| @@ -0,0 +1,245 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Wed Aug 19 17:24:46 2020 | |||
| @author: ljia | |||
| @references: | |||
| [1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||
| """ | |||
| import sys | |||
| from tqdm import tqdm | |||
| import numpy as np | |||
| import networkx as nx | |||
| from control import dlyap | |||
| from gklearn.utils.parallel import parallel_gm, parallel_me | |||
| from gklearn.kernels import RandomWalk | |||
| class SylvesterEquation(RandomWalk): | |||
| def __init__(self, **kwargs): | |||
| RandomWalk.__init__(self, **kwargs) | |||
| def _compute_gm_series(self): | |||
| self._check_edge_weight(self._graphs) | |||
| self._check_graphs(self._graphs) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored.') | |||
| lmda = self._weight | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| if self._q == None: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A_wave_list actually contains the transposes of the adjacency matrices. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] | |||
| # # normalized adjacency matrices | |||
| # A_wave_list = [] | |||
| # for G in tqdm(Gn, desc='compute adjacency matrices', file=sys.stdout): | |||
| # A_tilde = nx.adjacency_matrix(G, eweight).todense().transpose() | |||
| # norm = A_tilde.sum(axis=0) | |||
| # norm[norm == 0] = 1 | |||
| # A_wave_list.append(A_tilde / norm) | |||
| if self._p == None: # p is uniform distribution as default. | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| for i, j in iterator: | |||
| kernel = self.__kernel_do(A_wave_list[i], A_wave_list[j], lmda) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self._check_edge_weight(self._graphs) | |||
| self._check_graphs(self._graphs) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored.') | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| if self._q == None: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A_wave_list actually contains the transposes of the adjacency matrices. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? | |||
| if self._p == None: # p is uniform distribution as default. | |||
| def init_worker(A_wave_list_toshare): | |||
| global G_A_wave_list | |||
| G_A_wave_list = A_wave_list_toshare | |||
| do_fun = self._wrapper_kernel_do | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(A_wave_list,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self._check_edge_weight(g_list + [g1]) | |||
| self._check_graphs(g_list + [g1]) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored.') | |||
| lmda = self._weight | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._q == None: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A_wave_list actually contains the transposes of the adjacency matrices. | |||
| A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='compute adjacency matrices', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] | |||
| if self._p == None: # p is uniform distribution as default. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| for i in iterator: | |||
| kernel = self.__kernel_do(A_wave_1, A_wave_list[i], lmda) | |||
| kernel_list[i] = kernel | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self._check_edge_weight(g_list + [g1]) | |||
| self._check_graphs(g_list + [g1]) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored.') | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._q == None: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A_wave_list actually contains the transposes of the adjacency matrices. | |||
| A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='compute adjacency matrices', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? | |||
| if self._p == None: # p is uniform distribution as default. | |||
| def init_worker(A_wave_1_toshare, A_wave_list_toshare): | |||
| global G_A_wave_1, G_A_wave_list | |||
| G_A_wave_1 = A_wave_1_toshare | |||
| G_A_wave_list = A_wave_list_toshare | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered', | |||
| n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self._kernel_do(G_A_wave_1, G_A_wave_list[itr], self._weight) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self._check_edge_weight([g1] + [g2]) | |||
| self._check_graphs([g1] + [g2]) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored.') | |||
| lmda = self._weight | |||
| if self._q == None: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A_wave_list actually contains the transposes of the adjacency matrices. | |||
| A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
| A_wave_2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose() | |||
| if self._p == None: # p is uniform distribution as default. | |||
| kernel = self.__kernel_do(A_wave_1, A_wave_2, lmda) | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return kernel | |||
| def __kernel_do(self, A_wave1, A_wave2, lmda): | |||
| S = lmda * A_wave2 | |||
| T_t = A_wave1 | |||
| # use uniform distribution if there is no prior knowledge. | |||
| nb_pd = len(A_wave1) * len(A_wave2) | |||
| p_times_uni = 1 / nb_pd | |||
| M0 = np.full((len(A_wave2), len(A_wave1)), p_times_uni) | |||
| X = dlyap(S, T_t, M0) | |||
| X = np.reshape(X, (-1, 1), order='F') | |||
| # use uniform distribution if there is no prior knowledge. | |||
| q_times = np.full((1, nb_pd), p_times_uni) | |||
| return np.dot(q_times, X) | |||
| def _wrapper_kernel_do(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self.__kernel_do(G_A_wave_list[i], G_A_wave_list[j], self._weight) | |||