| @@ -0,0 +1,70 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Sun Dec 23 16:56:44 2018 | |||
| @author: ljia | |||
| """ | |||
| import functools | |||
| from libs import * | |||
| import multiprocessing | |||
| from gklearn.kernels.rwalk_sym import randomwalkkernel | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import numpy as np | |||
| dslist = [ | |||
| {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
| # node nsymb | |||
| {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
| # node symb/nsymb | |||
| ] | |||
| estimator = randomwalkkernel | |||
| param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||
| {'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||
| for ds in dslist: | |||
| print() | |||
| print(ds['name']) | |||
| for compute_method in ['conjugate', 'fp']: | |||
| if compute_method == 'sylvester': | |||
| param_grid_precomputed = {'compute_method': ['sylvester'], | |||
| # 'weight': np.linspace(0.01, 0.10, 10)} | |||
| 'weight': np.logspace(-1, -10, num=10, base=10)} | |||
| elif compute_method == 'conjugate': | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| param_grid_precomputed = {'compute_method': ['conjugate'], | |||
| 'node_kernels': | |||
| [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
| 'edge_kernels': | |||
| [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
| 'weight': np.logspace(-1, -10, num=10, base=10)} | |||
| elif compute_method == 'fp': | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| param_grid_precomputed = {'compute_method': ['fp'], | |||
| 'node_kernels': | |||
| [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
| 'edge_kernels': | |||
| [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
| 'weight': np.logspace(-3, -10, num=8, base=10)} | |||
| elif compute_method == 'spectral': | |||
| param_grid_precomputed = {'compute_method': ['spectral'], | |||
| 'weight': np.logspace(-1, -10, num=10, base=10), | |||
| 'sub_kernel': ['geo', 'exp']} | |||
| model_selection_for_precomputed_kernel( | |||
| ds['dataset'], | |||
| estimator, | |||
| param_grid_precomputed, | |||
| (param_grid[1] if ('task' in ds and ds['task'] | |||
| == 'regression') else param_grid[0]), | |||
| (ds['task'] if 'task' in ds else 'classification'), | |||
| NUM_TRIALS=30, | |||
| datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), | |||
| extra_params=(ds['extra_params'] if 'extra_params' in ds else None), | |||
| ds_name=ds['name'], | |||
| n_jobs=multiprocessing.cpu_count(), | |||
| read_gm_from_file=False) | |||
| print() | |||