""" 示例选用的数据集是MNISTData.zip 数据集结构是: MNISTData.zip ├── test │ ├── t10k-images-idx3-ubyte │ └── t10k-labels-idx1-ubyte └── train ├── train-images-idx3-ubyte └── train-labels-idx1-ubyte 使用注意事项: 1、在代码中加入args, unknown = parser.parse_known_args(),可忽略掉--ckpt_url参数报错等参数问题 2、用户需要调用c2net的python sdk包 """ import os import argparse from config import mnist_cfg as cfg from dataset_distributed import create_dataset_parallel from lenet import LeNet5 import mindspore.nn as nn from mindspore import context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore import load_checkpoint, load_param_into_net from mindspore.train import Model from mindspore.context import ParallelMode from mindspore.communication.management import init, get_rank import time #导入openi包 from c2net.context import prepare parser = argparse.ArgumentParser(description='MindSpore Lenet Example') parser.add_argument( '--device_target', type=str, default="Ascend", choices=['Ascend', 'CPU'], help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU') parser.add_argument('--epoch_size', type=int, default=5, help='Training epochs.') if __name__ == "__main__": ###请在代码中加入args, unknown = parser.parse_known_args(),可忽略掉--ckpt_url参数报错等参数问题 args, unknown = parser.parse_known_args() device_num = int(os.getenv('RANK_SIZE')) #使用多卡时 # set device_id and init for multi-card training context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=int(os.getenv('ASCEND_DEVICE_ID'))) context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num = device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, parameter_broadcast=True) init() #Copying obs data does not need to be executed multiple times, just let the 0th card copy the data local_rank=int(os.getenv('RANK_ID')) if local_rank%8==0: #初始化导入数据集和预训练模型到容器内 c2net_context = prepare() #获取数据集路径 mnistdata_path = c2net_context.dataset_path+"/"+"MNISTData" #获取预训练模型路径 mnist_example_test2_model_djts_path = c2net_context.pretrain_model_path+"/"+"MNIST_Example_test2_model_djts" output_path = c2net_context.output_path #Set a cache file to determine whether the data has been copied to obs. #If this file exists during multi-card training, there is no need to copy the dataset multiple times. f = open("/cache/download_input.txt", 'w') f.close() try: if os.path.exists("/cache/download_input.txt"): print("download_input succeed") except Exception as e: print("download_input failed") while not os.path.exists("/cache/download_input.txt"): time.sleep(1) ds_train = create_dataset_parallel(os.path.join(mnistdata_path, "train"), cfg.batch_size) network = LeNet5(cfg.num_classes) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) load_param_into_net(network, load_checkpoint(os.path.join(mnist_example_test2_model_djts_path, "checkpoint_lenet-1_1875.ckpt"))) if args.device_target != "Ascend": model = Model(network, net_loss, net_opt, metrics={"accuracy"}) else: model = Model(network, net_loss, net_opt, metrics={"accuracy"}, amp_level="O2") config_ck = CheckpointConfig( save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) #Note that this method saves the model file on each card. You need to specify the save path on each card. # In this example, get_rank() is added to distinguish different paths. outputDirectory = output_path + "/" + str(get_rank()) + "/" ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory=outputDirectory, config=config_ck) print("============== Starting Training ==============") epoch_size = cfg['epoch_size'] if (args.epoch_size): epoch_size = args.epoch_size print('epoch_size is: ', epoch_size) model.train(epoch_size, ds_train,callbacks=[time_cb, ckpoint_cb,LossMonitor()]) ###上传训练结果到启智平台,注意必须将要输出的模型存储在c2net_context.output_path upload_output()