| @@ -0,0 +1,176 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Fri Jun 12 10:30:17 2020 | |||||
| @author: ljia | |||||
| This script constructs simple preimages to test preimage methods and find bugs and shortcomings in them. | |||||
| """ | |||||
| def xp_simple_preimage(): | |||||
| import numpy as np | |||||
| """**1. Get dataset.**""" | |||||
| from gklearn.utils import Dataset, split_dataset_by_target | |||||
| # Predefined dataset name, use dataset "MAO". | |||||
| ds_name = 'MAO' | |||||
| # The node/edge labels that will not be used in the computation. | |||||
| irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} | |||||
| # Initialize a Dataset. | |||||
| dataset_all = Dataset() | |||||
| # Load predefined dataset "MAO". | |||||
| dataset_all.load_predefined_dataset(ds_name) | |||||
| # Remove irrelevant labels. | |||||
| dataset_all.remove_labels(**irrelevant_labels) | |||||
| # Split the whole dataset according to the classification targets. | |||||
| datasets = split_dataset_by_target(dataset_all) | |||||
| # Get the first class of graphs, whose median preimage will be computed. | |||||
| dataset = datasets[0] | |||||
| len(dataset.graphs) | |||||
| """**2. Set parameters.**""" | |||||
| import multiprocessing | |||||
| # Parameters for MedianPreimageGenerator (our method). | |||||
| mpg_options = {'fit_method': 'k-graphs', # how to fit edit costs. "k-graphs" means use all graphs in median set when fitting. | |||||
| 'init_ecc': [4, 4, 2, 1, 1, 1], # initial edit costs. | |||||
| 'ds_name': ds_name, # name of the dataset. | |||||
| 'parallel': True, # whether the parallel scheme is to be used. | |||||
| 'time_limit_in_sec': 0, # maximum time limit to compute the preimage. If set to 0 then no limit. | |||||
| 'max_itrs': 10, # maximum iteration limit to optimize edit costs. If set to 0 then no limit. | |||||
| 'max_itrs_without_update': 3, # If the times that edit costs is not update is more than this number, then the optimization stops. | |||||
| 'epsilon_residual': 0.01, # In optimization, the residual is only considered changed if the change is bigger than this number. | |||||
| 'epsilon_ec': 0.1, # In optimization, the edit costs are only considered changed if the changes are bigger than this number. | |||||
| 'verbose': 2 # whether to print out results. | |||||
| } | |||||
| # Parameters for graph kernel computation. | |||||
| kernel_options = {'name': 'PathUpToH', # use path kernel up to length h. | |||||
| 'depth': 9, | |||||
| 'k_func': 'MinMax', | |||||
| 'compute_method': 'trie', | |||||
| 'parallel': 'imap_unordered', # or None | |||||
| 'n_jobs': multiprocessing.cpu_count(), | |||||
| 'normalize': True, # whether to use normalized Gram matrix to optimize edit costs. | |||||
| 'verbose': 2 # whether to print out results. | |||||
| } | |||||
| # Parameters for GED computation. | |||||
| ged_options = {'method': 'IPFP', # use IPFP huristic. | |||||
| 'initialization_method': 'RANDOM', # or 'NODE', etc. | |||||
| 'initial_solutions': 10, # when bigger than 1, then the method is considered mIPFP. | |||||
| 'edit_cost': 'CONSTANT', # use CONSTANT cost. | |||||
| 'attr_distance': 'euclidean', # the distance between non-symbolic node/edge labels is computed by euclidean distance. | |||||
| 'ratio_runs_from_initial_solutions': 1, | |||||
| 'threads': multiprocessing.cpu_count(), # parallel threads. Do not work if mpg_options['parallel'] = False. | |||||
| 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES' | |||||
| } | |||||
| # Parameters for MedianGraphEstimator (Boria's method). | |||||
| mge_options = {'init_type': 'MEDOID', # how to initial median (compute set-median). "MEDOID" is to use the graph with smallest SOD. | |||||
| 'random_inits': 10, # number of random initialization when 'init_type' = 'RANDOM'. | |||||
| 'time_limit': 600, # maximum time limit to compute the generalized median. If set to 0 then no limit. | |||||
| 'verbose': 2, # whether to print out results. | |||||
| 'refine': False # whether to refine the final SODs or not. | |||||
| } | |||||
| print('done.') | |||||
| """**3. Compute the Gram matrix and distance matrix.**""" | |||||
| from gklearn.utils.utils import get_graph_kernel_by_name | |||||
| # Get a graph kernel instance. | |||||
| graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | |||||
| node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||||
| node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| kernel_options=kernel_options) | |||||
| # Compute Gram matrix. | |||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, **kernel_options) | |||||
| # Compute distance matrix. | |||||
| from gklearn.utils import compute_distance_matrix | |||||
| dis_mat, _, _, _ = compute_distance_matrix(gram_matrix) | |||||
| print('done.') | |||||
| """**4. Find the candidate graph.**""" | |||||
| from gklearn.preimage.utils import compute_k_dis | |||||
| # Number of the nearest neighbors. | |||||
| k_neighbors = 10 | |||||
| # For each graph G in dataset, compute the distance between its image \Phi(G) and the mean of its neighbors' images. | |||||
| dis_min = np.inf # the minimum distance between possible \Phi(G) and the mean of its neighbors. | |||||
| for idx, G in enumerate(dataset.graphs): | |||||
| # Find the k nearest neighbors of G. | |||||
| dis_list = dis_mat[idx] # distance between \Phi(G) and image of each graphs. | |||||
| idx_sort = np.argsort(dis_list) # sort distances and get the sorted indices. | |||||
| idx_nearest = idx_sort[1:k_neighbors+1] # indices of the k-nearest neighbors. | |||||
| dis_k_nearest = [dis_list[i] for i in idx_nearest] # k-nearest distances, except the 0. | |||||
| G_k_nearest = [dataset.graphs[i] for i in idx_nearest] # k-nearest neighbors. | |||||
| # Compute the distance between \Phi(G) and the mean of its neighbors. | |||||
| dis_tmp = compute_k_dis(idx, # the index of G in Gram matrix. | |||||
| idx_nearest, # the indices of the neighbors | |||||
| [1 / k_neighbors] * k_neighbors, # coefficients for neighbors. | |||||
| gram_matrix, | |||||
| withterm3=False) | |||||
| # Check if the new distance is smallers. | |||||
| if dis_tmp < dis_min: | |||||
| dis_min = dis_tmp | |||||
| G_cand = G | |||||
| G_neighbors = G_k_nearest | |||||
| print('The minimum distance is', dis_min) | |||||
| """**5. Run median preimage generator.**""" | |||||
| from gklearn.preimage import MedianPreimageGenerator | |||||
| # Set the dataset as the k-nearest neighbors. | |||||
| dataset.load_graphs(G_neighbors) | |||||
| # Create median preimage generator instance. | |||||
| mpg = MedianPreimageGenerator() | |||||
| # Add dataset. | |||||
| mpg.dataset = dataset | |||||
| # Set parameters. | |||||
| mpg.set_options(**mpg_options.copy()) | |||||
| mpg.kernel_options = kernel_options.copy() | |||||
| mpg.ged_options = ged_options.copy() | |||||
| mpg.mge_options = mge_options.copy() | |||||
| # Run. | |||||
| mpg.run() | |||||
| """**4. Get results.**""" | |||||
| # Get results. | |||||
| import pprint | |||||
| pp = pprint.PrettyPrinter(indent=4) # pretty print | |||||
| results = mpg.get_results() | |||||
| pp.pprint(results) | |||||
| draw_graph(mpg.set_median) | |||||
| draw_graph(mpg.gen_median) | |||||
| draw_graph(G_cand) | |||||
| # Draw generated graphs. | |||||
| def draw_graph(graph): | |||||
| import matplotlib.pyplot as plt | |||||
| import networkx as nx | |||||
| plt.figure() | |||||
| pos = nx.spring_layout(graph) | |||||
| nx.draw(graph, pos, node_size=500, labels=nx.get_node_attributes(graph, 'atom_symbol'), font_color='w', width=3, with_labels=True) | |||||
| plt.show() | |||||
| plt.clf() | |||||
| plt.close() | |||||
| if __name__ == '__main__': | |||||
| xp_simple_preimage() | |||||