| @@ -0,0 +1,506 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Mon Apr 13 18:02:46 2020 | |||||
| @author: ljia | |||||
| @references: | |||||
| [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in | |||||
| chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47. | |||||
| """ | |||||
| import sys | |||||
| from multiprocessing import Pool | |||||
| from tqdm import tqdm | |||||
| import numpy as np | |||||
| import networkx as nx | |||||
| from collections import Counter | |||||
| from itertools import chain | |||||
| from gklearn.utils import SpecialLabel | |||||
| from gklearn.utils.parallel import parallel_gm, parallel_me | |||||
| from gklearn.utils.utils import find_all_paths, get_mlti_dim_node_attrs | |||||
| from gklearn.kernels import GraphKernel | |||||
| class Treelet(GraphKernel): | |||||
| def __init__(self, **kwargs): | |||||
| GraphKernel.__init__(self) | |||||
| self.__node_labels = kwargs.get('node_labels', []) | |||||
| self.__edge_labels = kwargs.get('edge_labels', []) | |||||
| self.__sub_kernel = kwargs.get('sub_kernel', None) | |||||
| self.__ds_infos = kwargs.get('ds_infos', {}) | |||||
| if self.__sub_kernel is None: | |||||
| raise Exception('Sub kernel not set.') | |||||
| def _compute_gm_series(self): | |||||
| self.__add_dummy_labels(self._graphs) | |||||
| # get all canonical keys of all graphs before calculating kernels to save | |||||
| # time, but this may cost a lot of memory for large dataset. | |||||
| canonkeys = [] | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(self._graphs, desc='getting canonkeys', file=sys.stdout) | |||||
| else: | |||||
| iterator = self._graphs | |||||
| for g in iterator: | |||||
| canonkeys.append(self.__get_canonkeys(g)) | |||||
| # compute Gram matrix. | |||||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||||
| from itertools import combinations_with_replacement | |||||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) | |||||
| else: | |||||
| iterator = itr | |||||
| for i, j in iterator: | |||||
| kernel = self.__kernel_do(canonkeys[i], canonkeys[j]) | |||||
| gram_matrix[i][j] = kernel | |||||
| gram_matrix[j][i] = kernel # @todo: no directed graph considered? | |||||
| return gram_matrix | |||||
| def _compute_gm_imap_unordered(self): | |||||
| self.__add_dummy_labels(self._graphs) | |||||
| # get all canonical keys of all graphs before calculating kernels to save | |||||
| # time, but this may cost a lot of memory for large dataset. | |||||
| pool = Pool(self._n_jobs) | |||||
| itr = zip(self._graphs, range(0, len(self._graphs))) | |||||
| if len(self._graphs) < 100 * self._n_jobs: | |||||
| chunksize = int(len(self._graphs) / self._n_jobs) + 1 | |||||
| else: | |||||
| chunksize = 100 | |||||
| canonkeys = [[] for _ in range(len(self._graphs))] | |||||
| get_fun = self._wrapper_get_canonkeys | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(pool.imap_unordered(get_fun, itr, chunksize), | |||||
| desc='getting canonkeys', file=sys.stdout) | |||||
| else: | |||||
| iterator = pool.imap_unordered(get_fun, itr, chunksize) | |||||
| for i, ck in iterator: | |||||
| canonkeys[i] = ck | |||||
| pool.close() | |||||
| pool.join() | |||||
| # compute Gram matrix. | |||||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||||
| def init_worker(canonkeys_toshare): | |||||
| global G_canonkeys | |||||
| G_canonkeys = canonkeys_toshare | |||||
| do_fun = self._wrapper_kernel_do | |||||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
| glbv=(canonkeys,), n_jobs=self._n_jobs, verbose=self._verbose) | |||||
| return gram_matrix | |||||
| def _compute_kernel_list_series(self, g1, g_list): | |||||
| self.__add_dummy_labels(g_list + [g1]) | |||||
| # get all canonical keys of all graphs before calculating kernels to save | |||||
| # time, but this may cost a lot of memory for large dataset. | |||||
| canonkeys_1 = self.__get_canonkeys(g1) | |||||
| canonkeys_list = [] | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(g_list, desc='getting canonkeys', file=sys.stdout) | |||||
| else: | |||||
| iterator = g_list | |||||
| for g in iterator: | |||||
| canonkeys_list.append(self.__get_canonkeys(g)) | |||||
| # compute kernel list. | |||||
| kernel_list = [None] * len(g_list) | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) | |||||
| else: | |||||
| iterator = range(len(g_list)) | |||||
| for i in iterator: | |||||
| kernel = self.__kernel_do(canonkeys_1, canonkeys_list[i]) | |||||
| kernel_list[i] = kernel | |||||
| return kernel_list | |||||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||||
| self.__add_dummy_labels(g_list + [g1]) | |||||
| # get all canonical keys of all graphs before calculating kernels to save | |||||
| # time, but this may cost a lot of memory for large dataset. | |||||
| canonkeys_1 = self.__get_canonkeys(g1) | |||||
| canonkeys_list = [[] for _ in range(len(g_list))] | |||||
| pool = Pool(self._n_jobs) | |||||
| itr = zip(g_list, range(0, len(g_list))) | |||||
| if len(g_list) < 100 * self._n_jobs: | |||||
| chunksize = int(len(g_list) / self._n_jobs) + 1 | |||||
| else: | |||||
| chunksize = 100 | |||||
| get_fun = self._wrapper_get_canonkeys | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(pool.imap_unordered(get_fun, itr, chunksize), | |||||
| desc='getting canonkeys', file=sys.stdout) | |||||
| else: | |||||
| iterator = pool.imap_unordered(get_fun, itr, chunksize) | |||||
| for i, ck in iterator: | |||||
| canonkeys_list[i] = ck | |||||
| pool.close() | |||||
| pool.join() | |||||
| # compute kernel list. | |||||
| kernel_list = [None] * len(g_list) | |||||
| def init_worker(ck_1_toshare, ck_list_toshare): | |||||
| global G_ck_1, G_ck_list | |||||
| G_ck_1 = ck_1_toshare | |||||
| G_ck_list = ck_list_toshare | |||||
| do_fun = self._wrapper_kernel_list_do | |||||
| def func_assign(result, var_to_assign): | |||||
| var_to_assign[result[0]] = result[1] | |||||
| itr = range(len(g_list)) | |||||
| len_itr = len(g_list) | |||||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||||
| init_worker=init_worker, glbv=(canonkeys_1, canonkeys_list), method='imap_unordered', | |||||
| n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) | |||||
| return kernel_list | |||||
| def _wrapper_kernel_list_do(self, itr): | |||||
| return itr, self.__kernel_do(G_ck_1, G_ck_list[itr]) | |||||
| def _compute_single_kernel_series(self, g1, g2): | |||||
| self.__add_dummy_labels([g1] + [g2]) | |||||
| canonkeys_1 = self.__get_canonkeys(g1) | |||||
| canonkeys_2 = self.__get_canonkeys(g2) | |||||
| kernel = self.__kernel_do(canonkeys_1, canonkeys_2) | |||||
| return kernel | |||||
| def __kernel_do(self, canonkey1, canonkey2): | |||||
| """Calculate treelet graph kernel between 2 graphs. | |||||
| Parameters | |||||
| ---------- | |||||
| canonkey1, canonkey2 : list | |||||
| List of canonical keys in 2 graphs, where each key is represented by a string. | |||||
| Return | |||||
| ------ | |||||
| kernel : float | |||||
| Treelet kernel between 2 graphs. | |||||
| """ | |||||
| keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs | |||||
| vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys]) | |||||
| vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | |||||
| kernel = self.__sub_kernel(vector1, vector2) | |||||
| return kernel | |||||
| def _wrapper_kernel_do(self, itr): | |||||
| i = itr[0] | |||||
| j = itr[1] | |||||
| return i, j, self.__kernel_do(G_canonkeys[i], G_canonkeys[j]) | |||||
| def __get_canonkeys(self, G): | |||||
| """Generate canonical keys of all treelets in a graph. | |||||
| Parameters | |||||
| ---------- | |||||
| G : NetworkX graphs | |||||
| The graph in which keys are generated. | |||||
| Return | |||||
| ------ | |||||
| canonkey/canonkey_l : dict | |||||
| For unlabeled graphs, canonkey is a dictionary which records amount of | |||||
| every tree pattern. For labeled graphs, canonkey_l is one which keeps | |||||
| track of amount of every treelet. | |||||
| """ | |||||
| patterns = {} # a dictionary which consists of lists of patterns for all graphlet. | |||||
| canonkey = {} # canonical key, a dictionary which records amount of every tree pattern. | |||||
| ### structural analysis ### | |||||
| ### In this section, a list of patterns is generated for each graphlet, | |||||
| ### where every pattern is represented by nodes ordered by Morgan's | |||||
| ### extended labeling. | |||||
| # linear patterns | |||||
| patterns['0'] = list(G.nodes()) | |||||
| canonkey['0'] = nx.number_of_nodes(G) | |||||
| for i in range(1, 6): # for i in range(1, 6): | |||||
| patterns[str(i)] = find_all_paths(G, i, self.__ds_infos['directed']) | |||||
| canonkey[str(i)] = len(patterns[str(i)]) | |||||
| # n-star patterns | |||||
| patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3] | |||||
| patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4] | |||||
| patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5] | |||||
| # n-star patterns | |||||
| canonkey['6'] = len(patterns['3star']) | |||||
| canonkey['8'] = len(patterns['4star']) | |||||
| canonkey['d'] = len(patterns['5star']) | |||||
| # pattern 7 | |||||
| patterns['7'] = [] # the 1st line of Table 1 in Ref [1] | |||||
| for pattern in patterns['3star']: | |||||
| for i in range(1, len(pattern)): # for each neighbor of node 0 | |||||
| if G.degree(pattern[i]) >= 2: | |||||
| pattern_t = pattern[:] | |||||
| # set the node with degree >= 2 as the 4th node | |||||
| pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] | |||||
| for neighborx in G[pattern[i]]: | |||||
| if neighborx != pattern[0]: | |||||
| new_pattern = pattern_t + [neighborx] | |||||
| patterns['7'].append(new_pattern) | |||||
| canonkey['7'] = len(patterns['7']) | |||||
| # pattern 11 | |||||
| patterns['11'] = [] # the 4th line of Table 1 in Ref [1] | |||||
| for pattern in patterns['4star']: | |||||
| for i in range(1, len(pattern)): | |||||
| if G.degree(pattern[i]) >= 2: | |||||
| pattern_t = pattern[:] | |||||
| pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i] | |||||
| for neighborx in G[pattern[i]]: | |||||
| if neighborx != pattern[0]: | |||||
| new_pattern = pattern_t + [neighborx] | |||||
| patterns['11'].append(new_pattern) | |||||
| canonkey['b'] = len(patterns['11']) | |||||
| # pattern 12 | |||||
| patterns['12'] = [] # the 5th line of Table 1 in Ref [1] | |||||
| rootlist = [] # a list of root nodes, whose extended labels are 3 | |||||
| for pattern in patterns['3star']: | |||||
| if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes | |||||
| rootlist.append(pattern[0]) | |||||
| for i in range(1, len(pattern)): | |||||
| if G.degree(pattern[i]) >= 3: | |||||
| rootlist.append(pattern[i]) | |||||
| pattern_t = pattern[:] | |||||
| pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] | |||||
| for neighborx1 in G[pattern[i]]: | |||||
| if neighborx1 != pattern[0]: | |||||
| for neighborx2 in G[pattern[i]]: | |||||
| if neighborx1 > neighborx2 and neighborx2 != pattern[0]: | |||||
| new_pattern = pattern_t + [neighborx1] + [neighborx2] | |||||
| # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ] | |||||
| patterns['12'].append(new_pattern) | |||||
| canonkey['c'] = int(len(patterns['12']) / 2) | |||||
| # pattern 9 | |||||
| patterns['9'] = [] # the 2nd line of Table 1 in Ref [1] | |||||
| for pattern in patterns['3star']: | |||||
| for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \ | |||||
| for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2]: | |||||
| pattern_t = pattern[:] | |||||
| # move nodes with extended labels 4 to specific position to correspond to their children | |||||
| pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])] | |||||
| pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])] | |||||
| for neighborx1 in G[pairs[0]]: | |||||
| if neighborx1 != pattern[0]: | |||||
| for neighborx2 in G[pairs[1]]: | |||||
| if neighborx2 != pattern[0]: | |||||
| new_pattern = pattern_t + [neighborx1] + [neighborx2] | |||||
| patterns['9'].append(new_pattern) | |||||
| canonkey['9'] = len(patterns['9']) | |||||
| # pattern 10 | |||||
| patterns['10'] = [] # the 3rd line of Table 1 in Ref [1] | |||||
| for pattern in patterns['3star']: | |||||
| for i in range(1, len(pattern)): | |||||
| if G.degree(pattern[i]) >= 2: | |||||
| for neighborx in G[pattern[i]]: | |||||
| if neighborx != pattern[0] and G.degree(neighborx) >= 2: | |||||
| pattern_t = pattern[:] | |||||
| pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] | |||||
| new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ] | |||||
| patterns['10'].extend(new_patterns) | |||||
| canonkey['a'] = len(patterns['10']) | |||||
| ### labeling information ### | |||||
| ### In this section, a list of canonical keys is generated for every | |||||
| ### pattern obtained in the structural analysis section above, which is a | |||||
| ### string corresponding to a unique treelet. A dictionary is built to keep | |||||
| ### track of the amount of every treelet. | |||||
| if len(self.__node_labels) > 0 or len(self.__edge_labels) > 0: | |||||
| canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet. | |||||
| # linear patterns | |||||
| canonkey_t = Counter(get_mlti_dim_node_attrs(G, self.__node_labels)) | |||||
| for key in canonkey_t: | |||||
| canonkey_l[('0', key)] = canonkey_t[key] | |||||
| for i in range(1, 6): # for i in range(1, 6): | |||||
| treelet = [] | |||||
| for pattern in patterns[str(i)]: | |||||
| canonlist = [] | |||||
| for idx, node in enumerate(pattern[:-1]): | |||||
| canonlist.append(tuple(G.nodes[node][nl] for nl in self.__node_labels)) | |||||
| canonlist.append(tuple(G[node][pattern[idx+1]][el] for el in self.__edge_labels)) | |||||
| canonlist.append(tuple(G.nodes[pattern[-1]][nl] for nl in self.__node_labels)) | |||||
| canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1] | |||||
| treelet.append(tuple([str(i)] + canonkey_t)) | |||||
| canonkey_l.update(Counter(treelet)) | |||||
| # n-star patterns | |||||
| for i in range(3, 6): | |||||
| treelet = [] | |||||
| for pattern in patterns[str(i) + 'star']: | |||||
| canonlist = [] | |||||
| for leaf in pattern[1:]: | |||||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||||
| elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels) | |||||
| canonlist.append(tuple((nlabels, elabels))) | |||||
| canonlist.sort() | |||||
| canonlist = list(chain.from_iterable(canonlist)) | |||||
| canonkey_t = tuple(['d' if i == 5 else str(i * 2)] + | |||||
| [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] | |||||
| + canonlist) | |||||
| treelet.append(canonkey_t) | |||||
| canonkey_l.update(Counter(treelet)) | |||||
| # pattern 7 | |||||
| treelet = [] | |||||
| for pattern in patterns['7']: | |||||
| canonlist = [] | |||||
| for leaf in pattern[1:3]: | |||||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||||
| elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels) | |||||
| canonlist.append(tuple((nlabels, elabels))) | |||||
| canonlist.sort() | |||||
| canonlist = list(chain.from_iterable(canonlist)) | |||||
| canonkey_t = tuple(['7'] | |||||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] + canonlist | |||||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)] | |||||
| + [tuple(G[pattern[3]][pattern[0]][el] for el in self.__edge_labels)] | |||||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels)] | |||||
| + [tuple(G[pattern[4]][pattern[3]][el] for el in self.__edge_labels)]) | |||||
| treelet.append(canonkey_t) | |||||
| canonkey_l.update(Counter(treelet)) | |||||
| # pattern 11 | |||||
| treelet = [] | |||||
| for pattern in patterns['11']: | |||||
| canonlist = [] | |||||
| for leaf in pattern[1:4]: | |||||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||||
| elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels) | |||||
| canonlist.append(tuple((nlabels, elabels))) | |||||
| canonlist.sort() | |||||
| canonlist = list(chain.from_iterable(canonlist)) | |||||
| canonkey_t = tuple(['b'] | |||||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] + canonlist | |||||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels)] | |||||
| + [tuple(G[pattern[4]][pattern[0]][el] for el in self.__edge_labels)] | |||||
| + [tuple(G.nodes[pattern[5]][nl] for nl in self.__node_labels)] | |||||
| + [tuple(G[pattern[5]][pattern[4]][el] for el in self.__edge_labels)]) | |||||
| treelet.append(canonkey_t) | |||||
| canonkey_l.update(Counter(treelet)) | |||||
| # pattern 10 | |||||
| treelet = [] | |||||
| for pattern in patterns['10']: | |||||
| canonkey4 = [tuple(G.nodes[pattern[5]][nl] for nl in self.__node_labels), | |||||
| tuple(G[pattern[5]][pattern[4]][el] for el in self.__edge_labels)] | |||||
| canonlist = [] | |||||
| for leaf in pattern[1:3]: | |||||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||||
| elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels) | |||||
| canonlist.append(tuple((nlabels, elabels))) | |||||
| canonlist.sort() | |||||
| canonkey0 = list(chain.from_iterable(canonlist)) | |||||
| canonkey_t = tuple(['a'] | |||||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)] | |||||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels)] | |||||
| + [tuple(G[pattern[4]][pattern[3]][el] for el in self.__edge_labels)] | |||||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] | |||||
| + [tuple(G[pattern[0]][pattern[3]][el] for el in self.__edge_labels)] | |||||
| + canonkey4 + canonkey0) | |||||
| treelet.append(canonkey_t) | |||||
| canonkey_l.update(Counter(treelet)) | |||||
| # pattern 12 | |||||
| treelet = [] | |||||
| for pattern in patterns['12']: | |||||
| canonlist0 = [] | |||||
| for leaf in pattern[1:3]: | |||||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||||
| elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels) | |||||
| canonlist0.append(tuple((nlabels, elabels))) | |||||
| canonlist0.sort() | |||||
| canonlist0 = list(chain.from_iterable(canonlist0)) | |||||
| canonlist3 = [] | |||||
| for leaf in pattern[4:6]: | |||||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||||
| elabels = tuple(G[leaf][pattern[3]][el] for el in self.__edge_labels) | |||||
| canonlist3.append(tuple((nlabels, elabels))) | |||||
| canonlist3.sort() | |||||
| canonlist3 = list(chain.from_iterable(canonlist3)) | |||||
| # 2 possible key can be generated from 2 nodes with extended label 3, | |||||
| # select the one with lower lexicographic order. | |||||
| canonkey_t1 = tuple(['c'] | |||||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] + canonlist0 | |||||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)] | |||||
| + [tuple(G[pattern[3]][pattern[0]][el] for el in self.__edge_labels)] | |||||
| + canonlist3) | |||||
| canonkey_t2 = tuple(['c'] | |||||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)] + canonlist3 | |||||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] | |||||
| + [tuple(G[pattern[0]][pattern[3]][el] for el in self.__edge_labels)] | |||||
| + canonlist0) | |||||
| treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2) | |||||
| canonkey_l.update(Counter(treelet)) | |||||
| # pattern 9 | |||||
| treelet = [] | |||||
| for pattern in patterns['9']: | |||||
| canonkey2 = [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels), | |||||
| tuple(G[pattern[4]][pattern[2]][el] for el in self.__edge_labels)] | |||||
| canonkey3 = [tuple(G.nodes[pattern[5]][nl] for nl in self.__node_labels), | |||||
| tuple(G[pattern[5]][pattern[3]][el] for el in self.__edge_labels)] | |||||
| prekey2 = [tuple(G.nodes[pattern[2]][nl] for nl in self.__node_labels), | |||||
| tuple(G[pattern[2]][pattern[0]][el] for el in self.__edge_labels)] | |||||
| prekey3 = [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels), | |||||
| tuple(G[pattern[3]][pattern[0]][el] for el in self.__edge_labels)] | |||||
| if prekey2 + canonkey2 < prekey3 + canonkey3: | |||||
| canonkey_t = [tuple(G.nodes[pattern[1]][nl] for nl in self.__node_labels)] \ | |||||
| + [tuple(G[pattern[1]][pattern[0]][el] for el in self.__edge_labels)] \ | |||||
| + prekey2 + prekey3 + canonkey2 + canonkey3 | |||||
| else: | |||||
| canonkey_t = [tuple(G.nodes[pattern[1]][nl] for nl in self.__node_labels)] \ | |||||
| + [tuple(G[pattern[1]][pattern[0]][el] for el in self.__edge_labels)] \ | |||||
| + prekey3 + prekey2 + canonkey3 + canonkey2 | |||||
| treelet.append(tuple(['9'] | |||||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] | |||||
| + canonkey_t)) | |||||
| canonkey_l.update(Counter(treelet)) | |||||
| return canonkey_l | |||||
| return canonkey | |||||
| def _wrapper_get_canonkeys(self, itr_item): | |||||
| g = itr_item[0] | |||||
| i = itr_item[1] | |||||
| return i, self.__get_canonkeys(g) | |||||
| def __add_dummy_labels(self, Gn): | |||||
| if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY): | |||||
| for i in range(len(Gn)): | |||||
| nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||||
| self.__node_labels = [SpecialLabel.DUMMY] | |||||
| if len(self.__edge_labels) == 0 or (len(self.__edge_labels) == 1 and self.__edge_labels[0] == SpecialLabel.DUMMY): | |||||
| for i in range(len(Gn)): | |||||
| nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||||
| self.__edge_labels = [SpecialLabel.DUMMY] | |||||