You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train_multi_card.py 5.1 kB

1 year ago
1 year ago
1 year ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. """
  2. 示例选用的数据集是MNISTData.zip
  3. 数据集结构是:
  4. MNISTData.zip
  5. ├── test
  6. │ ├── t10k-images-idx3-ubyte
  7. │ └── t10k-labels-idx1-ubyte
  8. └── train
  9. ├── train-images-idx3-ubyte
  10. └── train-labels-idx1-ubyte
  11. 使用注意事项:
  12. 1、在代码中加入args, unknown = parser.parse_known_args(),可忽略掉--ckpt_url参数报错等参数问题
  13. 2、用户需要调用c2net的python sdk包
  14. """
  15. import os
  16. import argparse
  17. from config import mnist_cfg as cfg
  18. from dataset_distributed import create_dataset_parallel
  19. from lenet import LeNet5
  20. import mindspore.nn as nn
  21. from mindspore import context
  22. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  23. from mindspore import load_checkpoint, load_param_into_net
  24. from mindspore.train import Model
  25. from mindspore.context import ParallelMode
  26. from mindspore.communication.management import init, get_rank
  27. import time
  28. #导入openi包
  29. from c2net.context import prepare
  30. parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
  31. parser.add_argument(
  32. '--device_target',
  33. type=str,
  34. default="Ascend",
  35. choices=['Ascend', 'CPU'],
  36. help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
  37. parser.add_argument('--epoch_size',
  38. type=int,
  39. default=5,
  40. help='Training epochs.')
  41. if __name__ == "__main__":
  42. ###请在代码中加入args, unknown = parser.parse_known_args(),可忽略掉--ckpt_url参数报错等参数问题
  43. args, unknown = parser.parse_known_args()
  44. device_num = int(os.getenv('RANK_SIZE'))
  45. #使用多卡时
  46. # set device_id and init for multi-card training
  47. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=int(os.getenv('ASCEND_DEVICE_ID')))
  48. context.reset_auto_parallel_context()
  49. context.set_auto_parallel_context(device_num = device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, parameter_broadcast=True)
  50. init()
  51. #Copying obs data does not need to be executed multiple times, just let the 0th card copy the data
  52. local_rank=int(os.getenv('RANK_ID'))
  53. if local_rank%8==0:
  54. #初始化导入数据集和预训练模型到容器内
  55. c2net_context = prepare()
  56. #获取数据集路径
  57. mnistdata_path = c2net_context.dataset_path+"/"+"MNISTData"
  58. #获取预训练模型路径
  59. mnist_example_test2_model_djts_path = c2net_context.pretrain_model_path+"/"+"MNIST_Example_test2_model_djts"
  60. output_path = c2net_context.output_path
  61. #Set a cache file to determine whether the data has been copied to obs.
  62. #If this file exists during multi-card training, there is no need to copy the dataset multiple times.
  63. f = open("/cache/download_input.txt", 'w')
  64. f.close()
  65. try:
  66. if os.path.exists("/cache/download_input.txt"):
  67. print("download_input succeed")
  68. except Exception as e:
  69. print("download_input failed")
  70. while not os.path.exists("/cache/download_input.txt"):
  71. time.sleep(1)
  72. ds_train = create_dataset_parallel(os.path.join(mnistdata_path, "train"), cfg.batch_size)
  73. network = LeNet5(cfg.num_classes)
  74. net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
  75. net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
  76. time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
  77. load_param_into_net(network, load_checkpoint(os.path.join(mnist_example_test2_model_djts_path, "checkpoint_lenet-1_1875.ckpt")))
  78. if args.device_target != "Ascend":
  79. model = Model(network,
  80. net_loss,
  81. net_opt,
  82. metrics={"accuracy"})
  83. else:
  84. model = Model(network,
  85. net_loss,
  86. net_opt,
  87. metrics={"accuracy"},
  88. amp_level="O2")
  89. config_ck = CheckpointConfig(
  90. save_checkpoint_steps=cfg.save_checkpoint_steps,
  91. keep_checkpoint_max=cfg.keep_checkpoint_max)
  92. #Note that this method saves the model file on each card. You need to specify the save path on each card.
  93. # In this example, get_rank() is added to distinguish different paths.
  94. outputDirectory = output_path + "/" + str(get_rank()) + "/"
  95. ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
  96. directory=outputDirectory,
  97. config=config_ck)
  98. print("============== Starting Training ==============")
  99. epoch_size = cfg['epoch_size']
  100. if (args.epoch_size):
  101. epoch_size = args.epoch_size
  102. print('epoch_size is: ', epoch_size)
  103. model.train(epoch_size, ds_train,callbacks=[time_cb, ckpoint_cb,LossMonitor()])
  104. ###上传训练结果到启智平台,注意必须将要输出的模型存储在c2net_context.output_path
  105. upload_output()

No Description