| @@ -0,0 +1,262 @@ | |||
| #!/usr/bin/env python | |||
| import os | |||
| import sys | |||
| from svm import * | |||
| from svm import __all__ as svm_all | |||
| __all__ = ['evaluations', 'svm_load_model', 'svm_predict', 'svm_read_problem', | |||
| 'svm_save_model', 'svm_train'] + svm_all | |||
| sys.path = [os.path.dirname(os.path.abspath(__file__))] + sys.path | |||
| def svm_read_problem(data_file_name): | |||
| """ | |||
| svm_read_problem(data_file_name) -> [y, x] | |||
| Read LIBSVM-format data from data_file_name and return labels y | |||
| and data instances x. | |||
| """ | |||
| prob_y = [] | |||
| prob_x = [] | |||
| for line in open(data_file_name): | |||
| line = line.split(None, 1) | |||
| # In case an instance with all zero features | |||
| if len(line) == 1: line += [''] | |||
| label, features = line | |||
| xi = {} | |||
| for e in features.split(): | |||
| ind, val = e.split(":") | |||
| xi[int(ind)] = float(val) | |||
| prob_y += [float(label)] | |||
| prob_x += [xi] | |||
| return (prob_y, prob_x) | |||
| def svm_load_model(model_file_name): | |||
| """ | |||
| svm_load_model(model_file_name) -> model | |||
| Load a LIBSVM model from model_file_name and return. | |||
| """ | |||
| model = libsvm.svm_load_model(model_file_name.encode()) | |||
| if not model: | |||
| print("can't open model file %s" % model_file_name) | |||
| return None | |||
| model = toPyModel(model) | |||
| return model | |||
| def svm_save_model(model_file_name, model): | |||
| """ | |||
| svm_save_model(model_file_name, model) -> None | |||
| Save a LIBSVM model to the file model_file_name. | |||
| """ | |||
| libsvm.svm_save_model(model_file_name.encode(), model) | |||
| def evaluations(ty, pv): | |||
| """ | |||
| evaluations(ty, pv) -> (ACC, MSE, SCC) | |||
| Calculate accuracy, mean squared error and squared correlation coefficient | |||
| using the true values (ty) and predicted values (pv). | |||
| """ | |||
| if len(ty) != len(pv): | |||
| raise ValueError("len(ty) must equal to len(pv)") | |||
| total_correct = total_error = 0 | |||
| sumv = sumy = sumvv = sumyy = sumvy = 0 | |||
| for v, y in zip(pv, ty): | |||
| if y == v: | |||
| total_correct += 1 | |||
| total_error += (v-y)*(v-y) | |||
| sumv += v | |||
| sumy += y | |||
| sumvv += v*v | |||
| sumyy += y*y | |||
| sumvy += v*y | |||
| l = len(ty) | |||
| ACC = 100.0*total_correct/l | |||
| MSE = total_error/l | |||
| try: | |||
| SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy)) | |||
| except: | |||
| SCC = float('nan') | |||
| return (ACC, MSE, SCC) | |||
| def svm_train(arg1, arg2=None, arg3=None): | |||
| """ | |||
| svm_train(y, x [, options]) -> model | ACC | MSE | |||
| svm_train(prob [, options]) -> model | ACC | MSE | |||
| svm_train(prob, param) -> model | ACC| MSE | |||
| Train an SVM model from data (y, x) or an svm_problem prob using | |||
| 'options' or an svm_parameter param. | |||
| If '-v' is specified in 'options' (i.e., cross validation) | |||
| either accuracy (ACC) or mean-squared error (MSE) is returned. | |||
| options: | |||
| -s svm_type : set type of SVM (default 0) | |||
| 0 -- C-SVC (multi-class classification) | |||
| 1 -- nu-SVC (multi-class classification) | |||
| 2 -- one-class SVM | |||
| 3 -- epsilon-SVR (regression) | |||
| 4 -- nu-SVR (regression) | |||
| -t kernel_type : set type of kernel function (default 2) | |||
| 0 -- linear: u'*v | |||
| 1 -- polynomial: (gamma*u'*v + coef0)^degree | |||
| 2 -- radial basis function: exp(-gamma*|u-v|^2) | |||
| 3 -- sigmoid: tanh(gamma*u'*v + coef0) | |||
| 4 -- precomputed kernel (kernel values in training_set_file) | |||
| -d degree : set degree in kernel function (default 3) | |||
| -g gamma : set gamma in kernel function (default 1/num_features) | |||
| -r coef0 : set coef0 in kernel function (default 0) | |||
| -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) | |||
| -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) | |||
| -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) | |||
| -m cachesize : set cache memory size in MB (default 100) | |||
| -e epsilon : set tolerance of termination criterion (default 0.001) | |||
| -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1) | |||
| -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0) | |||
| -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1) | |||
| -v n: n-fold cross validation mode | |||
| -q : quiet mode (no outputs) | |||
| """ | |||
| prob, param = None, None | |||
| if isinstance(arg1, (list, tuple)): | |||
| assert isinstance(arg2, (list, tuple)) | |||
| y, x, options = arg1, arg2, arg3 | |||
| param = svm_parameter(options) | |||
| prob = svm_problem(y, x, isKernel=(param.kernel_type == PRECOMPUTED)) | |||
| elif isinstance(arg1, svm_problem): | |||
| prob = arg1 | |||
| if isinstance(arg2, svm_parameter): | |||
| param = arg2 | |||
| else: | |||
| param = svm_parameter(arg2) | |||
| if prob == None or param == None: | |||
| raise TypeError("Wrong types for the arguments") | |||
| if param.kernel_type == PRECOMPUTED: | |||
| for xi in prob.x_space: | |||
| idx, val = xi[0].index, xi[0].value | |||
| if xi[0].index != 0: | |||
| raise ValueError('Wrong input format: first column must be 0:sample_serial_number') | |||
| if val <= 0 or val > prob.n: | |||
| raise ValueError('Wrong input format: sample_serial_number out of range') | |||
| if param.gamma == 0 and prob.n > 0: | |||
| param.gamma = 1.0 / prob.n | |||
| libsvm.svm_set_print_string_function(param.print_func) | |||
| err_msg = libsvm.svm_check_parameter(prob, param) | |||
| if err_msg: | |||
| raise ValueError('Error: %s' % err_msg) | |||
| if param.cross_validation: | |||
| l, nr_fold = prob.l, param.nr_fold | |||
| target = (c_double * l)() | |||
| libsvm.svm_cross_validation(prob, param, nr_fold, target) | |||
| ACC, MSE, SCC = evaluations(prob.y[:l], target[:l]) | |||
| if param.svm_type in [EPSILON_SVR, NU_SVR]: | |||
| print("Cross Validation Mean squared error = %g" % MSE) | |||
| print("Cross Validation Squared correlation coefficient = %g" % SCC) | |||
| return MSE | |||
| else: | |||
| print("Cross Validation Accuracy = %g%%" % ACC) | |||
| return ACC | |||
| else: | |||
| m = libsvm.svm_train(prob, param) | |||
| m = toPyModel(m) | |||
| # If prob is destroyed, data including SVs pointed by m can remain. | |||
| m.x_space = prob.x_space | |||
| return m | |||
| def svm_predict(y, x, m, options=""): | |||
| """ | |||
| svm_predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals) | |||
| Predict data (y, x) with the SVM model m. | |||
| options: | |||
| -b probability_estimates: whether to predict probability estimates, | |||
| 0 or 1 (default 0); for one-class SVM only 0 is supported. | |||
| -q : quiet mode (no outputs). | |||
| The return tuple contains | |||
| p_labels: a list of predicted labels | |||
| p_acc: a tuple including accuracy (for classification), mean-squared | |||
| error, and squared correlation coefficient (for regression). | |||
| p_vals: a list of decision values or probability estimates (if '-b 1' | |||
| is specified). If k is the number of classes, for decision values, | |||
| each element includes results of predicting k(k-1)/2 binary-class | |||
| SVMs. For probabilities, each element contains k values indicating | |||
| the probability that the testing instance is in each class. | |||
| Note that the order of classes here is the same as 'model.label' | |||
| field in the model structure. | |||
| """ | |||
| def info(s): | |||
| print(s) | |||
| predict_probability = 0 | |||
| argv = options.split() | |||
| i = 0 | |||
| while i < len(argv): | |||
| if argv[i] == '-b': | |||
| i += 1 | |||
| predict_probability = int(argv[i]) | |||
| elif argv[i] == '-q': | |||
| info = print_null | |||
| else: | |||
| raise ValueError("Wrong options") | |||
| i+=1 | |||
| svm_type = m.get_svm_type() | |||
| is_prob_model = m.is_probability_model() | |||
| nr_class = m.get_nr_class() | |||
| pred_labels = [] | |||
| pred_values = [] | |||
| if predict_probability: | |||
| if not is_prob_model: | |||
| raise ValueError("Model does not support probabiliy estimates") | |||
| if svm_type in [NU_SVR, EPSILON_SVR]: | |||
| info("Prob. model for test data: target value = predicted value + z,\n" | |||
| "z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability()); | |||
| nr_class = 0 | |||
| prob_estimates = (c_double * nr_class)() | |||
| for xi in x: | |||
| xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED)) | |||
| label = libsvm.svm_predict_probability(m, xi, prob_estimates) | |||
| values = prob_estimates[:nr_class] | |||
| pred_labels += [label] | |||
| pred_values += [values] | |||
| else: | |||
| if is_prob_model: | |||
| info("Model supports probability estimates, but disabled in predicton.") | |||
| if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC): | |||
| nr_classifier = 1 | |||
| else: | |||
| nr_classifier = nr_class*(nr_class-1)//2 | |||
| dec_values = (c_double * nr_classifier)() | |||
| for xi in x: | |||
| xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED)) | |||
| label = libsvm.svm_predict_values(m, xi, dec_values) | |||
| if(nr_class == 1): | |||
| values = [1] | |||
| else: | |||
| values = dec_values[:nr_classifier] | |||
| pred_labels += [label] | |||
| pred_values += [values] | |||
| ACC, MSE, SCC = evaluations(y, pred_labels) | |||
| l = len(y) | |||
| if svm_type in [EPSILON_SVR, NU_SVR]: | |||
| info("Mean squared error = %g (regression)" % MSE) | |||
| info("Squared correlation coefficient = %g (regression)" % SCC) | |||
| else: | |||
| info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(l*ACC/100), l)) | |||
| return pred_labels, (ACC, MSE, SCC), pred_values | |||