| @@ -0,0 +1,176 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Fri Jun 12 10:30:17 2020 | |||
| @author: ljia | |||
| This script constructs simple preimages to test preimage methods and find bugs and shortcomings in them. | |||
| """ | |||
| def xp_simple_preimage(): | |||
| import numpy as np | |||
| """**1. Get dataset.**""" | |||
| from gklearn.utils import Dataset, split_dataset_by_target | |||
| # Predefined dataset name, use dataset "MAO". | |||
| ds_name = 'MAO' | |||
| # The node/edge labels that will not be used in the computation. | |||
| irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} | |||
| # Initialize a Dataset. | |||
| dataset_all = Dataset() | |||
| # Load predefined dataset "MAO". | |||
| dataset_all.load_predefined_dataset(ds_name) | |||
| # Remove irrelevant labels. | |||
| dataset_all.remove_labels(**irrelevant_labels) | |||
| # Split the whole dataset according to the classification targets. | |||
| datasets = split_dataset_by_target(dataset_all) | |||
| # Get the first class of graphs, whose median preimage will be computed. | |||
| dataset = datasets[0] | |||
| len(dataset.graphs) | |||
| """**2. Set parameters.**""" | |||
| import multiprocessing | |||
| # Parameters for MedianPreimageGenerator (our method). | |||
| mpg_options = {'fit_method': 'k-graphs', # how to fit edit costs. "k-graphs" means use all graphs in median set when fitting. | |||
| 'init_ecc': [4, 4, 2, 1, 1, 1], # initial edit costs. | |||
| 'ds_name': ds_name, # name of the dataset. | |||
| 'parallel': True, # whether the parallel scheme is to be used. | |||
| 'time_limit_in_sec': 0, # maximum time limit to compute the preimage. If set to 0 then no limit. | |||
| 'max_itrs': 10, # maximum iteration limit to optimize edit costs. If set to 0 then no limit. | |||
| 'max_itrs_without_update': 3, # If the times that edit costs is not update is more than this number, then the optimization stops. | |||
| 'epsilon_residual': 0.01, # In optimization, the residual is only considered changed if the change is bigger than this number. | |||
| 'epsilon_ec': 0.1, # In optimization, the edit costs are only considered changed if the changes are bigger than this number. | |||
| 'verbose': 2 # whether to print out results. | |||
| } | |||
| # Parameters for graph kernel computation. | |||
| kernel_options = {'name': 'PathUpToH', # use path kernel up to length h. | |||
| 'depth': 9, | |||
| 'k_func': 'MinMax', | |||
| 'compute_method': 'trie', | |||
| 'parallel': 'imap_unordered', # or None | |||
| 'n_jobs': multiprocessing.cpu_count(), | |||
| 'normalize': True, # whether to use normalized Gram matrix to optimize edit costs. | |||
| 'verbose': 2 # whether to print out results. | |||
| } | |||
| # Parameters for GED computation. | |||
| ged_options = {'method': 'IPFP', # use IPFP huristic. | |||
| 'initialization_method': 'RANDOM', # or 'NODE', etc. | |||
| 'initial_solutions': 10, # when bigger than 1, then the method is considered mIPFP. | |||
| 'edit_cost': 'CONSTANT', # use CONSTANT cost. | |||
| 'attr_distance': 'euclidean', # the distance between non-symbolic node/edge labels is computed by euclidean distance. | |||
| 'ratio_runs_from_initial_solutions': 1, | |||
| 'threads': multiprocessing.cpu_count(), # parallel threads. Do not work if mpg_options['parallel'] = False. | |||
| 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES' | |||
| } | |||
| # Parameters for MedianGraphEstimator (Boria's method). | |||
| mge_options = {'init_type': 'MEDOID', # how to initial median (compute set-median). "MEDOID" is to use the graph with smallest SOD. | |||
| 'random_inits': 10, # number of random initialization when 'init_type' = 'RANDOM'. | |||
| 'time_limit': 600, # maximum time limit to compute the generalized median. If set to 0 then no limit. | |||
| 'verbose': 2, # whether to print out results. | |||
| 'refine': False # whether to refine the final SODs or not. | |||
| } | |||
| print('done.') | |||
| """**3. Compute the Gram matrix and distance matrix.**""" | |||
| from gklearn.utils.utils import get_graph_kernel_by_name | |||
| # Get a graph kernel instance. | |||
| graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | |||
| node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||
| node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| kernel_options=kernel_options) | |||
| # Compute Gram matrix. | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, **kernel_options) | |||
| # Compute distance matrix. | |||
| from gklearn.utils import compute_distance_matrix | |||
| dis_mat, _, _, _ = compute_distance_matrix(gram_matrix) | |||
| print('done.') | |||
| """**4. Find the candidate graph.**""" | |||
| from gklearn.preimage.utils import compute_k_dis | |||
| # Number of the nearest neighbors. | |||
| k_neighbors = 10 | |||
| # For each graph G in dataset, compute the distance between its image \Phi(G) and the mean of its neighbors' images. | |||
| dis_min = np.inf # the minimum distance between possible \Phi(G) and the mean of its neighbors. | |||
| for idx, G in enumerate(dataset.graphs): | |||
| # Find the k nearest neighbors of G. | |||
| dis_list = dis_mat[idx] # distance between \Phi(G) and image of each graphs. | |||
| idx_sort = np.argsort(dis_list) # sort distances and get the sorted indices. | |||
| idx_nearest = idx_sort[1:k_neighbors+1] # indices of the k-nearest neighbors. | |||
| dis_k_nearest = [dis_list[i] for i in idx_nearest] # k-nearest distances, except the 0. | |||
| G_k_nearest = [dataset.graphs[i] for i in idx_nearest] # k-nearest neighbors. | |||
| # Compute the distance between \Phi(G) and the mean of its neighbors. | |||
| dis_tmp = compute_k_dis(idx, # the index of G in Gram matrix. | |||
| idx_nearest, # the indices of the neighbors | |||
| [1 / k_neighbors] * k_neighbors, # coefficients for neighbors. | |||
| gram_matrix, | |||
| withterm3=False) | |||
| # Check if the new distance is smallers. | |||
| if dis_tmp < dis_min: | |||
| dis_min = dis_tmp | |||
| G_cand = G | |||
| G_neighbors = G_k_nearest | |||
| print('The minimum distance is', dis_min) | |||
| """**5. Run median preimage generator.**""" | |||
| from gklearn.preimage import MedianPreimageGenerator | |||
| # Set the dataset as the k-nearest neighbors. | |||
| dataset.load_graphs(G_neighbors) | |||
| # Create median preimage generator instance. | |||
| mpg = MedianPreimageGenerator() | |||
| # Add dataset. | |||
| mpg.dataset = dataset | |||
| # Set parameters. | |||
| mpg.set_options(**mpg_options.copy()) | |||
| mpg.kernel_options = kernel_options.copy() | |||
| mpg.ged_options = ged_options.copy() | |||
| mpg.mge_options = mge_options.copy() | |||
| # Run. | |||
| mpg.run() | |||
| """**4. Get results.**""" | |||
| # Get results. | |||
| import pprint | |||
| pp = pprint.PrettyPrinter(indent=4) # pretty print | |||
| results = mpg.get_results() | |||
| pp.pprint(results) | |||
| draw_graph(mpg.set_median) | |||
| draw_graph(mpg.gen_median) | |||
| draw_graph(G_cand) | |||
| # Draw generated graphs. | |||
| def draw_graph(graph): | |||
| import matplotlib.pyplot as plt | |||
| import networkx as nx | |||
| plt.figure() | |||
| pos = nx.spring_layout(graph) | |||
| nx.draw(graph, pos, node_size=500, labels=nx.get_node_attributes(graph, 'atom_symbol'), font_color='w', width=3, with_labels=True) | |||
| plt.show() | |||
| plt.clf() | |||
| plt.close() | |||
| if __name__ == '__main__': | |||
| xp_simple_preimage() | |||