i__5].r - z__2.i * invd1[i__5].i,
- z__1.i = z__2.r * invd1[i__5].i + z__2.i * invd1[i__5]
- .r;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- }
- }
- }
- return;
- } /* zlahilb_ */
|