| @@ -0,0 +1,262 @@ | |||||
| #!/usr/bin/env python | |||||
| import os | |||||
| import sys | |||||
| from svm import * | |||||
| from svm import __all__ as svm_all | |||||
| __all__ = ['evaluations', 'svm_load_model', 'svm_predict', 'svm_read_problem', | |||||
| 'svm_save_model', 'svm_train'] + svm_all | |||||
| sys.path = [os.path.dirname(os.path.abspath(__file__))] + sys.path | |||||
| def svm_read_problem(data_file_name): | |||||
| """ | |||||
| svm_read_problem(data_file_name) -> [y, x] | |||||
| Read LIBSVM-format data from data_file_name and return labels y | |||||
| and data instances x. | |||||
| """ | |||||
| prob_y = [] | |||||
| prob_x = [] | |||||
| for line in open(data_file_name): | |||||
| line = line.split(None, 1) | |||||
| # In case an instance with all zero features | |||||
| if len(line) == 1: line += [''] | |||||
| label, features = line | |||||
| xi = {} | |||||
| for e in features.split(): | |||||
| ind, val = e.split(":") | |||||
| xi[int(ind)] = float(val) | |||||
| prob_y += [float(label)] | |||||
| prob_x += [xi] | |||||
| return (prob_y, prob_x) | |||||
| def svm_load_model(model_file_name): | |||||
| """ | |||||
| svm_load_model(model_file_name) -> model | |||||
| Load a LIBSVM model from model_file_name and return. | |||||
| """ | |||||
| model = libsvm.svm_load_model(model_file_name.encode()) | |||||
| if not model: | |||||
| print("can't open model file %s" % model_file_name) | |||||
| return None | |||||
| model = toPyModel(model) | |||||
| return model | |||||
| def svm_save_model(model_file_name, model): | |||||
| """ | |||||
| svm_save_model(model_file_name, model) -> None | |||||
| Save a LIBSVM model to the file model_file_name. | |||||
| """ | |||||
| libsvm.svm_save_model(model_file_name.encode(), model) | |||||
| def evaluations(ty, pv): | |||||
| """ | |||||
| evaluations(ty, pv) -> (ACC, MSE, SCC) | |||||
| Calculate accuracy, mean squared error and squared correlation coefficient | |||||
| using the true values (ty) and predicted values (pv). | |||||
| """ | |||||
| if len(ty) != len(pv): | |||||
| raise ValueError("len(ty) must equal to len(pv)") | |||||
| total_correct = total_error = 0 | |||||
| sumv = sumy = sumvv = sumyy = sumvy = 0 | |||||
| for v, y in zip(pv, ty): | |||||
| if y == v: | |||||
| total_correct += 1 | |||||
| total_error += (v-y)*(v-y) | |||||
| sumv += v | |||||
| sumy += y | |||||
| sumvv += v*v | |||||
| sumyy += y*y | |||||
| sumvy += v*y | |||||
| l = len(ty) | |||||
| ACC = 100.0*total_correct/l | |||||
| MSE = total_error/l | |||||
| try: | |||||
| SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy)) | |||||
| except: | |||||
| SCC = float('nan') | |||||
| return (ACC, MSE, SCC) | |||||
| def svm_train(arg1, arg2=None, arg3=None): | |||||
| """ | |||||
| svm_train(y, x [, options]) -> model | ACC | MSE | |||||
| svm_train(prob [, options]) -> model | ACC | MSE | |||||
| svm_train(prob, param) -> model | ACC| MSE | |||||
| Train an SVM model from data (y, x) or an svm_problem prob using | |||||
| 'options' or an svm_parameter param. | |||||
| If '-v' is specified in 'options' (i.e., cross validation) | |||||
| either accuracy (ACC) or mean-squared error (MSE) is returned. | |||||
| options: | |||||
| -s svm_type : set type of SVM (default 0) | |||||
| 0 -- C-SVC (multi-class classification) | |||||
| 1 -- nu-SVC (multi-class classification) | |||||
| 2 -- one-class SVM | |||||
| 3 -- epsilon-SVR (regression) | |||||
| 4 -- nu-SVR (regression) | |||||
| -t kernel_type : set type of kernel function (default 2) | |||||
| 0 -- linear: u'*v | |||||
| 1 -- polynomial: (gamma*u'*v + coef0)^degree | |||||
| 2 -- radial basis function: exp(-gamma*|u-v|^2) | |||||
| 3 -- sigmoid: tanh(gamma*u'*v + coef0) | |||||
| 4 -- precomputed kernel (kernel values in training_set_file) | |||||
| -d degree : set degree in kernel function (default 3) | |||||
| -g gamma : set gamma in kernel function (default 1/num_features) | |||||
| -r coef0 : set coef0 in kernel function (default 0) | |||||
| -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) | |||||
| -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) | |||||
| -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) | |||||
| -m cachesize : set cache memory size in MB (default 100) | |||||
| -e epsilon : set tolerance of termination criterion (default 0.001) | |||||
| -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1) | |||||
| -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0) | |||||
| -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1) | |||||
| -v n: n-fold cross validation mode | |||||
| -q : quiet mode (no outputs) | |||||
| """ | |||||
| prob, param = None, None | |||||
| if isinstance(arg1, (list, tuple)): | |||||
| assert isinstance(arg2, (list, tuple)) | |||||
| y, x, options = arg1, arg2, arg3 | |||||
| param = svm_parameter(options) | |||||
| prob = svm_problem(y, x, isKernel=(param.kernel_type == PRECOMPUTED)) | |||||
| elif isinstance(arg1, svm_problem): | |||||
| prob = arg1 | |||||
| if isinstance(arg2, svm_parameter): | |||||
| param = arg2 | |||||
| else: | |||||
| param = svm_parameter(arg2) | |||||
| if prob == None or param == None: | |||||
| raise TypeError("Wrong types for the arguments") | |||||
| if param.kernel_type == PRECOMPUTED: | |||||
| for xi in prob.x_space: | |||||
| idx, val = xi[0].index, xi[0].value | |||||
| if xi[0].index != 0: | |||||
| raise ValueError('Wrong input format: first column must be 0:sample_serial_number') | |||||
| if val <= 0 or val > prob.n: | |||||
| raise ValueError('Wrong input format: sample_serial_number out of range') | |||||
| if param.gamma == 0 and prob.n > 0: | |||||
| param.gamma = 1.0 / prob.n | |||||
| libsvm.svm_set_print_string_function(param.print_func) | |||||
| err_msg = libsvm.svm_check_parameter(prob, param) | |||||
| if err_msg: | |||||
| raise ValueError('Error: %s' % err_msg) | |||||
| if param.cross_validation: | |||||
| l, nr_fold = prob.l, param.nr_fold | |||||
| target = (c_double * l)() | |||||
| libsvm.svm_cross_validation(prob, param, nr_fold, target) | |||||
| ACC, MSE, SCC = evaluations(prob.y[:l], target[:l]) | |||||
| if param.svm_type in [EPSILON_SVR, NU_SVR]: | |||||
| print("Cross Validation Mean squared error = %g" % MSE) | |||||
| print("Cross Validation Squared correlation coefficient = %g" % SCC) | |||||
| return MSE | |||||
| else: | |||||
| print("Cross Validation Accuracy = %g%%" % ACC) | |||||
| return ACC | |||||
| else: | |||||
| m = libsvm.svm_train(prob, param) | |||||
| m = toPyModel(m) | |||||
| # If prob is destroyed, data including SVs pointed by m can remain. | |||||
| m.x_space = prob.x_space | |||||
| return m | |||||
| def svm_predict(y, x, m, options=""): | |||||
| """ | |||||
| svm_predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals) | |||||
| Predict data (y, x) with the SVM model m. | |||||
| options: | |||||
| -b probability_estimates: whether to predict probability estimates, | |||||
| 0 or 1 (default 0); for one-class SVM only 0 is supported. | |||||
| -q : quiet mode (no outputs). | |||||
| The return tuple contains | |||||
| p_labels: a list of predicted labels | |||||
| p_acc: a tuple including accuracy (for classification), mean-squared | |||||
| error, and squared correlation coefficient (for regression). | |||||
| p_vals: a list of decision values or probability estimates (if '-b 1' | |||||
| is specified). If k is the number of classes, for decision values, | |||||
| each element includes results of predicting k(k-1)/2 binary-class | |||||
| SVMs. For probabilities, each element contains k values indicating | |||||
| the probability that the testing instance is in each class. | |||||
| Note that the order of classes here is the same as 'model.label' | |||||
| field in the model structure. | |||||
| """ | |||||
| def info(s): | |||||
| print(s) | |||||
| predict_probability = 0 | |||||
| argv = options.split() | |||||
| i = 0 | |||||
| while i < len(argv): | |||||
| if argv[i] == '-b': | |||||
| i += 1 | |||||
| predict_probability = int(argv[i]) | |||||
| elif argv[i] == '-q': | |||||
| info = print_null | |||||
| else: | |||||
| raise ValueError("Wrong options") | |||||
| i+=1 | |||||
| svm_type = m.get_svm_type() | |||||
| is_prob_model = m.is_probability_model() | |||||
| nr_class = m.get_nr_class() | |||||
| pred_labels = [] | |||||
| pred_values = [] | |||||
| if predict_probability: | |||||
| if not is_prob_model: | |||||
| raise ValueError("Model does not support probabiliy estimates") | |||||
| if svm_type in [NU_SVR, EPSILON_SVR]: | |||||
| info("Prob. model for test data: target value = predicted value + z,\n" | |||||
| "z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability()); | |||||
| nr_class = 0 | |||||
| prob_estimates = (c_double * nr_class)() | |||||
| for xi in x: | |||||
| xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED)) | |||||
| label = libsvm.svm_predict_probability(m, xi, prob_estimates) | |||||
| values = prob_estimates[:nr_class] | |||||
| pred_labels += [label] | |||||
| pred_values += [values] | |||||
| else: | |||||
| if is_prob_model: | |||||
| info("Model supports probability estimates, but disabled in predicton.") | |||||
| if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC): | |||||
| nr_classifier = 1 | |||||
| else: | |||||
| nr_classifier = nr_class*(nr_class-1)//2 | |||||
| dec_values = (c_double * nr_classifier)() | |||||
| for xi in x: | |||||
| xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED)) | |||||
| label = libsvm.svm_predict_values(m, xi, dec_values) | |||||
| if(nr_class == 1): | |||||
| values = [1] | |||||
| else: | |||||
| values = dec_values[:nr_classifier] | |||||
| pred_labels += [label] | |||||
| pred_values += [values] | |||||
| ACC, MSE, SCC = evaluations(y, pred_labels) | |||||
| l = len(y) | |||||
| if svm_type in [EPSILON_SVR, NU_SVR]: | |||||
| info("Mean squared error = %g (regression)" % MSE) | |||||
| info("Squared correlation coefficient = %g (regression)" % SCC) | |||||
| else: | |||||
| info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(l*ACC/100), l)) | |||||
| return pred_labels, (ACC, MSE, SCC), pred_values | |||||