| @@ -0,0 +1,70 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Sun Dec 23 16:56:44 2018 | |||||
| @author: ljia | |||||
| """ | |||||
| import functools | |||||
| from libs import * | |||||
| import multiprocessing | |||||
| from gklearn.kernels.rwalk_sym import randomwalkkernel | |||||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
| import numpy as np | |||||
| dslist = [ | |||||
| {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
| # node nsymb | |||||
| {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
| # node symb/nsymb | |||||
| ] | |||||
| estimator = randomwalkkernel | |||||
| param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||||
| {'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||||
| for ds in dslist: | |||||
| print() | |||||
| print(ds['name']) | |||||
| for compute_method in ['conjugate', 'fp']: | |||||
| if compute_method == 'sylvester': | |||||
| param_grid_precomputed = {'compute_method': ['sylvester'], | |||||
| # 'weight': np.linspace(0.01, 0.10, 10)} | |||||
| 'weight': np.logspace(-1, -10, num=10, base=10)} | |||||
| elif compute_method == 'conjugate': | |||||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
| param_grid_precomputed = {'compute_method': ['conjugate'], | |||||
| 'node_kernels': | |||||
| [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||||
| 'edge_kernels': | |||||
| [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||||
| 'weight': np.logspace(-1, -10, num=10, base=10)} | |||||
| elif compute_method == 'fp': | |||||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
| param_grid_precomputed = {'compute_method': ['fp'], | |||||
| 'node_kernels': | |||||
| [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||||
| 'edge_kernels': | |||||
| [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||||
| 'weight': np.logspace(-3, -10, num=8, base=10)} | |||||
| elif compute_method == 'spectral': | |||||
| param_grid_precomputed = {'compute_method': ['spectral'], | |||||
| 'weight': np.logspace(-1, -10, num=10, base=10), | |||||
| 'sub_kernel': ['geo', 'exp']} | |||||
| model_selection_for_precomputed_kernel( | |||||
| ds['dataset'], | |||||
| estimator, | |||||
| param_grid_precomputed, | |||||
| (param_grid[1] if ('task' in ds and ds['task'] | |||||
| == 'regression') else param_grid[0]), | |||||
| (ds['task'] if 'task' in ds else 'classification'), | |||||
| NUM_TRIALS=30, | |||||
| datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), | |||||
| extra_params=(ds['extra_params'] if 'extra_params' in ds else None), | |||||
| ds_name=ds['name'], | |||||
| n_jobs=multiprocessing.cpu_count(), | |||||
| read_gm_from_file=False) | |||||
| print() | |||||